genfs_vnops.c revision 1.152 1 /* $NetBSD: genfs_vnops.c,v 1.152 2007/05/13 13:11:53 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.152 2007/05/13 13:11:53 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 static void filt_genfsdetach(struct knote *);
66 static int filt_genfsread(struct knote *, long);
67 static int filt_genfsvnode(struct knote *, long);
68
69 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
70
71 int genfs_maxdio = MAXPHYS;
72
73 int
74 genfs_poll(void *v)
75 {
76 struct vop_poll_args /* {
77 struct vnode *a_vp;
78 int a_events;
79 struct lwp *a_l;
80 } */ *ap = v;
81
82 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
83 }
84
85 int
86 genfs_seek(void *v)
87 {
88 struct vop_seek_args /* {
89 struct vnode *a_vp;
90 off_t a_oldoff;
91 off_t a_newoff;
92 kauth_cred_t cred;
93 } */ *ap = v;
94
95 if (ap->a_newoff < 0)
96 return (EINVAL);
97
98 return (0);
99 }
100
101 int
102 genfs_abortop(void *v)
103 {
104 struct vop_abortop_args /* {
105 struct vnode *a_dvp;
106 struct componentname *a_cnp;
107 } */ *ap = v;
108
109 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
110 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
111 return (0);
112 }
113
114 int
115 genfs_fcntl(void *v)
116 {
117 struct vop_fcntl_args /* {
118 struct vnode *a_vp;
119 u_int a_command;
120 void *a_data;
121 int a_fflag;
122 kauth_cred_t a_cred;
123 struct lwp *a_l;
124 } */ *ap = v;
125
126 if (ap->a_command == F_SETFL)
127 return (0);
128 else
129 return (EOPNOTSUPP);
130 }
131
132 /*ARGSUSED*/
133 int
134 genfs_badop(void *v)
135 {
136
137 panic("genfs: bad op");
138 }
139
140 /*ARGSUSED*/
141 int
142 genfs_nullop(void *v)
143 {
144
145 return (0);
146 }
147
148 /*ARGSUSED*/
149 int
150 genfs_einval(void *v)
151 {
152
153 return (EINVAL);
154 }
155
156 /*
157 * Called when an fs doesn't support a particular vop.
158 * This takes care to vrele, vput, or vunlock passed in vnodes.
159 */
160 int
161 genfs_eopnotsupp(void *v)
162 {
163 struct vop_generic_args /*
164 struct vnodeop_desc *a_desc;
165 / * other random data follows, presumably * /
166 } */ *ap = v;
167 struct vnodeop_desc *desc = ap->a_desc;
168 struct vnode *vp, *vp_last = NULL;
169 int flags, i, j, offset;
170
171 flags = desc->vdesc_flags;
172 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
173 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
174 break; /* stop at end of list */
175 if ((j = flags & VDESC_VP0_WILLPUT)) {
176 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
177
178 /* Skip if NULL */
179 if (!vp)
180 continue;
181
182 switch (j) {
183 case VDESC_VP0_WILLPUT:
184 /* Check for dvp == vp cases */
185 if (vp == vp_last)
186 vrele(vp);
187 else {
188 vput(vp);
189 vp_last = vp;
190 }
191 break;
192 case VDESC_VP0_WILLUNLOCK:
193 VOP_UNLOCK(vp, 0);
194 break;
195 case VDESC_VP0_WILLRELE:
196 vrele(vp);
197 break;
198 }
199 }
200 }
201
202 return (EOPNOTSUPP);
203 }
204
205 /*ARGSUSED*/
206 int
207 genfs_ebadf(void *v)
208 {
209
210 return (EBADF);
211 }
212
213 /* ARGSUSED */
214 int
215 genfs_enoioctl(void *v)
216 {
217
218 return (EPASSTHROUGH);
219 }
220
221
222 /*
223 * Eliminate all activity associated with the requested vnode
224 * and with all vnodes aliased to the requested vnode.
225 */
226 int
227 genfs_revoke(void *v)
228 {
229 struct vop_revoke_args /* {
230 struct vnode *a_vp;
231 int a_flags;
232 } */ *ap = v;
233 struct vnode *vp, *vq;
234 struct lwp *l = curlwp; /* XXX */
235
236 #ifdef DIAGNOSTIC
237 if ((ap->a_flags & REVOKEALL) == 0)
238 panic("genfs_revoke: not revokeall");
239 #endif
240
241 vp = ap->a_vp;
242 simple_lock(&vp->v_interlock);
243
244 if (vp->v_flag & VALIASED) {
245 /*
246 * If a vgone (or vclean) is already in progress,
247 * wait until it is done and return.
248 */
249 if (vp->v_flag & VXLOCK) {
250 vp->v_flag |= VXWANT;
251 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
252 &vp->v_interlock);
253 return (0);
254 }
255 /*
256 * Ensure that vp will not be vgone'd while we
257 * are eliminating its aliases.
258 */
259 vp->v_flag |= VXLOCK;
260 simple_unlock(&vp->v_interlock);
261 while (vp->v_flag & VALIASED) {
262 simple_lock(&spechash_slock);
263 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
264 if (vq->v_rdev != vp->v_rdev ||
265 vq->v_type != vp->v_type || vp == vq)
266 continue;
267 simple_unlock(&spechash_slock);
268 vgone(vq);
269 break;
270 }
271 if (vq == NULLVP)
272 simple_unlock(&spechash_slock);
273 }
274 /*
275 * Remove the lock so that vgone below will
276 * really eliminate the vnode after which time
277 * vgone will awaken any sleepers.
278 */
279 simple_lock(&vp->v_interlock);
280 vp->v_flag &= ~VXLOCK;
281 }
282 vgonel(vp, l);
283 return (0);
284 }
285
286 /*
287 * Lock the node.
288 */
289 int
290 genfs_lock(void *v)
291 {
292 struct vop_lock_args /* {
293 struct vnode *a_vp;
294 int a_flags;
295 } */ *ap = v;
296 struct vnode *vp = ap->a_vp;
297
298 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
299 }
300
301 /*
302 * Unlock the node.
303 */
304 int
305 genfs_unlock(void *v)
306 {
307 struct vop_unlock_args /* {
308 struct vnode *a_vp;
309 int a_flags;
310 } */ *ap = v;
311 struct vnode *vp = ap->a_vp;
312
313 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
314 &vp->v_interlock));
315 }
316
317 /*
318 * Return whether or not the node is locked.
319 */
320 int
321 genfs_islocked(void *v)
322 {
323 struct vop_islocked_args /* {
324 struct vnode *a_vp;
325 } */ *ap = v;
326 struct vnode *vp = ap->a_vp;
327
328 return (lockstatus(vp->v_vnlock));
329 }
330
331 /*
332 * Stubs to use when there is no locking to be done on the underlying object.
333 */
334 int
335 genfs_nolock(void *v)
336 {
337 struct vop_lock_args /* {
338 struct vnode *a_vp;
339 int a_flags;
340 struct lwp *a_l;
341 } */ *ap = v;
342
343 /*
344 * Since we are not using the lock manager, we must clear
345 * the interlock here.
346 */
347 if (ap->a_flags & LK_INTERLOCK)
348 simple_unlock(&ap->a_vp->v_interlock);
349 return (0);
350 }
351
352 int
353 genfs_nounlock(void *v)
354 {
355
356 return (0);
357 }
358
359 int
360 genfs_noislocked(void *v)
361 {
362
363 return (0);
364 }
365
366 /*
367 * Local lease check.
