genfs_vnops.c revision 1.153 1 /* $NetBSD: genfs_vnops.c,v 1.153 2007/05/17 07:26:22 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.153 2007/05/17 07:26:22 hannken Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 static void filt_genfsdetach(struct knote *);
66 static int filt_genfsread(struct knote *, long);
67 static int filt_genfsvnode(struct knote *, long);
68
69 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
70
71 int genfs_maxdio = MAXPHYS;
72
73 int
74 genfs_poll(void *v)
75 {
76 struct vop_poll_args /* {
77 struct vnode *a_vp;
78 int a_events;
79 struct lwp *a_l;
80 } */ *ap = v;
81
82 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
83 }
84
85 int
86 genfs_seek(void *v)
87 {
88 struct vop_seek_args /* {
89 struct vnode *a_vp;
90 off_t a_oldoff;
91 off_t a_newoff;
92 kauth_cred_t cred;
93 } */ *ap = v;
94
95 if (ap->a_newoff < 0)
96 return (EINVAL);
97
98 return (0);
99 }
100
101 int
102 genfs_abortop(void *v)
103 {
104 struct vop_abortop_args /* {
105 struct vnode *a_dvp;
106 struct componentname *a_cnp;
107 } */ *ap = v;
108
109 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
110 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
111 return (0);
112 }
113
114 int
115 genfs_fcntl(void *v)
116 {
117 struct vop_fcntl_args /* {
118 struct vnode *a_vp;
119 u_int a_command;
120 void *a_data;
121 int a_fflag;
122 kauth_cred_t a_cred;
123 struct lwp *a_l;
124 } */ *ap = v;
125
126 if (ap->a_command == F_SETFL)
127 return (0);
128 else
129 return (EOPNOTSUPP);
130 }
131
132 /*ARGSUSED*/
133 int
134 genfs_badop(void *v)
135 {
136
137 panic("genfs: bad op");
138 }
139
140 /*ARGSUSED*/
141 int
142 genfs_nullop(void *v)
143 {
144
145 return (0);
146 }
147
148 /*ARGSUSED*/
149 int
150 genfs_einval(void *v)
151 {
152
153 return (EINVAL);
154 }
155
156 /*
157 * Called when an fs doesn't support a particular vop.
158 * This takes care to vrele, vput, or vunlock passed in vnodes.
159 */
160 int
161 genfs_eopnotsupp(void *v)
162 {
163 struct vop_generic_args /*
164 struct vnodeop_desc *a_desc;
165 / * other random data follows, presumably * /
166 } */ *ap = v;
167 struct vnodeop_desc *desc = ap->a_desc;
168 struct vnode *vp, *vp_last = NULL;
169 int flags, i, j, offset;
170
171 flags = desc->vdesc_flags;
172 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
173 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
174 break; /* stop at end of list */
175 if ((j = flags & VDESC_VP0_WILLPUT)) {
176 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
177
178 /* Skip if NULL */
179 if (!vp)
180 continue;
181
182 switch (j) {
183 case VDESC_VP0_WILLPUT:
184 /* Check for dvp == vp cases */
185 if (vp == vp_last)
186 vrele(vp);
187 else {
188 vput(vp);
189 vp_last = vp;
190 }
191 break;
192 case VDESC_VP0_WILLUNLOCK:
193 VOP_UNLOCK(vp, 0);
194 break;
195 case VDESC_VP0_WILLRELE:
196 vrele(vp);
197 break;
198 }
199 }
200 }
201
202 return (EOPNOTSUPP);
203 }
204
205 /*ARGSUSED*/
206 int
207 genfs_ebadf(void *v)
208 {
209
210 return (EBADF);
211 }
212
213 /* ARGSUSED */
214 int
215 genfs_enoioctl(void *v)
216 {
217
218 return (EPASSTHROUGH);
219 }
220
221
222 /*
223 * Eliminate all activity associated with the requested vnode
224 * and with all vnodes aliased to the requested vnode.
225 */
226 int
227 genfs_revoke(void *v)
228 {
229 struct vop_revoke_args /* {
230 struct vnode *a_vp;
231 int a_flags;
232 } */ *ap = v;
233 struct vnode *vp, *vq;
234 struct lwp *l = curlwp; /* XXX */
235
236 #ifdef DIAGNOSTIC
237 if ((ap->a_flags & REVOKEALL) == 0)
238 panic("genfs_revoke: not revokeall");
239 #endif
240
241 vp = ap->a_vp;
242 simple_lock(&vp->v_interlock);
243
244 if (vp->v_flag & VALIASED) {
245 /*
246 * If a vgone (or vclean) is already in progress,
247 * wait until it is done and return.
248 */
249 if (vp->v_flag & VXLOCK) {
250 vp->v_flag |= VXWANT;
251 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
252 &vp->v_interlock);
253 return (0);
254 }
255 /*
256 * Ensure that vp will not be vgone'd while we
257 * are eliminating its aliases.
258 */
259 vp->v_flag |= VXLOCK;
260 simple_unlock(&vp->v_interlock);
261 while (vp->v_flag & VALIASED) {
262 simple_lock(&spechash_slock);
263 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
264 if (vq->v_rdev != vp->v_rdev ||
265 vq->v_type != vp->v_type || vp == vq)
266 continue;
267 simple_unlock(&spechash_slock);
268 vgone(vq);
269 break;
270 }
271 if (vq == NULLVP)
272 simple_unlock(&spechash_slock);
273 }
274 /*
275 * Remove the lock so that vgone below will
276 * really eliminate the vnode after which time
277 * vgone will awaken any sleepers.
278 */
279 simple_lock(&vp->v_interlock);
280 vp->v_flag &= ~VXLOCK;
281 }
282 vgonel(vp, l);
283 return (0);
284 }
285
286 /*
287 * Lock the node.
288 */
289 int
290 genfs_lock(void *v)
291 {
292 struct vop_lock_args /* {
293 struct vnode *a_vp;
294 int a_flags;
295 } */ *ap = v;
296 struct vnode *vp = ap->a_vp;
297
298 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
299 }
300
301 /*
302 * Unlock the node.
303 */
304 int
305 genfs_unlock(void *v)
306 {
307 struct vop_unlock_args /* {
308 struct vnode *a_vp;
309 int a_flags;
310 } */ *ap = v;
311 struct vnode *vp = ap->a_vp;
312
313 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
314 &vp->v_interlock));
315 }
316
317 /*
318 * Return whether or not the node is locked.
319 */
320 int
321 genfs_islocked(void *v)
322 {
323 struct vop_islocked_args /* {
324 struct vnode *a_vp;
325 } */ *ap = v;
326 struct vnode *vp = ap->a_vp;
327
328 return (lockstatus(vp->v_vnlock));
329 }
330
331 /*
332 * Stubs to use when there is no locking to be done on the underlying object.
333 */
334 int
335 genfs_nolock(void *v)
336 {
337 struct vop_lock_args /* {
338 struct vnode *a_vp;
339 int a_flags;
340 struct lwp *a_l;
341 } */ *ap = v;
342
343 /*
344 * Since we are not using the lock manager, we must clear
345 * the interlock here.
346 */
347 if (ap->a_flags & LK_INTERLOCK)
348 simple_unlock(&ap->a_vp->v_interlock);
349 return (0);
350 }
351
352 int
353 genfs_nounlock(void *v)
354 {
355
356 return (0);
357 }
358
359 int
360 genfs_noislocked(void *v)
361 {
362
363 return (0);
364 }
365
366 /*
367 * Local lease check.
