Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.157
      1 /*	$NetBSD: genfs_vnops.c,v 1.157 2007/10/10 20:42:28 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.157 2007/10/10 20:42:28 ad Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 static void filt_genfsdetach(struct knote *);
     66 static int filt_genfsread(struct knote *, long);
     67 static int filt_genfsvnode(struct knote *, long);
     68 
     69 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     70 
     71 int genfs_maxdio = MAXPHYS;
     72 
     73 int
     74 genfs_poll(void *v)
     75 {
     76 	struct vop_poll_args /* {
     77 		struct vnode *a_vp;
     78 		int a_events;
     79 		struct lwp *a_l;
     80 	} */ *ap = v;
     81 
     82 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     83 }
     84 
     85 int
     86 genfs_seek(void *v)
     87 {
     88 	struct vop_seek_args /* {
     89 		struct vnode *a_vp;
     90 		off_t a_oldoff;
     91 		off_t a_newoff;
     92 		kauth_cred_t cred;
     93 	} */ *ap = v;
     94 
     95 	if (ap->a_newoff < 0)
     96 		return (EINVAL);
     97 
     98 	return (0);
     99 }
    100 
    101 int
    102 genfs_abortop(void *v)
    103 {
    104 	struct vop_abortop_args /* {
    105 		struct vnode *a_dvp;
    106 		struct componentname *a_cnp;
    107 	} */ *ap = v;
    108 
    109 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    110 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    111 	return (0);
    112 }
    113 
    114 int
    115 genfs_fcntl(void *v)
    116 {
    117 	struct vop_fcntl_args /* {
    118 		struct vnode *a_vp;
    119 		u_int a_command;
    120 		void *a_data;
    121 		int a_fflag;
    122 		kauth_cred_t a_cred;
    123 		struct lwp *a_l;
    124 	} */ *ap = v;
    125 
    126 	if (ap->a_command == F_SETFL)
    127 		return (0);
    128 	else
    129 		return (EOPNOTSUPP);
    130 }
    131 
    132 /*ARGSUSED*/
    133 int
    134 genfs_badop(void *v)
    135 {
    136 
    137 	panic("genfs: bad op");
    138 }
    139 
    140 /*ARGSUSED*/
    141 int
    142 genfs_nullop(void *v)
    143 {
    144 
    145 	return (0);
    146 }
    147 
    148 /*ARGSUSED*/
    149 int
    150 genfs_einval(void *v)
    151 {
    152 
    153 	return (EINVAL);
    154 }
    155 
    156 /*
    157  * Called when an fs doesn't support a particular vop.
    158  * This takes care to vrele, vput, or vunlock passed in vnodes.
    159  */
    160 int
    161 genfs_eopnotsupp(void *v)
    162 {
    163 	struct vop_generic_args /*
    164 		struct vnodeop_desc *a_desc;
    165 		/ * other random data follows, presumably * /
    166 	} */ *ap = v;
    167 	struct vnodeop_desc *desc = ap->a_desc;
    168 	struct vnode *vp, *vp_last = NULL;
    169 	int flags, i, j, offset;
    170 
    171 	flags = desc->vdesc_flags;
    172 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    173 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    174 			break;	/* stop at end of list */
    175 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    176 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    177 
    178 			/* Skip if NULL */
    179 			if (!vp)
    180 				continue;
    181 
    182 			switch (j) {
    183 			case VDESC_VP0_WILLPUT:
    184 				/* Check for dvp == vp cases */
    185 				if (vp == vp_last)
    186 					vrele(vp);
    187 				else {
    188 					vput(vp);
    189 					vp_last = vp;
    190 				}
    191 				break;
    192 			case VDESC_VP0_WILLUNLOCK:
    193 				VOP_UNLOCK(vp, 0);
    194 				break;
    195 			case VDESC_VP0_WILLRELE:
    196 				vrele(vp);
    197 				break;
    198 			}
    199 		}
    200 	}
    201 
    202 	return (EOPNOTSUPP);
    203 }
    204 
    205 /*ARGSUSED*/
    206 int
    207 genfs_ebadf(void *v)
    208 {
    209 
    210 	return (EBADF);
    211 }
    212 
    213 /* ARGSUSED */
    214 int
    215 genfs_enoioctl(void *v)
    216 {
    217 
    218 	return (EPASSTHROUGH);
    219 }
    220 
    221 
    222 /*
    223  * Eliminate all activity associated with the requested vnode
    224  * and with all vnodes aliased to the requested vnode.