368 */
369 int
370 genfs_lease_check(void *v)
371 {
372
373 return (0);
374 }
375
376 int
377 genfs_mmap(void *v)
378 {
379
380 return (0);
381 }
382
383 static inline void
384 genfs_rel_pages(struct vm_page **pgs, int npages)
385 {
386 int i;
387
388 for (i = 0; i < npages; i++) {
389 struct vm_page *pg = pgs[i];
390
391 if (pg == NULL || pg == PGO_DONTCARE)
392 continue;
393 if (pg->flags & PG_FAKE) {
394 pg->flags |= PG_RELEASED;
395 }
396 }
397 uvm_lock_pageq();
398 uvm_page_unbusy(pgs, npages);
399 uvm_unlock_pageq();
400 }
401
402 /*
403 * generic VM getpages routine.
404 * Return PG_BUSY pages for the given range,
405 * reading from backing store if necessary.
406 */
407
408 int
409 genfs_getpages(void *v)
410 {
411 struct vop_getpages_args /* {
412 struct vnode *a_vp;
413 voff_t a_offset;
414 struct vm_page **a_m;
415 int *a_count;
416 int a_centeridx;
417 vm_prot_t a_access_type;
418 int a_advice;
419 int a_flags;
420 } */ *ap = v;
421
422 off_t newsize, diskeof, memeof;
423 off_t offset, origoffset, startoffset, endoffset;
424 daddr_t lbn, blkno;
425 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
426 int fs_bshift, fs_bsize, dev_bshift;
427 int flags = ap->a_flags;
428 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
429 vaddr_t kva;
430 struct buf *bp, *mbp;
431 struct vnode *vp = ap->a_vp;
432 struct vnode *devvp;
433 struct genfs_node *gp = VTOG(vp);
434 struct uvm_object *uobj = &vp->v_uobj;
435 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
436 int pgs_size;
437 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
438 bool async = (flags & PGO_SYNCIO) == 0;
439 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
440 bool sawhole = false;
441 bool has_trans = false;
442 bool overwrite = (flags & PGO_OVERWRITE) != 0;
443 bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
444 voff_t origvsize;
445 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
446
447 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
448 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
449
450 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
451 vp->v_type == VLNK || vp->v_type == VBLK);
452
453 /* XXXUBC temp limit */
454 if (*ap->a_count > MAX_READ_PAGES) {
455 panic("genfs_getpages: too many pages");
456 }
457
458 pgs = pgs_onstack;
459 pgs_size = sizeof(pgs_onstack);
460
461 startover:
462 error = 0;
463 origvsize = vp->v_size;
464 origoffset = ap->a_offset;
465 orignpages = *ap->a_count;
466 GOP_SIZE(vp, origvsize, &diskeof, 0);
467 if (flags & PGO_PASTEOF) {
468 newsize = MAX(origvsize,
469 origoffset + (orignpages << PAGE_SHIFT));
470 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
471 } else {
472 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
473 }
474 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
475 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
476 KASSERT(orignpages > 0);
477
478 /*
479 * Bounds-check the request.
480 */
481
482 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
483 if ((flags & PGO_LOCKED) == 0) {
484 simple_unlock(&uobj->vmobjlock);
485 }
486 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
487 origoffset, *ap->a_count, memeof,0);
488 error = EINVAL;
489 goto out_err;
490 }
491
492 /* uobj is locked */
493
494 if ((flags & PGO_NOTIMESTAMP) == 0 &&
495 (vp->v_type != VBLK ||
496 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
497 int updflags = 0;
498
499 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
500 updflags = GOP_UPDATE_ACCESSED;
501 }
502 if (write) {
503 updflags |= GOP_UPDATE_MODIFIED;
504 }
505 if (updflags != 0) {
506 GOP_MARKUPDATE(vp, updflags);
507 }
508 }
509
510 if (write) {
511 gp->g_dirtygen++;
512 if ((vp->v_flag & VONWORKLST) == 0) {
513 vn_syncer_add_to_worklist(vp, filedelay);
514 }
515 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
516 vp->v_flag |= VWRITEMAPDIRTY;
517 }
518 }
519
520 /*
521 * For PGO_LOCKED requests, just return whatever's in memory.
522 */
523
524 if (flags & PGO_LOCKED) {
525 int nfound;
526
527 npages = *ap->a_count;
528 #if defined(DEBUG)
529 for (i = 0; i < npages; i++) {
530 pg = ap->a_m[i];
531 KASSERT(pg == NULL || pg == PGO_DONTCARE);
532 }
533 #endif /* defined(DEBUG) */
534 nfound = uvn_findpages(uobj, origoffset, &npages,
535 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
536 KASSERT(npages == *ap->a_count);
537 if (nfound == 0) {
538 error = EBUSY;
539 goto out_err;
540 }
541 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
542 genfs_rel_pages(ap->a_m, npages);
543
544 /*
545 * restore the array.
546 */
547
548 for (i = 0; i < npages; i++) {
549 pg = ap->a_m[i];
550
551 if (pg != NULL || pg != PGO_DONTCARE) {
552 ap->a_m[i] = NULL;
553 }
554 }
555 } else {
556 rw_exit(&gp->g_glock);
557 }
558 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
559 goto out_err;
560 }
561 simple_unlock(&uobj->vmobjlock);
562
563 /*
564 * find the requested pages and make some simple checks.
565 * leave space in the page array for a whole block.
566 */
567
568 if (vp->v_type != VBLK) {
569 fs_bshift = vp->v_mount->mnt_fs_bshift;
570 dev_bshift = vp->v_mount->mnt_dev_bshift;
571 } else {
572 fs_bshift = DEV_BSHIFT;
573 dev_bshift = DEV_BSHIFT;
574 }
575 fs_bsize = 1 << fs_bshift;
576
577 orignpages = MIN(orignpages,
578 round_page(memeof - origoffset) >> PAGE_SHIFT);
579 npages = orignpages;
580 startoffset = origoffset & ~(fs_bsize - 1);
581 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
582 fs_bsize - 1) & ~(fs_bsize - 1));
583 endoffset = MIN(endoffset, round_page(memeof));
584 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
585
586 pgs_size = sizeof(struct vm_page *) *
587 ((endoffset - startoffset) >> PAGE_SHIFT);
588 if (pgs_size > sizeof(pgs_onstack)) {
589 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
590 if (pgs == NULL) {
591 pgs = pgs_onstack;
592 error = ENOMEM;
593 goto out_err;
594 }
595 } else {
596 /* pgs == pgs_onstack */
597 memset(pgs, 0, pgs_size);
598 }
599 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
600 ridx, npages, startoffset, endoffset);
601
602 if (!has_trans &&
603 (error = fstrans_start(vp->v_mount, FSTRANS_SHARED)) != 0) {
604 goto out_err;
605 }
606 has_trans = true;
607
608 /*
609 * hold g_glock to prevent a race with truncate.
610 *
611 * check if our idea of v_size is still valid.