368 */
369 int
370 genfs_lease_check(void *v)
371 {
372
373 return (0);
374 }
375
376 int
377 genfs_mmap(void *v)
378 {
379
380 return (0);
381 }
382
383 static inline void
384 genfs_rel_pages(struct vm_page **pgs, int npages)
385 {
386 int i;
387
388 for (i = 0; i < npages; i++) {
389 struct vm_page *pg = pgs[i];
390
391 if (pg == NULL || pg == PGO_DONTCARE)
392 continue;
393 if (pg->flags & PG_FAKE) {
394 pg->flags |= PG_RELEASED;
395 }
396 }
397 uvm_lock_pageq();
398 uvm_page_unbusy(pgs, npages);
399 uvm_unlock_pageq();
400 }
401
402 /*
403 * generic VM getpages routine.
404 * Return PG_BUSY pages for the given range,
405 * reading from backing store if necessary.
406 */
407
408 int
409 genfs_getpages(void *v)
410 {
411 struct vop_getpages_args /* {
412 struct vnode *a_vp;
413 voff_t a_offset;
414 struct vm_page **a_m;
415 int *a_count;
416 int a_centeridx;
417 vm_prot_t a_access_type;
418 int a_advice;
419 int a_flags;
420 } */ *ap = v;
421
422 off_t newsize, diskeof, memeof;
423 off_t offset, origoffset, startoffset, endoffset;
424 daddr_t lbn, blkno;
425 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
426 int fs_bshift, fs_bsize, dev_bshift;
427 int flags = ap->a_flags;
428 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
429 vaddr_t kva;
430 struct buf *bp, *mbp;
431 struct vnode *vp = ap->a_vp;
432 struct vnode *devvp;
433 struct genfs_node *gp = VTOG(vp);
434 struct uvm_object *uobj = &vp->v_uobj;
435 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
436 int pgs_size;
437 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
438 bool async = (flags & PGO_SYNCIO) == 0;
439 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
440 bool sawhole = false;
441 bool has_trans = false;
442 bool overwrite = (flags & PGO_OVERWRITE) != 0;
443 bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
444 voff_t origvsize;
445 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
446
447 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
448 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
449
450 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
451 vp->v_type == VLNK || vp->v_type == VBLK);
452
453 /* XXXUBC temp limit */
454 if (*ap->a_count > MAX_READ_PAGES) {
455 panic("genfs_getpages: too many pages");
456 }
457
458 pgs = pgs_onstack;
459 pgs_size = sizeof(pgs_onstack);
460
461 startover:
462 error = 0;
463 origvsize = vp->v_size;
464 origoffset = ap->a_offset;
465 orignpages = *ap->a_count;
466 GOP_SIZE(vp, origvsize, &diskeof, 0);
467 if (flags & PGO_PASTEOF) {
468 newsize = MAX(origvsize,
469 origoffset + (orignpages << PAGE_SHIFT));
470 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
471 } else {
472 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
473 }
474 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
475 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
476 KASSERT(orignpages > 0);
477
478 /*
479 * Bounds-check the request.
480 */
481
482 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
483 if ((flags & PGO_LOCKED) == 0) {
484 simple_unlock(&uobj->vmobjlock);
485 }
486 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
487 origoffset, *ap->a_count, memeof,0);
488 error = EINVAL;
489 goto out_err;
490 }
491
492 /* uobj is locked */
493
494 if ((flags & PGO_NOTIMESTAMP) == 0 &&
495 (vp->v_type != VBLK ||
496 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
497 int updflags = 0;
498
499 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
500 updflags = GOP_UPDATE_ACCESSED;
501 }
502 if (write) {
503 updflags |= GOP_UPDATE_MODIFIED;
504 }
505 if (updflags != 0) {
506 GOP_MARKUPDATE(vp, updflags);
507 }
508 }
509
510 if (write) {
511 gp->g_dirtygen++;
512 if ((vp->v_flag & VONWORKLST) == 0) {
513 vn_syncer_add_to_worklist(vp, filedelay);
514 }
515 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
516 vp->v_flag |= VWRITEMAPDIRTY;
517 }
518 }
519
520 /*
521 * For PGO_LOCKED requests, just return whatever's in memory.
522 */
523
524 if (flags & PGO_LOCKED) {
525 int nfound;
526
527 npages = *ap->a_count;
528 #if defined(DEBUG)
529 for (i = 0; i < npages; i++) {
530 pg = ap->a_m[i];
531 KASSERT(pg == NULL || pg == PGO_DONTCARE);
532 }
533 #endif /* defined(DEBUG) */
534 nfound = uvn_findpages(uobj, origoffset, &npages,
535 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
536 KASSERT(npages == *ap->a_count);
537 if (nfound == 0) {
538 error = EBUSY;
539 goto out_err;
540 }
541 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
542 genfs_rel_pages(ap->a_m, npages);
543
544 /*
545 * restore the array.
546 */
547
548 for (i = 0; i < npages; i++) {
549 pg = ap->a_m[i];
550
551 if (pg != NULL || pg != PGO_DONTCARE) {
552 ap->a_m[i] = NULL;
553 }
554 }
555 } else {
556 rw_exit(&gp->g_glock);
557 }
558 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
559 goto out_err;
560 }
561 simple_unlock(&uobj->vmobjlock);
562
563 /*
564 * find the requested pages and make some simple checks.
565 * leave space in the page array for a whole block.
566 */
567
568 if (vp->v_type != VBLK) {
569 fs_bshift = vp->v_mount->mnt_fs_bshift;
570 dev_bshift = vp->v_mount->mnt_dev_bshift;
571 } else {
572 fs_bshift = DEV_BSHIFT;
573 dev_bshift = DEV_BSHIFT;
574 }
575 fs_bsize = 1 << fs_bshift;
576
577 orignpages = MIN(orignpages,
578 round_page(memeof - origoffset) >> PAGE_SHIFT);
579 npages = orignpages;
580 startoffset = origoffset & ~(fs_bsize - 1);
581 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
582 fs_bsize - 1) & ~(fs_bsize - 1));
583 endoffset = MIN(endoffset, round_page(memeof));
584 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
585
586 pgs_size = sizeof(struct vm_page *) *
587 ((endoffset - startoffset) >> PAGE_SHIFT);
588 if (pgs_size > sizeof(pgs_onstack)) {
589 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
590 if (pgs == NULL) {
591 pgs = pgs_onstack;
592 error = ENOMEM;
593 goto out_err;
594 }
595 } else {
596 /* pgs == pgs_onstack */
597 memset(pgs, 0, pgs_size);
598 }
599 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
600 ridx, npages, startoffset, endoffset);
601
602 if (!has_trans) {
603 fstrans_start(vp->v_mount, FSTRANS_SHARED);
604 has_trans = true;
605 }
606
607 /*
608 * hold g_glock to prevent a race with truncate.
609 *
610 * check if our idea of v_size is still valid.