    225  */
    226 int
    227 genfs_revoke(void *v)
    228 {
    229 	struct vop_revoke_args /* {
    230 		struct vnode *a_vp;
    231 		int a_flags;
    232 	} */ *ap = v;
    233 	struct vnode *vp, *vq;
    234 	struct lwp *l = curlwp;		/* XXX */
    235 
    236 #ifdef DIAGNOSTIC
    237 	if ((ap->a_flags & REVOKEALL) == 0)
    238 		panic("genfs_revoke: not revokeall");
    239 #endif
    240 
    241 	vp = ap->a_vp;
    242 	simple_lock(&vp->v_interlock);
    243 
    244 	if (vp->v_iflag & VI_ALIASED) {
    245 		/*
    246 		 * If a vgone (or vclean) is already in progress,
    247 		 * wait until it is done and return.
    248 		 */
    249 		if (vp->v_iflag & VI_XLOCK) {
    250 			vp->v_iflag |= VI_XWANT;
    251 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    252 				&vp->v_interlock);
    253 			return (0);
    254 		}
    255 		/*
    256 		 * Ensure that vp will not be vgone'd while we
    257 		 * are eliminating its aliases.
    258 		 */
    259 		vp->v_iflag |= VI_XLOCK;
    260 		simple_unlock(&vp->v_interlock);
    261 		while (vp->v_iflag & VI_ALIASED) {
    262 			simple_lock(&spechash_slock);
    263 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    264 				if (vq->v_rdev != vp->v_rdev ||
    265 				    vq->v_type != vp->v_type || vp == vq)
    266 					continue;
    267 				simple_unlock(&spechash_slock);
    268 				vgone(vq);
    269 				break;
    270 			}
    271 			if (vq == NULLVP)
    272 				simple_unlock(&spechash_slock);
    273 		}
    274 		/*
    275 		 * Remove the lock so that vgone below will
    276 		 * really eliminate the vnode after which time
    277 		 * vgone will awaken any sleepers.
    278 		 */
    279 		simple_lock(&vp->v_interlock);
    280 		vp->v_iflag &= ~VI_XLOCK;
    281 	}
    282 	vgonel(vp, l);
    283 	return (0);
    284 }
    285 
    286 /*
    287  * Lock the node.
    288  */
    289 int
    290 genfs_lock(void *v)
    291 {
    292 	struct vop_lock_args /* {
    293 		struct vnode *a_vp;
    294 		int a_flags;
    295 	} */ *ap = v;
    296 	struct vnode *vp = ap->a_vp;
    297 
    298 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    299 }
    300 
    301 /*
    302  * Unlock the node.
    303  */
    304 int
    305 genfs_unlock(void *v)
    306 {
    307 	struct vop_unlock_args /* {
    308 		struct vnode *a_vp;
    309 		int a_flags;
    310 	} */ *ap = v;
    311 	struct vnode *vp = ap->a_vp;
    312 
    313 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    314 	    &vp->v_interlock));
    315 }
    316 
    317 /*
    318  * Return whether or not the node is locked.
    319  */
    320 int
    321 genfs_islocked(void *v)
    322 {
    323 	struct vop_islocked_args /* {
    324 		struct vnode *a_vp;
    325 	} */ *ap = v;
    326 	struct vnode *vp = ap->a_vp;
    327 
    328 	return (lockstatus(vp->v_vnlock));
    329 }
    330 
    331 /*
    332  * Stubs to use when there is no locking to be done on the underlying object.
    333  */
    334 int
    335 genfs_nolock(void *v)
    336 {
    337 	struct vop_lock_args /* {
    338 		struct vnode *a_vp;
    339 		int a_flags;
    340 		struct lwp *a_l;
    341 	} */ *ap = v;
    342 
    343 	/*
    344 	 * Since we are not using the lock manager, we must clear
    345 	 * the interlock here.