612 */
613
614 if (blockalloc) {
615 rw_enter(&gp->g_glock, RW_WRITER);
616 } else {
617 rw_enter(&gp->g_glock, RW_READER);
618 }
619 simple_lock(&uobj->vmobjlock);
620 if (vp->v_size < origvsize) {
621 rw_exit(&gp->g_glock);
622 if (pgs != pgs_onstack)
623 kmem_free(pgs, pgs_size);
624 goto startover;
625 }
626
627 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
628 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
629 rw_exit(&gp->g_glock);
630 KASSERT(async != 0);
631 genfs_rel_pages(&pgs[ridx], orignpages);
632 simple_unlock(&uobj->vmobjlock);
633 error = EBUSY;
634 goto out_err;
635 }
636
637 /*
638 * if the pages are already resident, just return them.
639 */
640
641 for (i = 0; i < npages; i++) {
642 struct vm_page *pg1 = pgs[ridx + i];
643
644 if ((pg1->flags & PG_FAKE) ||
645 (blockalloc && (pg1->flags & PG_RDONLY))) {
646 break;
647 }
648 }
649 if (i == npages) {
650 rw_exit(&gp->g_glock);
651 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
652 npages += ridx;
653 goto out;
654 }
655
656 /*
657 * if PGO_OVERWRITE is set, don't bother reading the pages.
658 */
659
660 if (overwrite) {
661 rw_exit(&gp->g_glock);
662 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
663
664 for (i = 0; i < npages; i++) {
665 struct vm_page *pg1 = pgs[ridx + i];
666
667 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
668 }
669 npages += ridx;
670 goto out;
671 }
672
673 /*
674 * the page wasn't resident and we're not overwriting,
675 * so we're going to have to do some i/o.
676 * find any additional pages needed to cover the expanded range.
677 */
678
679 npages = (endoffset - startoffset) >> PAGE_SHIFT;
680 if (startoffset != origoffset || npages != orignpages) {
681
682 /*
683 * we need to avoid deadlocks caused by locking
684 * additional pages at lower offsets than pages we
685 * already have locked. unlock them all and start over.
686 */
687
688 genfs_rel_pages(&pgs[ridx], orignpages);
689 memset(pgs, 0, pgs_size);
690
691 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
692 startoffset, endoffset, 0,0);
693 npgs = npages;
694 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
695 async ? UFP_NOWAIT : UFP_ALL) != npages) {
696 rw_exit(&gp->g_glock);
697 KASSERT(async != 0);
698 genfs_rel_pages(pgs, npages);
699 simple_unlock(&uobj->vmobjlock);
700 error = EBUSY;
701 goto out_err;
702 }
703 }
704 simple_unlock(&uobj->vmobjlock);
705
706 /*
707 * read the desired page(s).
708 */
709
710 totalbytes = npages << PAGE_SHIFT;
711 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
712 tailbytes = totalbytes - bytes;
713 skipbytes = 0;
714
715 kva = uvm_pagermapin(pgs, npages,
716 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
717
718 mbp = getiobuf();
719 mbp->b_bufsize = totalbytes;
720 mbp->b_data = (void *)kva;
721 mbp->b_resid = mbp->b_bcount = bytes;
722 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
723 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
724 mbp->b_vp = vp;
725 if (async)
726 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
727 else
728 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
729
730 /*
731 * if EOF is in the middle of the range, zero the part past EOF.
732 * if the page including EOF is not PG_FAKE, skip over it since
733 * in that case it has valid data that we need to preserve.
734 */
735
736 if (tailbytes > 0) {
737 size_t tailstart = bytes;
738
739 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
740 tailstart = round_page(tailstart);
741 tailbytes -= tailstart - bytes;
742 }
743 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
744 kva, tailstart, tailbytes,0);
745 memset((void *)(kva + tailstart), 0, tailbytes);
746 }
747
748 /*
749 * now loop over the pages, reading as needed.
750 */
751
752 bp = NULL;
753 for (offset = startoffset;
754 bytes > 0;
755 offset += iobytes, bytes -= iobytes) {
756
757 /*
758 * skip pages which don't need to be read.
759 */
760
761 pidx = (offset - startoffset) >> PAGE_SHIFT;
762 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
763 size_t b;
764
765 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
766 if ((pgs[pidx]->flags & PG_RDONLY)) {
767 sawhole = true;
768 }
769 b = MIN(PAGE_SIZE, bytes);
770 offset += b;
771 bytes -= b;
772 skipbytes += b;
773 pidx++;
774 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
775 offset, 0,0,0);
776 if (bytes == 0) {
777 goto loopdone;
778 }
779 }
780
781 /*
782 * bmap the file to find out the blkno to read from and
783 * how much we can read in one i/o. if bmap returns an error,
784 * skip the rest of the top-level i/o.
785 */
786
787 lbn = offset >> fs_bshift;
788 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
789 if (error) {
790 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
791 lbn, error,0,0);
792 skipbytes += bytes;
793 goto loopdone;
794 }
795
796 /*
797 * see how many pages can be read with this i/o.
798 * reduce the i/o size if necessary to avoid
799 * overwriting pages with valid data.
800 */
801
802 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
803 bytes);
804 if (offset + iobytes > round_page(offset)) {
805 pcount = 1;
806 while (pidx + pcount < npages &&
807 pgs[pidx + pcount]->flags & PG_FAKE) {
808 pcount++;
809 }
810 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
811 (offset - trunc_page(offset)));
812 }
813
814 /*
815 * if this block isn't allocated, zero it instead of
816 * reading it. unless we are going to allocate blocks,
817 * mark the pages we zeroed PG_RDONLY.
818 */
819
820 if (blkno < 0) {
821 int holepages = (round_page(offset + iobytes) -
822 trunc_page(offset)) >> PAGE_SHIFT;
823 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
824
825 sawhole = true;
826 memset((char *)kva + (offset - startoffset), 0,
827 iobytes);
828 skipbytes += iobytes;
829
830 for (i = 0; i < holepages; i++) {
831 if (write) {
832 pgs[pidx + i]->flags &= ~PG_CLEAN;
833 }
834 if (!blockalloc) {
835 pgs[pidx + i]->flags |= PG_RDONLY;
836 }
837 }
838 continue;
839 }
840
841 /*
842 * allocate a sub-buf for this piece of the i/o
843 * (or just use mbp if there's only 1 piece),
844 * and start it going.
845 */
846
847 if (offset == startoffset && iobytes == bytes) {
848 bp = mbp;
849 } else {
850 bp = getiobuf();
851 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
852 }
853 bp->b_lblkno = 0;
854
855 /* adjust physical blkno for partial blocks */
856 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
857 dev_bshift);
858
859 UVMHIST_LOG(ubchist,
860 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
861 bp, offset, iobytes, bp->b_blkno);
862
863 VOP_STRATEGY(devvp, bp);
864 }
865
866 loopdone:
867 nestiobuf_done(mbp, skipbytes, error);
868 if (async) {
869 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
870 rw_exit(&gp->g_glock);
871 error = 0;
872 goto out_err;
873 }
874 if (bp != NULL) {
875 error = biowait(mbp);
876 }
877 putiobuf(mbp);
878 uvm_pagermapout(kva, npages);
879
880 /*
881 * if this we encountered a hole then we have to do a little more work.
882 * for read faults, we marked the page PG_RDONLY so that future
883 * write accesses to the page will fault again.
884 * for write faults, we must make sure that the backing store for
885 * the page is completely allocated while the pages are locked.