611 */
612
613 if (blockalloc) {
614 rw_enter(&gp->g_glock, RW_WRITER);
615 } else {
616 rw_enter(&gp->g_glock, RW_READER);
617 }
618 simple_lock(&uobj->vmobjlock);
619 if (vp->v_size < origvsize) {
620 rw_exit(&gp->g_glock);
621 if (pgs != pgs_onstack)
622 kmem_free(pgs, pgs_size);
623 goto startover;
624 }
625
626 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
627 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
628 rw_exit(&gp->g_glock);
629 KASSERT(async != 0);
630 genfs_rel_pages(&pgs[ridx], orignpages);
631 simple_unlock(&uobj->vmobjlock);
632 error = EBUSY;
633 goto out_err;
634 }
635
636 /*
637 * if the pages are already resident, just return them.
638 */
639
640 for (i = 0; i < npages; i++) {
641 struct vm_page *pg1 = pgs[ridx + i];
642
643 if ((pg1->flags & PG_FAKE) ||
644 (blockalloc && (pg1->flags & PG_RDONLY))) {
645 break;
646 }
647 }
648 if (i == npages) {
649 rw_exit(&gp->g_glock);
650 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
651 npages += ridx;
652 goto out;
653 }
654
655 /*
656 * if PGO_OVERWRITE is set, don't bother reading the pages.
657 */
658
659 if (overwrite) {
660 rw_exit(&gp->g_glock);
661 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
662
663 for (i = 0; i < npages; i++) {
664 struct vm_page *pg1 = pgs[ridx + i];
665
666 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
667 }
668 npages += ridx;
669 goto out;
670 }
671
672 /*
673 * the page wasn't resident and we're not overwriting,
674 * so we're going to have to do some i/o.
675 * find any additional pages needed to cover the expanded range.
676 */
677
678 npages = (endoffset - startoffset) >> PAGE_SHIFT;
679 if (startoffset != origoffset || npages != orignpages) {
680
681 /*
682 * we need to avoid deadlocks caused by locking
683 * additional pages at lower offsets than pages we
684 * already have locked. unlock them all and start over.
685 */
686
687 genfs_rel_pages(&pgs[ridx], orignpages);
688 memset(pgs, 0, pgs_size);
689
690 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
691 startoffset, endoffset, 0,0);
692 npgs = npages;
693 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
694 async ? UFP_NOWAIT : UFP_ALL) != npages) {
695 rw_exit(&gp->g_glock);
696 KASSERT(async != 0);
697 genfs_rel_pages(pgs, npages);
698 simple_unlock(&uobj->vmobjlock);
699 error = EBUSY;
700 goto out_err;
701 }
702 }
703 simple_unlock(&uobj->vmobjlock);
704
705 /*
706 * read the desired page(s).
707 */
708
709 totalbytes = npages << PAGE_SHIFT;
710 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
711 tailbytes = totalbytes - bytes;
712 skipbytes = 0;
713
714 kva = uvm_pagermapin(pgs, npages,
715 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
716
717 mbp = getiobuf();
718 mbp->b_bufsize = totalbytes;
719 mbp->b_data = (void *)kva;
720 mbp->b_resid = mbp->b_bcount = bytes;
721 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
722 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
723 mbp->b_vp = vp;
724 if (async)
725 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
726 else
727 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
728
729 /*
730 * if EOF is in the middle of the range, zero the part past EOF.
731 * if the page including EOF is not PG_FAKE, skip over it since
732 * in that case it has valid data that we need to preserve.
733 */
734
735 if (tailbytes > 0) {
736 size_t tailstart = bytes;
737
738 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
739 tailstart = round_page(tailstart);
740 tailbytes -= tailstart - bytes;
741 }
742 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
743 kva, tailstart, tailbytes,0);
744 memset((void *)(kva + tailstart), 0, tailbytes);
745 }
746
747 /*
748 * now loop over the pages, reading as needed.
749 */
750
751 bp = NULL;
752 for (offset = startoffset;
753 bytes > 0;
754 offset += iobytes, bytes -= iobytes) {
755
756 /*
757 * skip pages which don't need to be read.
758 */
759
760 pidx = (offset - startoffset) >> PAGE_SHIFT;
761 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
762 size_t b;
763
764 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
765 if ((pgs[pidx]->flags & PG_RDONLY)) {
766 sawhole = true;
767 }
768 b = MIN(PAGE_SIZE, bytes);
769 offset += b;
770 bytes -= b;
771 skipbytes += b;
772 pidx++;
773 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
774 offset, 0,0,0);
775 if (bytes == 0) {
776 goto loopdone;
777 }
778 }
779
780 /*
781 * bmap the file to find out the blkno to read from and
782 * how much we can read in one i/o. if bmap returns an error,
783 * skip the rest of the top-level i/o.
784 */
785
786 lbn = offset >> fs_bshift;
787 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
788 if (error) {
789 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
790 lbn, error,0,0);
791 skipbytes += bytes;
792 goto loopdone;
793 }
794
795 /*
796 * see how many pages can be read with this i/o.
797 * reduce the i/o size if necessary to avoid
798 * overwriting pages with valid data.
799 */
800
801 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
802 bytes);
803 if (offset + iobytes > round_page(offset)) {
804 pcount = 1;
805 while (pidx + pcount < npages &&
806 pgs[pidx + pcount]->flags & PG_FAKE) {
807 pcount++;
808 }
809 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
810 (offset - trunc_page(offset)));
811 }
812
813 /*
814 * if this block isn't allocated, zero it instead of
815 * reading it. unless we are going to allocate blocks,
816 * mark the pages we zeroed PG_RDONLY.
817 */
818
819 if (blkno < 0) {
820 int holepages = (round_page(offset + iobytes) -
821 trunc_page(offset)) >> PAGE_SHIFT;
822 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
823
824 sawhole = true;
825 memset((char *)kva + (offset - startoffset), 0,
826 iobytes);
827 skipbytes += iobytes;
828
829 for (i = 0; i < holepages; i++) {
830 if (write) {
831 pgs[pidx + i]->flags &= ~PG_CLEAN;
832 }
833 if (!blockalloc) {
834 pgs[pidx + i]->flags |= PG_RDONLY;
835 }
836 }
837 continue;
838 }
839
840 /*
841 * allocate a sub-buf for this piece of the i/o
842 * (or just use mbp if there's only 1 piece),
843 * and start it going.
844 */
845
846 if (offset == startoffset && iobytes == bytes) {
847 bp = mbp;
848 } else {
849 bp = getiobuf();
850 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
851 }
852 bp->b_lblkno = 0;
853
854 /* adjust physical blkno for partial blocks */
855 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
856 dev_bshift);
857
858 UVMHIST_LOG(ubchist,
859 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
860 bp, offset, iobytes, bp->b_blkno);
861
862 VOP_STRATEGY(devvp, bp);
863 }
864
865 loopdone:
866 nestiobuf_done(mbp, skipbytes, error);
867 if (async) {
868 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
869 rw_exit(&gp->g_glock);
870 error = 0;
871 goto out_err;
872 }
873 if (bp != NULL) {
874 error = biowait(mbp);
875 }
876 putiobuf(mbp);
877 uvm_pagermapout(kva, npages);
878
879 /*
880 * if this we encountered a hole then we have to do a little more work.
881 * for read faults, we marked the page PG_RDONLY so that future
882 * write accesses to the page will fault again.
883 * for write faults, we must make sure that the backing store for
884 * the page is completely allocated while the pages are locked.