    346 	 */
    347 	if (ap->a_flags & LK_INTERLOCK)
    348 		simple_unlock(&ap->a_vp->v_interlock);
    349 	return (0);
    350 }
    351 
    352 int
    353 genfs_nounlock(void *v)
    354 {
    355 
    356 	return (0);
    357 }
    358 
    359 int
    360 genfs_noislocked(void *v)
    361 {
    362 
    363 	return (0);
    364 }
    365 
    366 /*
    367  * Local lease check.
    368  */
    369 int
    370 genfs_lease_check(void *v)
    371 {
    372 
    373 	return (0);
    374 }
    375 
    376 int
    377 genfs_mmap(void *v)
    378 {
    379 
    380 	return (0);
    381 }
    382 
    383 static inline void
    384 genfs_rel_pages(struct vm_page **pgs, int npages)
    385 {
    386 	int i;
    387 
    388 	for (i = 0; i < npages; i++) {
    389 		struct vm_page *pg = pgs[i];
    390 
    391 		if (pg == NULL || pg == PGO_DONTCARE)
    392 			continue;
    393 		if (pg->flags & PG_FAKE) {
    394 			pg->flags |= PG_RELEASED;
    395 		}
    396 	}
    397 	uvm_lock_pageq();
    398 	uvm_page_unbusy(pgs, npages);
    399 	uvm_unlock_pageq();
    400 }
    401 
    402 /*
    403  * generic VM getpages routine.
    404  * Return PG_BUSY pages for the given range,
    405  * reading from backing store if necessary.
    406  */
    407 
    408 int
    409 genfs_getpages(void *v)
    410 {
    411 	struct vop_getpages_args /* {
    412 		struct vnode *a_vp;
    413 		voff_t a_offset;
    414 		struct vm_page **a_m;
    415 		int *a_count;
    416 		int a_centeridx;
    417 		vm_prot_t a_access_type;
    418 		int a_advice;
    419 		int a_flags;
    420 	} */ *ap = v;
    421 
    422 	off_t newsize, diskeof, memeof;
    423 	off_t offset, origoffset, startoffset, endoffset;
    424 	daddr_t lbn, blkno;
    425 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    426 	int fs_bshift, fs_bsize, dev_bshift;
    427 	int flags = ap->a_flags;
    428 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    429 	vaddr_t kva;
    430 	struct buf *bp, *mbp;
    431 	struct vnode *vp = ap->a_vp;
    432 	struct vnode *devvp;
    433 	struct genfs_node *gp = VTOG(vp);
    434 	struct uvm_object *uobj = &vp->v_uobj;
    435 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    436 	int pgs_size;
    437 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    438 	bool async = (flags & PGO_SYNCIO) == 0;
    439 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    440 	bool sawhole = false;
    441 	bool has_trans = false;
    442 	bool overwrite = (flags & PGO_OVERWRITE) != 0;
    443 	bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    444 	voff_t origvsize;
    445 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    446 
    447 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    448 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    449 
    450 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    451 	    vp->v_type == VLNK || vp->v_type == VBLK);
    452 
    453 	/* XXXUBC temp limit */
    454 	if (*ap->a_count > MAX_READ_PAGES) {
    455 		panic("genfs_getpages: too many pages");
    456 	}
    457 
    458 	pgs = pgs_onstack;
    459 	pgs_size = sizeof(pgs_onstack);
    460 
    461 startover:
    462 	error = 0;
    463 	origvsize = vp->v_size;
    464 	origoffset = ap->a_offset;
    465 	orignpages = *ap->a_count;
    466 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    467 	if (flags & PGO_PASTEOF) {
    468 #if defined(DIAGNOSTIC)
    469 		off_t writeeof;
    470 #endif /* defined(DIAGNOSTIC) */
    471 
    472 		newsize = MAX(origvsize,
    473 		    origoffset + (orignpages << PAGE_SHIFT));
    474 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    475 #if defined(DIAGNOSTIC)
    476 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    477 		if (newsize > round_page(writeeof)) {
    478 			panic("%s: past eof", __func__);
    479 		}
    480 #endif /* defined(DIAGNOSTIC) */
    481 	} else {
    482 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    483 	}
    484 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    485 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    486 	KASSERT(orignpages > 0);
    487 
    488 	/*
    489 	 * Bounds-check the request.