886 */
887
888 if (!error && sawhole && blockalloc) {
889 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
890 cred);
891 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
892 startoffset, npages << PAGE_SHIFT, error,0);
893 if (!error) {
894 for (i = 0; i < npages; i++) {
895 if (pgs[i] == NULL) {
896 continue;
897 }
898 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
899 UVMHIST_LOG(ubchist, "mark dirty pg %p",
900 pgs[i],0,0,0);
901 }
902 }
903 }
904 rw_exit(&gp->g_glock);
905 simple_lock(&uobj->vmobjlock);
906
907 /*
908 * we're almost done! release the pages...
909 * for errors, we free the pages.
910 * otherwise we activate them and mark them as valid and clean.
911 * also, unbusy pages that were not actually requested.
912 */
913
914 if (error) {
915 for (i = 0; i < npages; i++) {
916 if (pgs[i] == NULL) {
917 continue;
918 }
919 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
920 pgs[i], pgs[i]->flags, 0,0);
921 if (pgs[i]->flags & PG_FAKE) {
922 pgs[i]->flags |= PG_RELEASED;
923 }
924 }
925 uvm_lock_pageq();
926 uvm_page_unbusy(pgs, npages);
927 uvm_unlock_pageq();
928 simple_unlock(&uobj->vmobjlock);
929 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
930 goto out_err;
931 }
932
933 out:
934 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
935 error = 0;
936 uvm_lock_pageq();
937 for (i = 0; i < npages; i++) {
938 pg = pgs[i];
939 if (pg == NULL) {
940 continue;
941 }
942 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
943 pg, pg->flags, 0,0);
944 if (pg->flags & PG_FAKE && !overwrite) {
945 pg->flags &= ~(PG_FAKE);
946 pmap_clear_modify(pgs[i]);
947 }
948 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
949 if (i < ridx || i >= ridx + orignpages || async) {
950 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
951 pg, pg->offset,0,0);
952 if (pg->flags & PG_WANTED) {
953 wakeup(pg);
954 }
955 if (pg->flags & PG_FAKE) {
956 KASSERT(overwrite);
957 uvm_pagezero(pg);
958 }
959 if (pg->flags & PG_RELEASED) {
960 uvm_pagefree(pg);
961 continue;
962 }
963 uvm_pageenqueue(pg);
964 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
965 UVM_PAGE_OWN(pg, NULL);
966 }
967 }
968 uvm_unlock_pageq();
969 simple_unlock(&uobj->vmobjlock);
970 if (ap->a_m != NULL) {
971 memcpy(ap->a_m, &pgs[ridx],
972 orignpages * sizeof(struct vm_page *));
973 }
974
975 out_err:
976 if (pgs != pgs_onstack)
977 kmem_free(pgs, pgs_size);
978 if (has_trans)
979 fstrans_done(vp->v_mount);
980 return (error);
981 }
982
983 /*
984 * generic VM putpages routine.
985 * Write the given range of pages to backing store.
986 *
987 * => "offhi == 0" means flush all pages at or after "offlo".
988 * => object should be locked by caller. we return with the
989 * object unlocked.
990 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
991 * thus, a caller might want to unlock higher level resources
992 * (e.g. vm_map) before calling flush.
993 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
994 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
995 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
996 * that new pages are inserted on the tail end of the list. thus,
997 * we can make a complete pass through the object in one go by starting
998 * at the head and working towards the tail (new pages are put in
999 * front of us).
1000 * => NOTE: we are allowed to lock the page queues, so the caller
1001 * must not be holding the page queue lock.
1002 *
1003 * note on "cleaning" object and PG_BUSY pages:
1004 * this routine is holding the lock on the object. the only time
1005 * that it can run into a PG_BUSY page that it does not own is if
1006 * some other process has started I/O on the page (e.g. either
1007 * a pagein, or a pageout). if the PG_BUSY page is being paged
1008 * in, then it can not be dirty (!PG_CLEAN) because no one has
1009 * had a chance to modify it yet. if the PG_BUSY page is being
1010 * paged out then it means that someone else has already started
1011 * cleaning the page for us (how nice!). in this case, if we
1012 * have syncio specified, then after we make our pass through the
1013 * object we need to wait for the other PG_BUSY pages to clear
1014 * off (i.e. we need to do an iosync). also note that once a
1015 * page is PG_BUSY it must stay in its object until it is un-busyed.
1016 *
1017 * note on page traversal:
1018 * we can traverse the pages in an object either by going down the
1019 * linked list in "uobj->memq", or we can go over the address range
1020 * by page doing hash table lookups for each address. depending
1021 * on how many pages are in the object it may be cheaper to do one
1022 * or the other. we set "by_list" to true if we are using memq.
1023 * if the cost of a hash lookup was equal to the cost of the list
1024 * traversal we could compare the number of pages in the start->stop
1025 * range to the total number of pages in the object. however, it
1026 * seems that a hash table lookup is more expensive than the linked
1027 * list traversal, so we multiply the number of pages in the
1028 * range by an estimate of the relatively higher cost of the hash lookup.
1029 */
1030
1031 int
1032 genfs_putpages(void *v)
1033 {
1034 struct vop_putpages_args /* {
1035 struct vnode *a_vp;
1036 voff_t a_offlo;
1037 voff_t a_offhi;
1038 int a_flags;
1039 } */ *ap = v;
1040
1041 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1042 ap->a_flags, NULL);
1043 }
1044
1045 int
1046 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
1047 struct vm_page **busypg)
1048 {
1049 struct uvm_object *uobj = &vp->v_uobj;
1050 struct simplelock *slock = &uobj->vmobjlock;
1051 off_t off;
1052 /* Even for strange MAXPHYS, the shift rounds down to a page */
1053 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1054 int i, s, error, npages, nback;
1055 int freeflag;
1056 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1057 bool wasclean, by_list, needs_clean, yld;
1058 bool async = (flags & PGO_SYNCIO) == 0;
1059 bool pagedaemon = curproc == uvm.pagedaemon_proc;
1060 struct lwp *l = curlwp ? curlwp : &lwp0;
1061 struct genfs_node *gp = VTOG(vp);
1062 int dirtygen;
1063 bool modified = false;
1064 bool has_trans = false;
1065 bool cleanall;
1066
1067 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1068
1069 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1070 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1071 KASSERT(startoff < endoff || endoff == 0);
1072
1073 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1074 vp, uobj->uo_npages, startoff, endoff - startoff);
1075
1076 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1077 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1078 if (uobj->uo_npages == 0) {
1079 s = splbio();
1080 if (vp->v_flag & VONWORKLST) {
1081 vp->v_flag &= ~VWRITEMAPDIRTY;
1082 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1083 vn_syncer_remove_from_worklist(vp);
1084 }
1085 splx(s);
1086 simple_unlock(slock);
1087 return (0);
1088 }
1089
1090 /*
1091 * the vnode has pages, set up to process the request.
1092 */
1093
1094 if ((flags & PGO_CLEANIT) != 0) {
1095 simple_unlock(slock);
1096 if (pagedaemon)
1097 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1098 else
1099 error = fstrans_start(vp->v_mount, FSTRANS_LAZY);
1100 if (error)
1101 return error;
1102 has_trans = true;
1103 simple_lock(slock);
1104 }
1105
1106 error = 0;
1107 s = splbio();
1108 simple_lock(&global_v_numoutput_slock);
1109 wasclean = (vp->v_numoutput == 0);
1110 simple_unlock(&global_v_numoutput_slock);
1111 splx(s);
1112 off = startoff;
1113 if (endoff == 0 || flags & PGO_ALLPAGES) {
1114 endoff = trunc_page(LLONG_MAX);
1115 }
1116 by_list = (uobj->uo_npages <=
1117 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1118
1119 #if !defined(DEBUG)
1120 /*
1121 * if this vnode is known not to have dirty pages,
1122 * don't bother to clean it out.