885 */
886
887 if (!error && sawhole && blockalloc) {
888 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
889 cred);
890 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
891 startoffset, npages << PAGE_SHIFT, error,0);
892 if (!error) {
893 for (i = 0; i < npages; i++) {
894 if (pgs[i] == NULL) {
895 continue;
896 }
897 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
898 UVMHIST_LOG(ubchist, "mark dirty pg %p",
899 pgs[i],0,0,0);
900 }
901 }
902 }
903 rw_exit(&gp->g_glock);
904 simple_lock(&uobj->vmobjlock);
905
906 /*
907 * we're almost done! release the pages...
908 * for errors, we free the pages.
909 * otherwise we activate them and mark them as valid and clean.
910 * also, unbusy pages that were not actually requested.
911 */
912
913 if (error) {
914 for (i = 0; i < npages; i++) {
915 if (pgs[i] == NULL) {
916 continue;
917 }
918 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
919 pgs[i], pgs[i]->flags, 0,0);
920 if (pgs[i]->flags & PG_FAKE) {
921 pgs[i]->flags |= PG_RELEASED;
922 }
923 }
924 uvm_lock_pageq();
925 uvm_page_unbusy(pgs, npages);
926 uvm_unlock_pageq();
927 simple_unlock(&uobj->vmobjlock);
928 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
929 goto out_err;
930 }
931
932 out:
933 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
934 error = 0;
935 uvm_lock_pageq();
936 for (i = 0; i < npages; i++) {
937 pg = pgs[i];
938 if (pg == NULL) {
939 continue;
940 }
941 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
942 pg, pg->flags, 0,0);
943 if (pg->flags & PG_FAKE && !overwrite) {
944 pg->flags &= ~(PG_FAKE);
945 pmap_clear_modify(pgs[i]);
946 }
947 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
948 if (i < ridx || i >= ridx + orignpages || async) {
949 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
950 pg, pg->offset,0,0);
951 if (pg->flags & PG_WANTED) {
952 wakeup(pg);
953 }
954 if (pg->flags & PG_FAKE) {
955 KASSERT(overwrite);
956 uvm_pagezero(pg);
957 }
958 if (pg->flags & PG_RELEASED) {
959 uvm_pagefree(pg);
960 continue;
961 }
962 uvm_pageenqueue(pg);
963 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
964 UVM_PAGE_OWN(pg, NULL);
965 }
966 }
967 uvm_unlock_pageq();
968 simple_unlock(&uobj->vmobjlock);
969 if (ap->a_m != NULL) {
970 memcpy(ap->a_m, &pgs[ridx],
971 orignpages * sizeof(struct vm_page *));
972 }
973
974 out_err:
975 if (pgs != pgs_onstack)
976 kmem_free(pgs, pgs_size);
977 if (has_trans)
978 fstrans_done(vp->v_mount);
979 return (error);
980 }
981
982 /*
983 * generic VM putpages routine.
984 * Write the given range of pages to backing store.
985 *
986 * => "offhi == 0" means flush all pages at or after "offlo".
987 * => object should be locked by caller. we return with the
988 * object unlocked.
989 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
990 * thus, a caller might want to unlock higher level resources
991 * (e.g. vm_map) before calling flush.
992 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
993 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
994 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
995 * that new pages are inserted on the tail end of the list. thus,
996 * we can make a complete pass through the object in one go by starting
997 * at the head and working towards the tail (new pages are put in
998 * front of us).
999 * => NOTE: we are allowed to lock the page queues, so the caller
1000 * must not be holding the page queue lock.
1001 *
1002 * note on "cleaning" object and PG_BUSY pages:
1003 * this routine is holding the lock on the object. the only time
1004 * that it can run into a PG_BUSY page that it does not own is if
1005 * some other process has started I/O on the page (e.g. either
1006 * a pagein, or a pageout). if the PG_BUSY page is being paged
1007 * in, then it can not be dirty (!PG_CLEAN) because no one has
1008 * had a chance to modify it yet. if the PG_BUSY page is being
1009 * paged out then it means that someone else has already started
1010 * cleaning the page for us (how nice!). in this case, if we
1011 * have syncio specified, then after we make our pass through the
1012 * object we need to wait for the other PG_BUSY pages to clear
1013 * off (i.e. we need to do an iosync). also note that once a
1014 * page is PG_BUSY it must stay in its object until it is un-busyed.
1015 *
1016 * note on page traversal:
1017 * we can traverse the pages in an object either by going down the
1018 * linked list in "uobj->memq", or we can go over the address range
1019 * by page doing hash table lookups for each address. depending
1020 * on how many pages are in the object it may be cheaper to do one
1021 * or the other. we set "by_list" to true if we are using memq.
1022 * if the cost of a hash lookup was equal to the cost of the list
1023 * traversal we could compare the number of pages in the start->stop
1024 * range to the total number of pages in the object. however, it
1025 * seems that a hash table lookup is more expensive than the linked
1026 * list traversal, so we multiply the number of pages in the
1027 * range by an estimate of the relatively higher cost of the hash lookup.
1028 */
1029
1030 int
1031 genfs_putpages(void *v)
1032 {
1033 struct vop_putpages_args /* {
1034 struct vnode *a_vp;
1035 voff_t a_offlo;
1036 voff_t a_offhi;
1037 int a_flags;
1038 } */ *ap = v;
1039
1040 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1041 ap->a_flags, NULL);
1042 }
1043
1044 int
1045 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
1046 struct vm_page **busypg)
1047 {
1048 struct uvm_object *uobj = &vp->v_uobj;
1049 struct simplelock *slock = &uobj->vmobjlock;
1050 off_t off;
1051 /* Even for strange MAXPHYS, the shift rounds down to a page */
1052 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1053 int i, s, error, npages, nback;
1054 int freeflag;
1055 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1056 bool wasclean, by_list, needs_clean, yld;
1057 bool async = (flags & PGO_SYNCIO) == 0;
1058 bool pagedaemon = curproc == uvm.pagedaemon_proc;
1059 struct lwp *l = curlwp ? curlwp : &lwp0;
1060 struct genfs_node *gp = VTOG(vp);
1061 int dirtygen;
1062 bool modified = false;
1063 bool has_trans = false;
1064 bool cleanall;
1065
1066 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1067
1068 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1069 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1070 KASSERT(startoff < endoff || endoff == 0);
1071
1072 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1073 vp, uobj->uo_npages, startoff, endoff - startoff);
1074
1075 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1076 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1077 if (uobj->uo_npages == 0) {
1078 s = splbio();
1079 if (vp->v_flag & VONWORKLST) {
1080 vp->v_flag &= ~VWRITEMAPDIRTY;
1081 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1082 vn_syncer_remove_from_worklist(vp);
1083 }
1084 splx(s);
1085 simple_unlock(slock);
1086 return (0);
1087 }
1088
1089 /*
1090 * the vnode has pages, set up to process the request.
1091 */
1092
1093 if ((flags & PGO_CLEANIT) != 0) {
1094 simple_unlock(slock);
1095 if (pagedaemon) {
1096 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1097 if (error)
1098 return error;
1099 } else
1100 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1101 has_trans = true;
1102 simple_lock(slock);
1103 }
1104
1105 error = 0;
1106 s = splbio();
1107 simple_lock(&global_v_numoutput_slock);
1108 wasclean = (vp->v_numoutput == 0);
1109 simple_unlock(&global_v_numoutput_slock);
1110 splx(s);
1111 off = startoff;
1112 if (endoff == 0 || flags & PGO_ALLPAGES) {
1113 endoff = trunc_page(LLONG_MAX);
1114 }
1115 by_list = (uobj->uo_npages <=
1116 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1117
1118 #if !defined(DEBUG)
1119 /*
1120 * if this vnode is known not to have dirty pages,
1121 * don't bother to clean it out.