    490 	 */
    491 
    492 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    493 		if ((flags & PGO_LOCKED) == 0) {
    494 			simple_unlock(&uobj->vmobjlock);
    495 		}
    496 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    497 		    origoffset, *ap->a_count, memeof,0);
    498 		error = EINVAL;
    499 		goto out_err;
    500 	}
    501 
    502 	/* uobj is locked */
    503 
    504 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    505 	    (vp->v_type != VBLK ||
    506 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    507 		int updflags = 0;
    508 
    509 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    510 			updflags = GOP_UPDATE_ACCESSED;
    511 		}
    512 		if (write) {
    513 			updflags |= GOP_UPDATE_MODIFIED;
    514 		}
    515 		if (updflags != 0) {
    516 			GOP_MARKUPDATE(vp, updflags);
    517 		}
    518 	}
    519 
    520 	if (write) {
    521 		gp->g_dirtygen++;
    522 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    523 			vn_syncer_add_to_worklist(vp, filedelay);
    524 		}
    525 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    526 			vp->v_iflag |= VI_WRMAPDIRTY;
    527 		}
    528 	}
    529 
    530 	/*
    531 	 * For PGO_LOCKED requests, just return whatever's in memory.
    532 	 */
    533 
    534 	if (flags & PGO_LOCKED) {
    535 		int nfound;
    536 
    537 		npages = *ap->a_count;
    538 #if defined(DEBUG)
    539 		for (i = 0; i < npages; i++) {
    540 			pg = ap->a_m[i];
    541 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    542 		}
    543 #endif /* defined(DEBUG) */
    544 		nfound = uvn_findpages(uobj, origoffset, &npages,
    545 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    546 		KASSERT(npages == *ap->a_count);
    547 		if (nfound == 0) {
    548 			error = EBUSY;
    549 			goto out_err;
    550 		}
    551 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    552 			genfs_rel_pages(ap->a_m, npages);
    553 
    554 			/*
    555 			 * restore the array.
    556 			 */
    557 
    558 			for (i = 0; i < npages; i++) {
    559 				pg = ap->a_m[i];
    560 
    561 				if (pg != NULL || pg != PGO_DONTCARE) {
    562 					ap->a_m[i] = NULL;
    563 				}
    564 			}
    565 		} else {
    566 			rw_exit(&gp->g_glock);
    567 		}
    568 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    569 		goto out_err;
    570 	}
    571 	simple_unlock(&uobj->vmobjlock);
    572 
    573 	/*
    574 	 * find the requested pages and make some simple checks.
    575 	 * leave space in the page array for a whole block.
    576 	 */
    577 
    578 	if (vp->v_type != VBLK) {
    579 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    580 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    581 	} else {
    582 		fs_bshift = DEV_BSHIFT;
    583 		dev_bshift = DEV_BSHIFT;
    584 	}
    585 	fs_bsize = 1 << fs_bshift;
    586 
    587 	orignpages = MIN(orignpages,
    588 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    589 	npages = orignpages;
    590 	startoffset = origoffset & ~(fs_bsize - 1);
    591 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    592 	    fs_bsize - 1) & ~(fs_bsize - 1));
    593 	endoffset = MIN(endoffset, round_page(memeof));
    594 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    595 
    596 	pgs_size = sizeof(struct vm_page *) *
    597 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    598 	if (pgs_size > sizeof(pgs_onstack)) {
    599 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    600 		if (pgs == NULL) {
    601 			pgs = pgs_onstack;
    602 			error = ENOMEM;
    603 			goto out_err;
    604 		}
    605 	} else {
    606 		/* pgs == pgs_onstack */
    607 		memset(pgs, 0, pgs_size);
    608 	}
    609 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    610 	    ridx, npages, startoffset, endoffset);
    611 
    612 	if (!has_trans) {
    613 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    614 		has_trans = true;
    615 	}
    616 
    617 	/*
    618 	 * hold g_glock to prevent a race with truncate.
    619 	 *
    620 	 * check if our idea of v_size is still valid.
    621 	 */
    622 
    623 	if (blockalloc) {
    624 		rw_enter(&gp->g_glock, RW_WRITER);
    625 	} else {
    626 		rw_enter(&gp->g_glock, RW_READER);
    627 	}
    628 	simple_lock(&uobj->vmobjlock);
    629 	if (vp->v_size < origvsize) {
    630 		rw_exit(&gp->g_glock);
    631 		if (pgs != pgs_onstack)
    632 			kmem_free(pgs, pgs_size);
    633 		goto startover;
    634 	}
    635 
    636 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    637 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    638 		rw_exit(&gp->g_glock);
    639 		KASSERT(async != 0);
    640 		genfs_rel_pages(&pgs[ridx], orignpages);
    641 		simple_unlock(&uobj->vmobjlock);
    642 		error = EBUSY;
    643 		goto out_err;
    644 	}
    645 
    646 	/*
    647 	 * if the pages are already resident, just return them.