1123 */
1124
1125 if ((vp->v_flag & VONWORKLST) == 0) {
1126 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1127 goto skip_scan;
1128 }
1129 flags &= ~PGO_CLEANIT;
1130 }
1131 #endif /* !defined(DEBUG) */
1132
1133 /*
1134 * start the loop. when scanning by list, hold the last page
1135 * in the list before we start. pages allocated after we start
1136 * will be added to the end of the list, so we can stop at the
1137 * current last page.
1138 */
1139
1140 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1141 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1142 (vp->v_flag & VONWORKLST) != 0;
1143 dirtygen = gp->g_dirtygen;
1144 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1145 if (by_list) {
1146 curmp.uobject = uobj;
1147 curmp.offset = (voff_t)-1;
1148 curmp.flags = PG_BUSY;
1149 endmp.uobject = uobj;
1150 endmp.offset = (voff_t)-1;
1151 endmp.flags = PG_BUSY;
1152 pg = TAILQ_FIRST(&uobj->memq);
1153 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1154 PHOLD(l);
1155 } else {
1156 pg = uvm_pagelookup(uobj, off);
1157 }
1158 nextpg = NULL;
1159 while (by_list || off < endoff) {
1160
1161 /*
1162 * if the current page is not interesting, move on to the next.
1163 */
1164
1165 KASSERT(pg == NULL || pg->uobject == uobj);
1166 KASSERT(pg == NULL ||
1167 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1168 (pg->flags & PG_BUSY) != 0);
1169 if (by_list) {
1170 if (pg == &endmp) {
1171 break;
1172 }
1173 if (pg->offset < startoff || pg->offset >= endoff ||
1174 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1175 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1176 wasclean = false;
1177 }
1178 pg = TAILQ_NEXT(pg, listq);
1179 continue;
1180 }
1181 off = pg->offset;
1182 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1183 if (pg != NULL) {
1184 wasclean = false;
1185 }
1186 off += PAGE_SIZE;
1187 if (off < endoff) {
1188 pg = uvm_pagelookup(uobj, off);
1189 }
1190 continue;
1191 }
1192
1193 /*
1194 * if the current page needs to be cleaned and it's busy,
1195 * wait for it to become unbusy.
1196 */
1197
1198 yld = (l->l_cpu->ci_schedstate.spc_flags &
1199 SPCF_SHOULDYIELD) && !pagedaemon;
1200 if (pg->flags & PG_BUSY || yld) {
1201 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1202 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1203 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1204 error = EDEADLK;
1205 if (busypg != NULL)
1206 *busypg = pg;
1207 break;
1208 }
1209 KASSERT(!pagedaemon);
1210 if (by_list) {
1211 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1212 UVMHIST_LOG(ubchist, "curmp next %p",
1213 TAILQ_NEXT(&curmp, listq), 0,0,0);
1214 }
1215 if (yld) {
1216 simple_unlock(slock);
1217 preempt();
1218 simple_lock(slock);
1219 } else {
1220 pg->flags |= PG_WANTED;
1221 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1222 simple_lock(slock);
1223 }
1224 if (by_list) {
1225 UVMHIST_LOG(ubchist, "after next %p",
1226 TAILQ_NEXT(&curmp, listq), 0,0,0);
1227 pg = TAILQ_NEXT(&curmp, listq);
1228 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1229 } else {
1230 pg = uvm_pagelookup(uobj, off);
1231 }
1232 continue;
1233 }
1234
1235 /*
1236 * if we're freeing, remove all mappings of the page now.
1237 * if we're cleaning, check if the page is needs to be cleaned.
1238 */
1239
1240 if (flags & PGO_FREE) {
1241 pmap_page_protect(pg, VM_PROT_NONE);
1242 } else if (flags & PGO_CLEANIT) {
1243
1244 /*
1245 * if we still have some hope to pull this vnode off
1246 * from the syncer queue, write-protect the page.
1247 */
1248
1249 if (cleanall && wasclean &&
1250 gp->g_dirtygen == dirtygen) {
1251
1252 /*
1253 * uobj pages get wired only by uvm_fault
1254 * where uobj is locked.
1255 */
1256
1257 if (pg->wire_count == 0) {
1258 pmap_page_protect(pg,
1259 VM_PROT_READ|VM_PROT_EXECUTE);
1260 } else {
1261 cleanall = false;
1262 }
1263 }
1264 }
1265
1266 if (flags & PGO_CLEANIT) {
1267 needs_clean = pmap_clear_modify(pg) ||
1268 (pg->flags & PG_CLEAN) == 0;
1269 pg->flags |= PG_CLEAN;
1270 } else {
1271 needs_clean = false;
1272 }
1273
1274 /*
1275 * if we're cleaning, build a cluster.
1276 * the cluster will consist of pages which are currently dirty,
1277 * but they will be returned to us marked clean.
1278 * if not cleaning, just operate on the one page.
1279 */
1280
1281 if (needs_clean) {
1282 KDASSERT((vp->v_flag & VONWORKLST));
1283 wasclean = false;
1284 memset(pgs, 0, sizeof(pgs));
1285 pg->flags |= PG_BUSY;
1286 UVM_PAGE_OWN(pg, "genfs_putpages");
1287
1288 /*
1289 * first look backward.
1290 */
1291
1292 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1293 nback = npages;
1294 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1295 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1296 if (nback) {
1297 memmove(&pgs[0], &pgs[npages - nback],
1298 nback * sizeof(pgs[0]));
1299 if (npages - nback < nback)
1300 memset(&pgs[nback], 0,
1301 (npages - nback) * sizeof(pgs[0]));
1302 else
1303 memset(&pgs[npages - nback], 0,
1304 nback * sizeof(pgs[0]));
1305 }
1306
1307 /*
1308 * then plug in our page of interest.
1309 */
1310
1311 pgs[nback] = pg;
1312
1313 /*
1314 * then look forward to fill in the remaining space in
1315 * the array of pages.
1316 */
1317
1318 npages = maxpages - nback - 1;
1319 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1320 &pgs[nback + 1],
1321 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1322 npages += nback + 1;
1323 } else {
1324 pgs[0] = pg;
1325 npages = 1;
1326 nback = 0;
1327 }
1328
1329 /*
1330 * apply FREE or DEACTIVATE options if requested.
1331 */
1332
1333 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1334 uvm_lock_pageq();
1335 }
1336 for (i = 0; i < npages; i++) {
1337 tpg = pgs[i];
1338 KASSERT(tpg->uobject == uobj);
1339 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1340 pg = tpg;
1341 if (tpg->offset < startoff || tpg->offset >= endoff)
1342 continue;
1343 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1344 (void) pmap_clear_reference(tpg);
1345 uvm_pagedeactivate(tpg);
1346 } else if (flags & PGO_FREE) {
1347 pmap_page_protect(tpg, VM_PROT_NONE);
1348 if (tpg->flags & PG_BUSY) {
1349 tpg->flags |= freeflag;
1350 if (pagedaemon) {
1351 uvmexp.paging++;
1352 uvm_pagedequeue(tpg);
1353 }
1354 } else {
1355
1356 /*
1357 * ``page is not busy''
1358 * implies that npages is 1
1359 * and needs_clean is false.