1122 */
1123
1124 if ((vp->v_flag & VONWORKLST) == 0) {
1125 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1126 goto skip_scan;
1127 }
1128 flags &= ~PGO_CLEANIT;
1129 }
1130 #endif /* !defined(DEBUG) */
1131
1132 /*
1133 * start the loop. when scanning by list, hold the last page
1134 * in the list before we start. pages allocated after we start
1135 * will be added to the end of the list, so we can stop at the
1136 * current last page.
1137 */
1138
1139 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1140 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1141 (vp->v_flag & VONWORKLST) != 0;
1142 dirtygen = gp->g_dirtygen;
1143 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1144 if (by_list) {
1145 curmp.uobject = uobj;
1146 curmp.offset = (voff_t)-1;
1147 curmp.flags = PG_BUSY;
1148 endmp.uobject = uobj;
1149 endmp.offset = (voff_t)-1;
1150 endmp.flags = PG_BUSY;
1151 pg = TAILQ_FIRST(&uobj->memq);
1152 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1153 PHOLD(l);
1154 } else {
1155 pg = uvm_pagelookup(uobj, off);
1156 }
1157 nextpg = NULL;
1158 while (by_list || off < endoff) {
1159
1160 /*
1161 * if the current page is not interesting, move on to the next.
1162 */
1163
1164 KASSERT(pg == NULL || pg->uobject == uobj);
1165 KASSERT(pg == NULL ||
1166 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1167 (pg->flags & PG_BUSY) != 0);
1168 if (by_list) {
1169 if (pg == &endmp) {
1170 break;
1171 }
1172 if (pg->offset < startoff || pg->offset >= endoff ||
1173 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1174 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1175 wasclean = false;
1176 }
1177 pg = TAILQ_NEXT(pg, listq);
1178 continue;
1179 }
1180 off = pg->offset;
1181 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1182 if (pg != NULL) {
1183 wasclean = false;
1184 }
1185 off += PAGE_SIZE;
1186 if (off < endoff) {
1187 pg = uvm_pagelookup(uobj, off);
1188 }
1189 continue;
1190 }
1191
1192 /*
1193 * if the current page needs to be cleaned and it's busy,
1194 * wait for it to become unbusy.
1195 */
1196
1197 yld = (l->l_cpu->ci_schedstate.spc_flags &
1198 SPCF_SHOULDYIELD) && !pagedaemon;
1199 if (pg->flags & PG_BUSY || yld) {
1200 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1201 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1202 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1203 error = EDEADLK;
1204 if (busypg != NULL)
1205 *busypg = pg;
1206 break;
1207 }
1208 KASSERT(!pagedaemon);
1209 if (by_list) {
1210 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1211 UVMHIST_LOG(ubchist, "curmp next %p",
1212 TAILQ_NEXT(&curmp, listq), 0,0,0);
1213 }
1214 if (yld) {
1215 simple_unlock(slock);
1216 preempt();
1217 simple_lock(slock);
1218 } else {
1219 pg->flags |= PG_WANTED;
1220 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1221 simple_lock(slock);
1222 }
1223 if (by_list) {
1224 UVMHIST_LOG(ubchist, "after next %p",
1225 TAILQ_NEXT(&curmp, listq), 0,0,0);
1226 pg = TAILQ_NEXT(&curmp, listq);
1227 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1228 } else {
1229 pg = uvm_pagelookup(uobj, off);
1230 }
1231 continue;
1232 }
1233
1234 /*
1235 * if we're freeing, remove all mappings of the page now.
1236 * if we're cleaning, check if the page is needs to be cleaned.
1237 */
1238
1239 if (flags & PGO_FREE) {
1240 pmap_page_protect(pg, VM_PROT_NONE);
1241 } else if (flags & PGO_CLEANIT) {
1242
1243 /*
1244 * if we still have some hope to pull this vnode off
1245 * from the syncer queue, write-protect the page.
1246 */
1247
1248 if (cleanall && wasclean &&
1249 gp->g_dirtygen == dirtygen) {
1250
1251 /*
1252 * uobj pages get wired only by uvm_fault
1253 * where uobj is locked.
1254 */
1255
1256 if (pg->wire_count == 0) {
1257 pmap_page_protect(pg,
1258 VM_PROT_READ|VM_PROT_EXECUTE);
1259 } else {
1260 cleanall = false;
1261 }
1262 }
1263 }
1264
1265 if (flags & PGO_CLEANIT) {
1266 needs_clean = pmap_clear_modify(pg) ||
1267 (pg->flags & PG_CLEAN) == 0;
1268 pg->flags |= PG_CLEAN;
1269 } else {
1270 needs_clean = false;
1271 }
1272
1273 /*
1274 * if we're cleaning, build a cluster.
1275 * the cluster will consist of pages which are currently dirty,
1276 * but they will be returned to us marked clean.
1277 * if not cleaning, just operate on the one page.
1278 */
1279
1280 if (needs_clean) {
1281 KDASSERT((vp->v_flag & VONWORKLST));
1282 wasclean = false;
1283 memset(pgs, 0, sizeof(pgs));
1284 pg->flags |= PG_BUSY;
1285 UVM_PAGE_OWN(pg, "genfs_putpages");
1286
1287 /*
1288 * first look backward.
1289 */
1290
1291 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1292 nback = npages;
1293 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1294 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1295 if (nback) {
1296 memmove(&pgs[0], &pgs[npages - nback],
1297 nback * sizeof(pgs[0]));
1298 if (npages - nback < nback)
1299 memset(&pgs[nback], 0,
1300 (npages - nback) * sizeof(pgs[0]));
1301 else
1302 memset(&pgs[npages - nback], 0,
1303 nback * sizeof(pgs[0]));
1304 }
1305
1306 /*
1307 * then plug in our page of interest.
1308 */
1309
1310 pgs[nback] = pg;
1311
1312 /*
1313 * then look forward to fill in the remaining space in
1314 * the array of pages.
1315 */
1316
1317 npages = maxpages - nback - 1;
1318 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1319 &pgs[nback + 1],
1320 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1321 npages += nback + 1;
1322 } else {
1323 pgs[0] = pg;
1324 npages = 1;
1325 nback = 0;
1326 }
1327
1328 /*
1329 * apply FREE or DEACTIVATE options if requested.
1330 */
1331
1332 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1333 uvm_lock_pageq();
1334 }
1335 for (i = 0; i < npages; i++) {
1336 tpg = pgs[i];
1337 KASSERT(tpg->uobject == uobj);
1338 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1339 pg = tpg;
1340 if (tpg->offset < startoff || tpg->offset >= endoff)
1341 continue;
1342 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1343 (void) pmap_clear_reference(tpg);
1344 uvm_pagedeactivate(tpg);
1345 } else if (flags & PGO_FREE) {
1346 pmap_page_protect(tpg, VM_PROT_NONE);
1347 if (tpg->flags & PG_BUSY) {
1348 tpg->flags |= freeflag;
1349 if (pagedaemon) {
1350 uvmexp.paging++;
1351 uvm_pagedequeue(tpg);
1352 }
1353 } else {
1354
1355 /*
1356 * ``page is not busy''
1357 * implies that npages is 1
1358 * and needs_clean is false.