    648 	 */
    649 
    650 	for (i = 0; i < npages; i++) {
    651 		struct vm_page *pg1 = pgs[ridx + i];
    652 
    653 		if ((pg1->flags & PG_FAKE) ||
    654 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    655 			break;
    656 		}
    657 	}
    658 	if (i == npages) {
    659 		rw_exit(&gp->g_glock);
    660 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    661 		npages += ridx;
    662 		goto out;
    663 	}
    664 
    665 	/*
    666 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    667 	 */
    668 
    669 	if (overwrite) {
    670 		rw_exit(&gp->g_glock);
    671 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    672 
    673 		for (i = 0; i < npages; i++) {
    674 			struct vm_page *pg1 = pgs[ridx + i];
    675 
    676 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    677 		}
    678 		npages += ridx;
    679 		goto out;
    680 	}
    681 
    682 	/*
    683 	 * the page wasn't resident and we're not overwriting,
    684 	 * so we're going to have to do some i/o.
    685 	 * find any additional pages needed to cover the expanded range.
    686 	 */
    687 
    688 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    689 	if (startoffset != origoffset || npages != orignpages) {
    690 
    691 		/*
    692 		 * we need to avoid deadlocks caused by locking
    693 		 * additional pages at lower offsets than pages we
    694 		 * already have locked.  unlock them all and start over.
    695 		 */
    696 
    697 		genfs_rel_pages(&pgs[ridx], orignpages);
    698 		memset(pgs, 0, pgs_size);
    699 
    700 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    701 		    startoffset, endoffset, 0,0);
    702 		npgs = npages;
    703 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    704 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    705 			rw_exit(&gp->g_glock);
    706 			KASSERT(async != 0);
    707 			genfs_rel_pages(pgs, npages);
    708 			simple_unlock(&uobj->vmobjlock);
    709 			error = EBUSY;
    710 			goto out_err;
    711 		}
    712 	}
    713 	simple_unlock(&uobj->vmobjlock);
    714 
    715 	/*
    716 	 * read the desired page(s).
    717 	 */
    718 
    719 	totalbytes = npages << PAGE_SHIFT;
    720 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    721 	tailbytes = totalbytes - bytes;
    722 	skipbytes = 0;
    723 
    724 	kva = uvm_pagermapin(pgs, npages,
    725 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    726 
    727 	mbp = getiobuf();
    728 	mbp->b_bufsize = totalbytes;
    729 	mbp->b_data = (void *)kva;
    730 	mbp->b_resid = mbp->b_bcount = bytes;
    731 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    732 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    733 	mbp->b_vp = vp;
    734 	if (async)
    735 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    736 	else
    737 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    738 
    739 	/*
    740 	 * if EOF is in the middle of the range, zero the part past EOF.
    741 	 * skip over pages which are not PG_FAKE since in that case they have
    742 	 * valid data that we need to preserve.
    743 	 */
    744 
    745 	tailstart = bytes;
    746 	while (tailbytes > 0) {
    747 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    748 
    749 		KASSERT(len <= tailbytes);
    750 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    751 			memset((void *)(kva + tailstart), 0, len);
    752 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    753 			    kva, tailstart, len, 0);
    754 		}
    755 		tailstart += len;
    756 		tailbytes -= len;
    757 	}
    758 
    759 	/*
    760 	 * now loop over the pages, reading as needed.
    761 	 */
    762 
    763 	bp = NULL;
    764 	for (offset = startoffset;
    765 	    bytes > 0;
    766 	    offset += iobytes, bytes -= iobytes) {
    767 
    768 		/*
    769 		 * skip pages which don't need to be read.