1360 */
1361
1362 nextpg = TAILQ_NEXT(tpg, listq);
1363 uvm_pagefree(tpg);
1364 if (pagedaemon)
1365 uvmexp.pdfreed++;
1366 }
1367 }
1368 }
1369 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1370 uvm_unlock_pageq();
1371 }
1372 if (needs_clean) {
1373 modified = true;
1374
1375 /*
1376 * start the i/o. if we're traversing by list,
1377 * keep our place in the list with a marker page.
1378 */
1379
1380 if (by_list) {
1381 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1382 listq);
1383 }
1384 simple_unlock(slock);
1385 error = GOP_WRITE(vp, pgs, npages, flags);
1386 simple_lock(slock);
1387 if (by_list) {
1388 pg = TAILQ_NEXT(&curmp, listq);
1389 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1390 }
1391 if (error) {
1392 break;
1393 }
1394 if (by_list) {
1395 continue;
1396 }
1397 }
1398
1399 /*
1400 * find the next page and continue if there was no error.
1401 */
1402
1403 if (by_list) {
1404 if (nextpg) {
1405 pg = nextpg;
1406 nextpg = NULL;
1407 } else {
1408 pg = TAILQ_NEXT(pg, listq);
1409 }
1410 } else {
1411 off += (npages - nback) << PAGE_SHIFT;
1412 if (off < endoff) {
1413 pg = uvm_pagelookup(uobj, off);
1414 }
1415 }
1416 }
1417 if (by_list) {
1418 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1419 PRELE(l);
1420 }
1421
1422 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1423 (vp->v_type != VBLK ||
1424 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1425 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1426 }
1427
1428 /*
1429 * if we're cleaning and there was nothing to clean,
1430 * take us off the syncer list. if we started any i/o
1431 * and we're doing sync i/o, wait for all writes to finish.
1432 */
1433
1434 s = splbio();
1435 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1436 (vp->v_flag & VONWORKLST) != 0) {
1437 vp->v_flag &= ~VWRITEMAPDIRTY;
1438 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1439 vn_syncer_remove_from_worklist(vp);
1440 }
1441 splx(s);
1442
1443 #if !defined(DEBUG)
1444 skip_scan:
1445 #endif /* !defined(DEBUG) */
1446 if (!wasclean && !async) {
1447 s = splbio();
1448 /*
1449 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1450 * but the slot in ltsleep() is taken!
1451 * XXX - try to recover from missed wakeups with a timeout..
1452 * must think of something better.
1453 */
1454 while (vp->v_numoutput != 0) {
1455 vp->v_flag |= VBWAIT;
1456 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
1457 "genput2", hz);
1458 simple_lock(slock);
1459 }
1460 splx(s);
1461 }
1462 simple_unlock(slock);
1463
1464 if (has_trans)
1465 fstrans_done(vp->v_mount);
1466
1467 return (error);
1468 }
1469
1470 int
1471 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1472 {
1473 off_t off;
1474 vaddr_t kva;
1475 size_t len;
1476 int error;
1477 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1478
1479 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1480 vp, pgs, npages, flags);
1481
1482 off = pgs[0]->offset;
1483 kva = uvm_pagermapin(pgs, npages,
1484 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1485 len = npages << PAGE_SHIFT;
1486
1487 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1488 uvm_aio_biodone);
1489
1490 return error;
1491 }
1492
1493 /*
1494 * Backend routine for doing I/O to vnode pages. Pages are already locked
1495 * and mapped into kernel memory. Here we just look up the underlying
1496 * device block addresses and call the strategy routine.
1497 */
1498
1499 static int
1500 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1501 enum uio_rw rw, void (*iodone)(struct buf *))
1502 {
1503 int s, error, run;
1504 int fs_bshift, dev_bshift;
1505 off_t eof, offset, startoffset;
1506 size_t bytes, iobytes, skipbytes;
1507 daddr_t lbn, blkno;
1508 struct buf *mbp, *bp;
1509 struct vnode *devvp;
1510 bool async = (flags & PGO_SYNCIO) == 0;
1511 bool write = rw == UIO_WRITE;
1512 int brw = write ? B_WRITE : B_READ;
1513 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1514
1515 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1516 vp, kva, len, flags);
1517
1518 GOP_SIZE(vp, vp->v_size, &eof, 0);
1519 if (vp->v_type != VBLK) {
1520 fs_bshift = vp->v_mount->mnt_fs_bshift;
1521 dev_bshift = vp->v_mount->mnt_dev_bshift;
1522 } else {
1523 fs_bshift = DEV_BSHIFT;
1524 dev_bshift = DEV_BSHIFT;
1525 }
1526 error = 0;
1527 startoffset = off;
1528 bytes = MIN(len, eof - startoffset);
1529 skipbytes = 0;
1530 KASSERT(bytes != 0);
1531
1532 if (write) {
1533 s = splbio();
1534 simple_lock(&global_v_numoutput_slock);
1535 vp->v_numoutput += 2;
1536 simple_unlock(&global_v_numoutput_slock);
1537 splx(s);
1538 }
1539 mbp = getiobuf();
1540 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1541 vp, mbp, vp->v_numoutput, bytes);
1542 mbp->b_bufsize = len;
1543 mbp->b_data = (void *)kva;
1544 mbp->b_resid = mbp->b_bcount = bytes;
1545 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1546 mbp->b_iodone = iodone;
1547 mbp->b_vp = vp;
1548 if (curproc == uvm.pagedaemon_proc)
1549 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1550 else if (async)
1551 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1552 else
1553 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1554
1555 bp = NULL;
1556 for (offset = startoffset;
1557 bytes > 0;
1558 offset += iobytes, bytes -= iobytes) {
1559 lbn = offset >> fs_bshift;
1560 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1561 if (error) {
1562 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1563 skipbytes += bytes;
1564 bytes = 0;
1565 break;
1566 }
1567
1568 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1569 bytes);
1570 if (blkno == (daddr_t)-1) {
1571 if (!write) {
1572 memset((char *)kva + (offset - startoffset), 0,
1573 iobytes);
1574 }
1575 skipbytes += iobytes;
1576 continue;
1577 }
1578
1579 /* if it's really one i/o, don't make a second buf */
1580 if (offset == startoffset && iobytes == bytes) {
1581 bp = mbp;
1582 } else {
1583 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1584 vp, bp, vp->v_numoutput, 0);
1585 bp = getiobuf();
1586 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1587 }
1588 bp->b_lblkno = 0;
1589
1590 /* adjust physical blkno for partial blocks */
1591 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1592 dev_bshift);
1593 UVMHIST_LOG(ubchist,
1594 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1595 vp, offset, bp->b_bcount, bp->b_blkno);
1596
1597 VOP_STRATEGY(devvp, bp);
1598 }
1599 if (skipbytes) {
1600 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1601 }
1602 nestiobuf_done(mbp, skipbytes, error);
1603 if (async) {
1604 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1605 return (0);
1606 }
1607 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1608 error = biowait(mbp);
1609 s = splbio();
1610 (*iodone)(mbp);
1611 splx(s);
1612 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1613 return (error);
1614 }
1615
1616 /*
1617 * VOP_PUTPAGES() for vnodes which never have pages.