1359 */
1360
1361 nextpg = TAILQ_NEXT(tpg, listq);
1362 uvm_pagefree(tpg);
1363 if (pagedaemon)
1364 uvmexp.pdfreed++;
1365 }
1366 }
1367 }
1368 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1369 uvm_unlock_pageq();
1370 }
1371 if (needs_clean) {
1372 modified = true;
1373
1374 /*
1375 * start the i/o. if we're traversing by list,
1376 * keep our place in the list with a marker page.
1377 */
1378
1379 if (by_list) {
1380 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1381 listq);
1382 }
1383 simple_unlock(slock);
1384 error = GOP_WRITE(vp, pgs, npages, flags);
1385 simple_lock(slock);
1386 if (by_list) {
1387 pg = TAILQ_NEXT(&curmp, listq);
1388 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1389 }
1390 if (error) {
1391 break;
1392 }
1393 if (by_list) {
1394 continue;
1395 }
1396 }
1397
1398 /*
1399 * find the next page and continue if there was no error.
1400 */
1401
1402 if (by_list) {
1403 if (nextpg) {
1404 pg = nextpg;
1405 nextpg = NULL;
1406 } else {
1407 pg = TAILQ_NEXT(pg, listq);
1408 }
1409 } else {
1410 off += (npages - nback) << PAGE_SHIFT;
1411 if (off < endoff) {
1412 pg = uvm_pagelookup(uobj, off);
1413 }
1414 }
1415 }
1416 if (by_list) {
1417 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1418 PRELE(l);
1419 }
1420
1421 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1422 (vp->v_type != VBLK ||
1423 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1424 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1425 }
1426
1427 /*
1428 * if we're cleaning and there was nothing to clean,
1429 * take us off the syncer list. if we started any i/o
1430 * and we're doing sync i/o, wait for all writes to finish.
1431 */
1432
1433 s = splbio();
1434 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1435 (vp->v_flag & VONWORKLST) != 0) {
1436 vp->v_flag &= ~VWRITEMAPDIRTY;
1437 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1438 vn_syncer_remove_from_worklist(vp);
1439 }
1440 splx(s);
1441
1442 #if !defined(DEBUG)
1443 skip_scan:
1444 #endif /* !defined(DEBUG) */
1445 if (!wasclean && !async) {
1446 s = splbio();
1447 /*
1448 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1449 * but the slot in ltsleep() is taken!
1450 * XXX - try to recover from missed wakeups with a timeout..
1451 * must think of something better.
1452 */
1453 while (vp->v_numoutput != 0) {
1454 vp->v_flag |= VBWAIT;
1455 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
1456 "genput2", hz);
1457 simple_lock(slock);
1458 }
1459 splx(s);
1460 }
1461 simple_unlock(slock);
1462
1463 if (has_trans)
1464 fstrans_done(vp->v_mount);
1465
1466 return (error);
1467 }
1468
1469 int
1470 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1471 {
1472 off_t off;
1473 vaddr_t kva;
1474 size_t len;
1475 int error;
1476 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1477
1478 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1479 vp, pgs, npages, flags);
1480
1481 off = pgs[0]->offset;
1482 kva = uvm_pagermapin(pgs, npages,
1483 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1484 len = npages << PAGE_SHIFT;
1485
1486 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1487 uvm_aio_biodone);
1488
1489 return error;
1490 }
1491
1492 /*
1493 * Backend routine for doing I/O to vnode pages. Pages are already locked
1494 * and mapped into kernel memory. Here we just look up the underlying
1495 * device block addresses and call the strategy routine.
1496 */
1497
1498 static int
1499 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1500 enum uio_rw rw, void (*iodone)(struct buf *))
1501 {
1502 int s, error, run;
1503 int fs_bshift, dev_bshift;
1504 off_t eof, offset, startoffset;
1505 size_t bytes, iobytes, skipbytes;
1506 daddr_t lbn, blkno;
1507 struct buf *mbp, *bp;
1508 struct vnode *devvp;
1509 bool async = (flags & PGO_SYNCIO) == 0;
1510 bool write = rw == UIO_WRITE;
1511 int brw = write ? B_WRITE : B_READ;
1512 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1513
1514 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1515 vp, kva, len, flags);
1516
1517 GOP_SIZE(vp, vp->v_size, &eof, 0);
1518 if (vp->v_type != VBLK) {
1519 fs_bshift = vp->v_mount->mnt_fs_bshift;
1520 dev_bshift = vp->v_mount->mnt_dev_bshift;
1521 } else {
1522 fs_bshift = DEV_BSHIFT;
1523 dev_bshift = DEV_BSHIFT;
1524 }
1525 error = 0;
1526 startoffset = off;
1527 bytes = MIN(len, eof - startoffset);
1528 skipbytes = 0;
1529 KASSERT(bytes != 0);
1530
1531 if (write) {
1532 s = splbio();
1533 simple_lock(&global_v_numoutput_slock);
1534 vp->v_numoutput += 2;
1535 simple_unlock(&global_v_numoutput_slock);
1536 splx(s);
1537 }
1538 mbp = getiobuf();
1539 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1540 vp, mbp, vp->v_numoutput, bytes);
1541 mbp->b_bufsize = len;
1542 mbp->b_data = (void *)kva;
1543 mbp->b_resid = mbp->b_bcount = bytes;
1544 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1545 mbp->b_iodone = iodone;
1546 mbp->b_vp = vp;
1547 if (curproc == uvm.pagedaemon_proc)
1548 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1549 else if (async)
1550 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1551 else
1552 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1553
1554 bp = NULL;
1555 for (offset = startoffset;
1556 bytes > 0;
1557 offset += iobytes, bytes -= iobytes) {
1558 lbn = offset >> fs_bshift;
1559 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1560 if (error) {
1561 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1562 skipbytes += bytes;
1563 bytes = 0;
1564 break;
1565 }
1566
1567 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1568 bytes);
1569 if (blkno == (daddr_t)-1) {
1570 if (!write) {
1571 memset((char *)kva + (offset - startoffset), 0,
1572 iobytes);
1573 }
1574 skipbytes += iobytes;
1575 continue;
1576 }
1577
1578 /* if it's really one i/o, don't make a second buf */
1579 if (offset == startoffset && iobytes == bytes) {
1580 bp = mbp;
1581 } else {
1582 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1583 vp, bp, vp->v_numoutput, 0);
1584 bp = getiobuf();
1585 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1586 }
1587 bp->b_lblkno = 0;
1588
1589 /* adjust physical blkno for partial blocks */
1590 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1591 dev_bshift);
1592 UVMHIST_LOG(ubchist,
1593 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1594 vp, offset, bp->b_bcount, bp->b_blkno);
1595
1596 VOP_STRATEGY(devvp, bp);
1597 }
1598 if (skipbytes) {
1599 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1600 }
1601 nestiobuf_done(mbp, skipbytes, error);
1602 if (async) {
1603 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1604 return (0);
1605 }
1606 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1607 error = biowait(mbp);
1608 s = splbio();
1609 (*iodone)(mbp);
1610 splx(s);
1611 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1612 return (error);
1613 }
1614
1615 /*
1616 * VOP_PUTPAGES() for vnodes which never have pages.