    770 		 */
    771 
    772 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    773 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    774 			size_t b;
    775 
    776 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    777 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    778 				sawhole = true;
    779 			}
    780 			b = MIN(PAGE_SIZE, bytes);
    781 			offset += b;
    782 			bytes -= b;
    783 			skipbytes += b;
    784 			pidx++;
    785 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    786 			    offset, 0,0,0);
    787 			if (bytes == 0) {
    788 				goto loopdone;
    789 			}
    790 		}
    791 
    792 		/*
    793 		 * bmap the file to find out the blkno to read from and
    794 		 * how much we can read in one i/o.  if bmap returns an error,
    795 		 * skip the rest of the top-level i/o.
    796 		 */
    797 
    798 		lbn = offset >> fs_bshift;
    799 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    800 		if (error) {
    801 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    802 			    lbn, error,0,0);
    803 			skipbytes += bytes;
    804 			goto loopdone;
    805 		}
    806 
    807 		/*
    808 		 * see how many pages can be read with this i/o.
    809 		 * reduce the i/o size if necessary to avoid
    810 		 * overwriting pages with valid data.
    811 		 */
    812 
    813 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    814 		    bytes);
    815 		if (offset + iobytes > round_page(offset)) {
    816 			pcount = 1;
    817 			while (pidx + pcount < npages &&
    818 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    819 				pcount++;
    820 			}
    821 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    822 			    (offset - trunc_page(offset)));
    823 		}
    824 
    825 		/*
    826 		 * if this block isn't allocated, zero it instead of
    827 		 * reading it.  unless we are going to allocate blocks,
    828 		 * mark the pages we zeroed PG_RDONLY.
    829 		 */
    830 
    831 		if (blkno < 0) {
    832 			int holepages = (round_page(offset + iobytes) -
    833 			    trunc_page(offset)) >> PAGE_SHIFT;
    834 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    835 
    836 			sawhole = true;
    837 			memset((char *)kva + (offset - startoffset), 0,
    838 			    iobytes);
    839 			skipbytes += iobytes;
    840 
    841 			for (i = 0; i < holepages; i++) {
    842 				if (write) {
    843 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    844 				}
    845 				if (!blockalloc) {
    846 					pgs[pidx + i]->flags |= PG_RDONLY;
    847 				}
    848 			}
    849 			continue;
    850 		}
    851 
    852 		/*
    853 		 * allocate a sub-buf for this piece of the i/o
    854 		 * (or just use mbp if there's only 1 piece),
    855 		 * and start it going.
    856 		 */
    857 
    858 		if (offset == startoffset && iobytes == bytes) {
    859 			bp = mbp;
    860 		} else {
    861 			bp = getiobuf();
    862 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    863 		}
    864 		bp->b_lblkno = 0;
    865 
    866 		/* adjust physical blkno for partial blocks */
    867 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    868 		    dev_bshift);
    869 
    870 		UVMHIST_LOG(ubchist,
    871 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    872 		    bp, offset, iobytes, bp->b_blkno);
    873 
    874 		VOP_STRATEGY(devvp, bp);
    875 	}
    876 
    877 loopdone:
    878 	nestiobuf_done(mbp, skipbytes, error);
    879 	if (async) {
    880 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    881 		rw_exit(&gp->g_glock);
    882 		error = 0;
    883 		goto out_err;
    884 	}
    885 	if (bp != NULL) {
    886 		error = biowait(mbp);
    887 	}
    888 	putiobuf(mbp);
    889 	uvm_pagermapout(kva, npages);
    890 
    891 	/*
    892 	 * if this we encountered a hole then we have to do a little more work.
    893 	 * for read faults, we marked the page PG_RDONLY so that future
    894 	 * write accesses to the page will fault again.
    895 	 * for write faults, we must make sure that the backing store for
    896 	 * the page is completely allocated while the pages are locked.
    897 	 */
    898 
    899 	if (!error && sawhole && blockalloc) {
    900 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    901 		    cred);
    902 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    903 		    startoffset, npages << PAGE_SHIFT, error,0);
    904 		if (!error) {
    905 			for (i = 0; i < npages; i++) {
    906 				if (pgs[i] == NULL) {
    907 					continue;
    908 				}
    909 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    910 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    911 				    pgs[i],0,0,0);
    912 			}
    913 		}
    914 	}
    915 	rw_exit(&gp->g_glock);
    916 	simple_lock(&uobj->vmobjlock);
    917 
    918 	/*
    919 	 * we're almost done!  release the pages...