1618 */
1619
1620 int
1621 genfs_null_putpages(void *v)
1622 {
1623 struct vop_putpages_args /* {
1624 struct vnode *a_vp;
1625 voff_t a_offlo;
1626 voff_t a_offhi;
1627 int a_flags;
1628 } */ *ap = v;
1629 struct vnode *vp = ap->a_vp;
1630
1631 KASSERT(vp->v_uobj.uo_npages == 0);
1632 simple_unlock(&vp->v_interlock);
1633 return (0);
1634 }
1635
1636 void
1637 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1638 {
1639 struct genfs_node *gp = VTOG(vp);
1640
1641 rw_init(&gp->g_glock);
1642 gp->g_op = ops;
1643 }
1644
1645 void
1646 genfs_node_destroy(struct vnode *vp)
1647 {
1648 struct genfs_node *gp = VTOG(vp);
1649
1650 rw_destroy(&gp->g_glock);
1651 }
1652
1653 void
1654 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1655 {
1656 int bsize;
1657
1658 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1659 *eobp = (size + bsize - 1) & ~(bsize - 1);
1660 }
1661
1662 int
1663 genfs_compat_getpages(void *v)
1664 {
1665 struct vop_getpages_args /* {
1666 struct vnode *a_vp;
1667 voff_t a_offset;
1668 struct vm_page **a_m;
1669 int *a_count;
1670 int a_centeridx;
1671 vm_prot_t a_access_type;
1672 int a_advice;
1673 int a_flags;
1674 } */ *ap = v;
1675
1676 off_t origoffset;
1677 struct vnode *vp = ap->a_vp;
1678 struct uvm_object *uobj = &vp->v_uobj;
1679 struct vm_page *pg, **pgs;
1680 vaddr_t kva;
1681 int i, error, orignpages, npages;
1682 struct iovec iov;
1683 struct uio uio;
1684 kauth_cred_t cred = curlwp->l_cred;
1685 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1686
1687 error = 0;
1688 origoffset = ap->a_offset;
1689 orignpages = *ap->a_count;
1690 pgs = ap->a_m;
1691
1692 if (write && (vp->v_flag & VONWORKLST) == 0) {
1693 vn_syncer_add_to_worklist(vp, filedelay);
1694 }
1695 if (ap->a_flags & PGO_LOCKED) {
1696 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1697 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1698
1699 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1700 }
1701 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1702 simple_unlock(&uobj->vmobjlock);
1703 return (EINVAL);
1704 }
1705 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1706 simple_unlock(&uobj->vmobjlock);
1707 return 0;
1708 }
1709 npages = orignpages;
1710 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1711 simple_unlock(&uobj->vmobjlock);
1712 kva = uvm_pagermapin(pgs, npages,
1713 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1714 for (i = 0; i < npages; i++) {
1715 pg = pgs[i];
1716 if ((pg->flags & PG_FAKE) == 0) {
1717 continue;
1718 }
1719 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1720 iov.iov_len = PAGE_SIZE;
1721 uio.uio_iov = &iov;
1722 uio.uio_iovcnt = 1;
1723 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1724 uio.uio_rw = UIO_READ;
1725 uio.uio_resid = PAGE_SIZE;
1726 UIO_SETUP_SYSSPACE(&uio);
1727 /* XXX vn_lock */
1728 error = VOP_READ(vp, &uio, 0, cred);
1729 if (error) {
1730 break;
1731 }
1732 if (uio.uio_resid) {
1733 memset(iov.iov_base, 0, uio.uio_resid);
1734 }
1735 }
1736 uvm_pagermapout(kva, npages);
1737 simple_lock(&uobj->vmobjlock);
1738 uvm_lock_pageq();
1739 for (i = 0; i < npages; i++) {
1740 pg = pgs[i];
1741 if (error && (pg->flags & PG_FAKE) != 0) {
1742 pg->flags |= PG_RELEASED;
1743 } else {
1744 pmap_clear_modify(pg);
1745 uvm_pageactivate(pg);
1746 }
1747 }
1748 if (error) {
1749 uvm_page_unbusy(pgs, npages);
1750 }
1751 uvm_unlock_pageq();
1752 simple_unlock(&uobj->vmobjlock);
1753 return (error);
1754 }
1755
1756 int
1757 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1758 int flags)
1759 {
1760 off_t offset;
1761 struct iovec iov;
1762 struct uio uio;
1763 kauth_cred_t cred = curlwp->l_cred;
1764 struct buf *bp;
1765 vaddr_t kva;
1766 int s, error;
1767
1768 offset = pgs[0]->offset;
1769 kva = uvm_pagermapin(pgs, npages,
1770 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1771
1772 iov.iov_base = (void *)kva;
1773 iov.iov_len = npages << PAGE_SHIFT;
1774 uio.uio_iov = &iov;
1775 uio.uio_iovcnt = 1;
1776 uio.uio_offset = offset;
1777 uio.uio_rw = UIO_WRITE;
1778 uio.uio_resid = npages << PAGE_SHIFT;
1779 UIO_SETUP_SYSSPACE(&uio);
1780 /* XXX vn_lock */
1781 error = VOP_WRITE(vp, &uio, 0, cred);
1782
1783 s = splbio();
1784 V_INCR_NUMOUTPUT(vp);
1785 splx(s);
1786
1787 bp = getiobuf();
1788 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1789 bp->b_vp = vp;
1790 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1791 bp->b_data = (char *)kva;
1792 bp->b_bcount = npages << PAGE_SHIFT;
1793 bp->b_bufsize = npages << PAGE_SHIFT;
1794 bp->b_resid = 0;
1795 if (error) {
1796 bp->b_flags |= B_ERROR;
1797 bp->b_error = error;
1798 }
1799 uvm_aio_aiodone(bp);
1800 return (error);
1801 }
1802
1803 /*
1804 * Process a uio using direct I/O. If we reach a part of the request
1805 * which cannot be processed in this fashion for some reason, just return.
1806 * The caller must handle some additional part of the request using
1807 * buffered I/O before trying direct I/O again.
1808 */
1809
1810 void
1811 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1812 {
1813 struct vmspace *vs;
1814 struct iovec *iov;
1815 vaddr_t va;
1816 size_t len;
1817 const int mask = DEV_BSIZE - 1;
1818 int error;
1819
1820 /*
1821 * We only support direct I/O to user space for now.
1822 */
1823
1824 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1825 return;
1826 }
1827
1828 /*
1829 * If the vnode is mapped, we would need to get the getpages lock
1830 * to stabilize the bmap, but then we would get into trouble whil e
1831 * locking the pages if the pages belong to this same vnode (or a
1832 * multi-vnode cascade to the same effect). Just fall back to
1833 * buffered I/O if the vnode is mapped to avoid this mess.
1834 */
1835
1836 if (vp->v_flag & VMAPPED) {
1837 return;
1838 }
1839
1840 /*
1841 * Do as much of the uio as possible with direct I/O.