1617 */
1618
1619 int
1620 genfs_null_putpages(void *v)
1621 {
1622 struct vop_putpages_args /* {
1623 struct vnode *a_vp;
1624 voff_t a_offlo;
1625 voff_t a_offhi;
1626 int a_flags;
1627 } */ *ap = v;
1628 struct vnode *vp = ap->a_vp;
1629
1630 KASSERT(vp->v_uobj.uo_npages == 0);
1631 simple_unlock(&vp->v_interlock);
1632 return (0);
1633 }
1634
1635 void
1636 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1637 {
1638 struct genfs_node *gp = VTOG(vp);
1639
1640 rw_init(&gp->g_glock);
1641 gp->g_op = ops;
1642 }
1643
1644 void
1645 genfs_node_destroy(struct vnode *vp)
1646 {
1647 struct genfs_node *gp = VTOG(vp);
1648
1649 rw_destroy(&gp->g_glock);
1650 }
1651
1652 void
1653 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1654 {
1655 int bsize;
1656
1657 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1658 *eobp = (size + bsize - 1) & ~(bsize - 1);
1659 }
1660
1661 int
1662 genfs_compat_getpages(void *v)
1663 {
1664 struct vop_getpages_args /* {
1665 struct vnode *a_vp;
1666 voff_t a_offset;
1667 struct vm_page **a_m;
1668 int *a_count;
1669 int a_centeridx;
1670 vm_prot_t a_access_type;
1671 int a_advice;
1672 int a_flags;
1673 } */ *ap = v;
1674
1675 off_t origoffset;
1676 struct vnode *vp = ap->a_vp;
1677 struct uvm_object *uobj = &vp->v_uobj;
1678 struct vm_page *pg, **pgs;
1679 vaddr_t kva;
1680 int i, error, orignpages, npages;
1681 struct iovec iov;
1682 struct uio uio;
1683 kauth_cred_t cred = curlwp->l_cred;
1684 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1685
1686 error = 0;
1687 origoffset = ap->a_offset;
1688 orignpages = *ap->a_count;
1689 pgs = ap->a_m;
1690
1691 if (write && (vp->v_flag & VONWORKLST) == 0) {
1692 vn_syncer_add_to_worklist(vp, filedelay);
1693 }
1694 if (ap->a_flags & PGO_LOCKED) {
1695 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1696 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1697
1698 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1699 }
1700 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1701 simple_unlock(&uobj->vmobjlock);
1702 return (EINVAL);
1703 }
1704 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1705 simple_unlock(&uobj->vmobjlock);
1706 return 0;
1707 }
1708 npages = orignpages;
1709 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1710 simple_unlock(&uobj->vmobjlock);
1711 kva = uvm_pagermapin(pgs, npages,
1712 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1713 for (i = 0; i < npages; i++) {
1714 pg = pgs[i];
1715 if ((pg->flags & PG_FAKE) == 0) {
1716 continue;
1717 }
1718 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1719 iov.iov_len = PAGE_SIZE;
1720 uio.uio_iov = &iov;
1721 uio.uio_iovcnt = 1;
1722 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1723 uio.uio_rw = UIO_READ;
1724 uio.uio_resid = PAGE_SIZE;
1725 UIO_SETUP_SYSSPACE(&uio);
1726 /* XXX vn_lock */
1727 error = VOP_READ(vp, &uio, 0, cred);
1728 if (error) {
1729 break;
1730 }
1731 if (uio.uio_resid) {
1732 memset(iov.iov_base, 0, uio.uio_resid);
1733 }
1734 }
1735 uvm_pagermapout(kva, npages);
1736 simple_lock(&uobj->vmobjlock);
1737 uvm_lock_pageq();
1738 for (i = 0; i < npages; i++) {
1739 pg = pgs[i];
1740 if (error && (pg->flags & PG_FAKE) != 0) {
1741 pg->flags |= PG_RELEASED;
1742 } else {
1743 pmap_clear_modify(pg);
1744 uvm_pageactivate(pg);
1745 }
1746 }
1747 if (error) {
1748 uvm_page_unbusy(pgs, npages);
1749 }
1750 uvm_unlock_pageq();
1751 simple_unlock(&uobj->vmobjlock);
1752 return (error);
1753 }
1754
1755 int
1756 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1757 int flags)
1758 {
1759 off_t offset;
1760 struct iovec iov;
1761 struct uio uio;
1762 kauth_cred_t cred = curlwp->l_cred;
1763 struct buf *bp;
1764 vaddr_t kva;
1765 int s, error;
1766
1767 offset = pgs[0]->offset;
1768 kva = uvm_pagermapin(pgs, npages,
1769 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1770
1771 iov.iov_base = (void *)kva;
1772 iov.iov_len = npages << PAGE_SHIFT;
1773 uio.uio_iov = &iov;
1774 uio.uio_iovcnt = 1;
1775 uio.uio_offset = offset;
1776 uio.uio_rw = UIO_WRITE;
1777 uio.uio_resid = npages << PAGE_SHIFT;
1778 UIO_SETUP_SYSSPACE(&uio);
1779 /* XXX vn_lock */
1780 error = VOP_WRITE(vp, &uio, 0, cred);
1781
1782 s = splbio();
1783 V_INCR_NUMOUTPUT(vp);
1784 splx(s);
1785
1786 bp = getiobuf();
1787 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1788 bp->b_vp = vp;
1789 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1790 bp->b_data = (char *)kva;
1791 bp->b_bcount = npages << PAGE_SHIFT;
1792 bp->b_bufsize = npages << PAGE_SHIFT;
1793 bp->b_resid = 0;
1794 if (error) {
1795 bp->b_flags |= B_ERROR;
1796 bp->b_error = error;
1797 }
1798 uvm_aio_aiodone(bp);
1799 return (error);
1800 }
1801
1802 /*
1803 * Process a uio using direct I/O. If we reach a part of the request
1804 * which cannot be processed in this fashion for some reason, just return.
1805 * The caller must handle some additional part of the request using
1806 * buffered I/O before trying direct I/O again.
1807 */
1808
1809 void
1810 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1811 {
1812 struct vmspace *vs;
1813 struct iovec *iov;
1814 vaddr_t va;
1815 size_t len;
1816 const int mask = DEV_BSIZE - 1;
1817 int error;
1818
1819 /*
1820 * We only support direct I/O to user space for now.
1821 */
1822
1823 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1824 return;
1825 }
1826
1827 /*
1828 * If the vnode is mapped, we would need to get the getpages lock
1829 * to stabilize the bmap, but then we would get into trouble whil e
1830 * locking the pages if the pages belong to this same vnode (or a
1831 * multi-vnode cascade to the same effect). Just fall back to
1832 * buffered I/O if the vnode is mapped to avoid this mess.
1833 */
1834
1835 if (vp->v_flag & VMAPPED) {
1836 return;
1837 }
1838
1839 /*
1840 * Do as much of the uio as possible with direct I/O.