1842 */
1843
1844 vs = uio->uio_vmspace;
1845 while (uio->uio_resid) {
1846 iov = uio->uio_iov;
1847 if (iov->iov_len == 0) {
1848 uio->uio_iov++;
1849 uio->uio_iovcnt--;
1850 continue;
1851 }
1852 va = (vaddr_t)iov->iov_base;
1853 len = MIN(iov->iov_len, genfs_maxdio);
1854 len &= ~mask;
1855
1856 /*
1857 * If the next chunk is smaller than DEV_BSIZE or extends past
1858 * the current EOF, then fall back to buffered I/O.
1859 */
1860
1861 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1862 return;
1863 }
1864
1865 /*
1866 * Check alignment. The file offset must be at least
1867 * sector-aligned. The exact constraint on memory alignment
1868 * is very hardware-dependent, but requiring sector-aligned
1869 * addresses there too is safe.
1870 */
1871
1872 if (uio->uio_offset & mask || va & mask) {
1873 return;
1874 }
1875 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1876 uio->uio_rw);
1877 if (error) {
1878 break;
1879 }
1880 iov->iov_base = (char *)iov->iov_base + len;
1881 iov->iov_len -= len;
1882 uio->uio_offset += len;
1883 uio->uio_resid -= len;
1884 }
1885 }
1886
1887 /*
1888 * Iodone routine for direct I/O. We don't do much here since the request is
1889 * always synchronous, so the caller will do most of the work after biowait().
1890 */
1891
1892 static void
1893 genfs_dio_iodone(struct buf *bp)
1894 {
1895 int s;
1896
1897 KASSERT((bp->b_flags & B_ASYNC) == 0);
1898 s = splbio();
1899 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1900 vwakeup(bp);
1901 }
1902 putiobuf(bp);
1903 splx(s);
1904 }
1905
1906 /*
1907 * Process one chunk of a direct I/O request.
1908 */
1909
1910 static int
1911 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1912 off_t off, enum uio_rw rw)
1913 {
1914 struct vm_map *map;
1915 struct pmap *upm, *kpm;
1916 size_t klen = round_page(uva + len) - trunc_page(uva);
1917 off_t spoff, epoff;
1918 vaddr_t kva, puva;
1919 paddr_t pa;
1920 vm_prot_t prot;
1921 int error, rv, poff, koff;
1922 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1923 (rw == UIO_WRITE ? PGO_FREE : 0);
1924
1925 /*
1926 * For writes, verify that this range of the file already has fully
1927 * allocated backing store. If there are any holes, just punt and
1928 * make the caller take the buffered write path.
1929 */
1930
1931 if (rw == UIO_WRITE) {
1932 daddr_t lbn, elbn, blkno;
1933 int bsize, bshift, run;
1934
1935 bshift = vp->v_mount->mnt_fs_bshift;
1936 bsize = 1 << bshift;
1937 lbn = off >> bshift;
1938 elbn = (off + len + bsize - 1) >> bshift;
1939 while (lbn < elbn) {
1940 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1941 if (error) {
1942 return error;
1943 }
1944 if (blkno == (daddr_t)-1) {
1945 return ENOSPC;
1946 }
1947 lbn += 1 + run;
1948 }
1949 }
1950
1951 /*
1952 * Flush any cached pages for parts of the file that we're about to
1953 * access. If we're writing, invalidate pages as well.
1954 */
1955
1956 spoff = trunc_page(off);
1957 epoff = round_page(off + len);
1958 simple_lock(&vp->v_interlock);
1959 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1960 if (error) {
1961 return error;
1962 }
1963
1964 /*
1965 * Wire the user pages and remap them into kernel memory.
1966 */
1967
1968 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1969 error = uvm_vslock(vs, (void *)uva, len, prot);
1970 if (error) {
1971 return error;
1972 }
1973
1974 map = &vs->vm_map;
1975 upm = vm_map_pmap(map);
1976 kpm = vm_map_pmap(kernel_map);
1977 kva = uvm_km_alloc(kernel_map, klen, 0,
1978 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1979 puva = trunc_page(uva);
1980 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1981 rv = pmap_extract(upm, puva + poff, &pa);
1982 KASSERT(rv);
1983 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1984 }
1985 pmap_update(kpm);
1986
1987 /*
1988 * Do the I/O.
1989 */
1990
1991 koff = uva - trunc_page(uva);
1992 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1993 genfs_dio_iodone);
1994
1995 /*
1996 * Tear down the kernel mapping.
1997 */
1998
1999 pmap_remove(kpm, kva, kva + klen);
2000 pmap_update(kpm);
2001 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2002
2003 /*
2004 * Unwire the user pages.
2005 */
2006
2007 uvm_vsunlock(vs, (void *)uva, len);
2008 return error;
2009 }
2010
2011
2012 static void
2013 filt_genfsdetach(struct knote *kn)
2014 {
2015 struct vnode *vp = (struct vnode *)kn->kn_hook;
2016
2017 /* XXXLUKEM lock the struct? */
2018 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2019 }
2020
2021 static int
2022 filt_genfsread(struct knote *kn, long hint)
2023 {
2024 struct vnode *vp = (struct vnode *)kn->kn_hook;
2025
2026 /*
2027 * filesystem is gone, so set the EOF flag and schedule
2028 * the knote for deletion.
2029 */
2030 if (hint == NOTE_REVOKE) {
2031 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2032 return (1);
2033 }
2034
2035 /* XXXLUKEM lock the struct? */
2036 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2037 return (kn->kn_data != 0);
2038 }
2039
2040 static int
2041 filt_genfsvnode(struct knote *kn, long hint)
2042 {
2043
2044 if (kn->kn_sfflags & hint)
2045 kn->kn_fflags |= hint;
2046 if (hint == NOTE_REVOKE) {
2047 kn->kn_flags |= EV_EOF;
2048 return (1);
2049 }
2050 return (kn->kn_fflags != 0);
2051 }
2052
2053 static const struct filterops genfsread_filtops =
2054 { 1, NULL, filt_genfsdetach, filt_genfsread };
2055 static const struct filterops genfsvnode_filtops =
2056 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2057
2058 int
2059 genfs_kqfilter(void *v)
2060 {
2061 struct vop_kqfilter_args /* {
2062 struct vnode *a_vp;
2063 struct knote *a_kn;
2064 } */ *ap = v;
2065 struct vnode *vp;
2066 struct knote *kn;
2067
2068 vp = ap->a_vp;
2069 kn = ap->a_kn;
2070 switch (kn->kn_filter) {
2071 case EVFILT_READ:
2072 kn->kn_fop = &genfsread_filtops;
2073 break;
2074 case EVFILT_VNODE:
2075 kn->kn_fop = &genfsvnode_filtops;
2076 break;
2077 default:
2078 return (1);
2079 }
2080
2081 kn->kn_hook = vp;
2082
2083 /* XXXLUKEM lock the struct? */
2084 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2085
2086 return (0);
2087 }
2088
2089 void
2090 genfs_node_wrlock(struct vnode *vp)
2091 {
2092 struct genfs_node *gp = VTOG(vp);
2093
2094 rw_enter(&gp->g_glock, RW_WRITER);
2095 }
2096
2097 void
2098 genfs_node_rdlock(struct vnode *vp)
2099 {
2100 struct genfs_node *gp = VTOG(vp);
2101
2102 rw_enter(&gp->g_glock, RW_READER);
2103 }
2104
2105 void
2106 genfs_node_unlock(struct vnode *vp)
2107 {
2108 struct genfs_node *gp = VTOG(vp);
2109
2110 rw_exit(&gp->g_glock);
2111 }
2112