1841 */
1842
1843 vs = uio->uio_vmspace;
1844 while (uio->uio_resid) {
1845 iov = uio->uio_iov;
1846 if (iov->iov_len == 0) {
1847 uio->uio_iov++;
1848 uio->uio_iovcnt--;
1849 continue;
1850 }
1851 va = (vaddr_t)iov->iov_base;
1852 len = MIN(iov->iov_len, genfs_maxdio);
1853 len &= ~mask;
1854
1855 /*
1856 * If the next chunk is smaller than DEV_BSIZE or extends past
1857 * the current EOF, then fall back to buffered I/O.
1858 */
1859
1860 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1861 return;
1862 }
1863
1864 /*
1865 * Check alignment. The file offset must be at least
1866 * sector-aligned. The exact constraint on memory alignment
1867 * is very hardware-dependent, but requiring sector-aligned
1868 * addresses there too is safe.
1869 */
1870
1871 if (uio->uio_offset & mask || va & mask) {
1872 return;
1873 }
1874 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1875 uio->uio_rw);
1876 if (error) {
1877 break;
1878 }
1879 iov->iov_base = (char *)iov->iov_base + len;
1880 iov->iov_len -= len;
1881 uio->uio_offset += len;
1882 uio->uio_resid -= len;
1883 }
1884 }
1885
1886 /*
1887 * Iodone routine for direct I/O. We don't do much here since the request is
1888 * always synchronous, so the caller will do most of the work after biowait().
1889 */
1890
1891 static void
1892 genfs_dio_iodone(struct buf *bp)
1893 {
1894 int s;
1895
1896 KASSERT((bp->b_flags & B_ASYNC) == 0);
1897 s = splbio();
1898 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1899 vwakeup(bp);
1900 }
1901 putiobuf(bp);
1902 splx(s);
1903 }
1904
1905 /*
1906 * Process one chunk of a direct I/O request.
1907 */
1908
1909 static int
1910 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1911 off_t off, enum uio_rw rw)
1912 {
1913 struct vm_map *map;
1914 struct pmap *upm, *kpm;
1915 size_t klen = round_page(uva + len) - trunc_page(uva);
1916 off_t spoff, epoff;
1917 vaddr_t kva, puva;
1918 paddr_t pa;
1919 vm_prot_t prot;
1920 int error, rv, poff, koff;
1921 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1922 (rw == UIO_WRITE ? PGO_FREE : 0);
1923
1924 /*
1925 * For writes, verify that this range of the file already has fully
1926 * allocated backing store. If there are any holes, just punt and
1927 * make the caller take the buffered write path.
1928 */
1929
1930 if (rw == UIO_WRITE) {
1931 daddr_t lbn, elbn, blkno;
1932 int bsize, bshift, run;
1933
1934 bshift = vp->v_mount->mnt_fs_bshift;
1935 bsize = 1 << bshift;
1936 lbn = off >> bshift;
1937 elbn = (off + len + bsize - 1) >> bshift;
1938 while (lbn < elbn) {
1939 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1940 if (error) {
1941 return error;
1942 }
1943 if (blkno == (daddr_t)-1) {
1944 return ENOSPC;
1945 }
1946 lbn += 1 + run;
1947 }
1948 }
1949
1950 /*
1951 * Flush any cached pages for parts of the file that we're about to
1952 * access. If we're writing, invalidate pages as well.
1953 */
1954
1955 spoff = trunc_page(off);
1956 epoff = round_page(off + len);
1957 simple_lock(&vp->v_interlock);
1958 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1959 if (error) {
1960 return error;
1961 }
1962
1963 /*
1964 * Wire the user pages and remap them into kernel memory.
1965 */
1966
1967 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1968 error = uvm_vslock(vs, (void *)uva, len, prot);
1969 if (error) {
1970 return error;
1971 }
1972
1973 map = &vs->vm_map;
1974 upm = vm_map_pmap(map);
1975 kpm = vm_map_pmap(kernel_map);
1976 kva = uvm_km_alloc(kernel_map, klen, 0,
1977 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1978 puva = trunc_page(uva);
1979 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1980 rv = pmap_extract(upm, puva + poff, &pa);
1981 KASSERT(rv);
1982 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1983 }
1984 pmap_update(kpm);
1985
1986 /*
1987 * Do the I/O.
1988 */
1989
1990 koff = uva - trunc_page(uva);
1991 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1992 genfs_dio_iodone);
1993
1994 /*
1995 * Tear down the kernel mapping.
1996 */
1997
1998 pmap_remove(kpm, kva, kva + klen);
1999 pmap_update(kpm);
2000 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2001
2002 /*
2003 * Unwire the user pages.
2004 */
2005
2006 uvm_vsunlock(vs, (void *)uva, len);
2007 return error;
2008 }
2009
2010
2011 static void
2012 filt_genfsdetach(struct knote *kn)
2013 {
2014 struct vnode *vp = (struct vnode *)kn->kn_hook;
2015
2016 /* XXXLUKEM lock the struct? */
2017 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2018 }
2019
2020 static int
2021 filt_genfsread(struct knote *kn, long hint)
2022 {
2023 struct vnode *vp = (struct vnode *)kn->kn_hook;
2024
2025 /*
2026 * filesystem is gone, so set the EOF flag and schedule
2027 * the knote for deletion.
2028 */
2029 if (hint == NOTE_REVOKE) {
2030 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2031 return (1);
2032 }
2033
2034 /* XXXLUKEM lock the struct? */
2035 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2036 return (kn->kn_data != 0);
2037 }
2038
2039 static int
2040 filt_genfsvnode(struct knote *kn, long hint)
2041 {
2042
2043 if (kn->kn_sfflags & hint)
2044 kn->kn_fflags |= hint;
2045 if (hint == NOTE_REVOKE) {
2046 kn->kn_flags |= EV_EOF;
2047 return (1);
2048 }
2049 return (kn->kn_fflags != 0);
2050 }
2051
2052 static const struct filterops genfsread_filtops =
2053 { 1, NULL, filt_genfsdetach, filt_genfsread };
2054 static const struct filterops genfsvnode_filtops =
2055 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2056
2057 int
2058 genfs_kqfilter(void *v)
2059 {
2060 struct vop_kqfilter_args /* {
2061 struct vnode *a_vp;
2062 struct knote *a_kn;
2063 } */ *ap = v;
2064 struct vnode *vp;
2065 struct knote *kn;
2066
2067 vp = ap->a_vp;
2068 kn = ap->a_kn;
2069 switch (kn->kn_filter) {
2070 case EVFILT_READ:
2071 kn->kn_fop = &genfsread_filtops;
2072 break;
2073 case EVFILT_VNODE:
2074 kn->kn_fop = &genfsvnode_filtops;
2075 break;
2076 default:
2077 return (1);
2078 }
2079
2080 kn->kn_hook = vp;
2081
2082 /* XXXLUKEM lock the struct? */
2083 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2084
2085 return (0);
2086 }
2087
2088 void
2089 genfs_node_wrlock(struct vnode *vp)
2090 {
2091 struct genfs_node *gp = VTOG(vp);
2092
2093 rw_enter(&gp->g_glock, RW_WRITER);
2094 }
2095
2096 void
2097 genfs_node_rdlock(struct vnode *vp)
2098 {
2099 struct genfs_node *gp = VTOG(vp);
2100
2101 rw_enter(&gp->g_glock, RW_READER);
2102 }
2103
2104 void
2105 genfs_node_unlock(struct vnode *vp)
2106 {
2107 struct genfs_node *gp = VTOG(vp);
2108
2109 rw_exit(&gp->g_glock);
2110 }
2111