    920 	 * for errors, we free the pages.
    921 	 * otherwise we activate them and mark them as valid and clean.
    922 	 * also, unbusy pages that were not actually requested.
    923 	 */
    924 
    925 	if (error) {
    926 		for (i = 0; i < npages; i++) {
    927 			if (pgs[i] == NULL) {
    928 				continue;
    929 			}
    930 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    931 			    pgs[i], pgs[i]->flags, 0,0);
    932 			if (pgs[i]->flags & PG_FAKE) {
    933 				pgs[i]->flags |= PG_RELEASED;
    934 			}
    935 		}
    936 		uvm_lock_pageq();
    937 		uvm_page_unbusy(pgs, npages);
    938 		uvm_unlock_pageq();
    939 		simple_unlock(&uobj->vmobjlock);
    940 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    941 		goto out_err;
    942 	}
    943 
    944 out:
    945 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    946 	error = 0;
    947 	uvm_lock_pageq();
    948 	for (i = 0; i < npages; i++) {
    949 		pg = pgs[i];
    950 		if (pg == NULL) {
    951 			continue;
    952 		}
    953 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    954 		    pg, pg->flags, 0,0);
    955 		if (pg->flags & PG_FAKE && !overwrite) {
    956 			pg->flags &= ~(PG_FAKE);
    957 			pmap_clear_modify(pgs[i]);
    958 		}
    959 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    960 		if (i < ridx || i >= ridx + orignpages || async) {
    961 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    962 			    pg, pg->offset,0,0);
    963 			if (pg->flags & PG_WANTED) {
    964 				wakeup(pg);
    965 			}
    966 			if (pg->flags & PG_FAKE) {
    967 				KASSERT(overwrite);
    968 				uvm_pagezero(pg);
    969 			}
    970 			if (pg->flags & PG_RELEASED) {
    971 				uvm_pagefree(pg);
    972 				continue;
    973 			}
    974 			uvm_pageenqueue(pg);
    975 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    976 			UVM_PAGE_OWN(pg, NULL);
    977 		}
    978 	}
    979 	uvm_unlock_pageq();
    980 	simple_unlock(&uobj->vmobjlock);
    981 	if (ap->a_m != NULL) {
    982 		memcpy(ap->a_m, &pgs[ridx],
    983 		    orignpages * sizeof(struct vm_page *));
    984 	}
    985 
    986 out_err:
    987 	if (pgs != pgs_onstack)
    988 		kmem_free(pgs, pgs_size);
    989 	if (has_trans)
    990 		fstrans_done(vp->v_mount);
    991 	return (error);
    992 }
    993 
    994 /*
    995  * generic VM putpages routine.
    996  * Write the given range of pages to backing store.
    997  *
    998  * => "offhi == 0" means flush all pages at or after "offlo".
    999  * => object should be locked by caller.  we return with the
   1000  *      object unlocked.
   1001  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1002  *	thus, a caller might want to unlock higher level resources
   1003  *	(e.g. vm_map) before calling flush.
   1004  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
   1005  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1006  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1007  *	that new pages are inserted on the tail end of the list.   thus,
   1008  *	we can make a complete pass through the object in one go by starting
   1009  *	at the head and working towards the tail (new pages are put in
   1010  *	front of us).
   1011  * => NOTE: we are allowed to lock the page queues, so the caller
   1012  *	must not be holding the page queue lock.
   1013  *
   1014  * note on "cleaning" object and PG_BUSY pages:
   1015  *	this routine is holding the lock on the object.   the only time
   1016  *	that it can run into a PG_BUSY page that it does not own is if
   1017  *	some other process has started I/O on the page (e.g. either
   1018  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1019  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1020  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1021  *	paged out then it means that someone else has already started
   1022  *	cleaning the page for us (how nice!).    in this case, if we
   1023  *	have syncio specified, then after we make our pass through the
   1024  *	object we need to wait for the other PG_BUSY pages to clear
   1025  *	off (i.e. we need to do an iosync).   also note that once a
   1026  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1027  *
   1028  * note on page traversal:
   1029  *	we can traverse the pages in an object either by going down the
   1030  *	linked list in "uobj->memq", or we can go over the address range
   1031  *	by page doing hash table lookups for each address.    depending
   1032  *	on how many pages are in the object it may be cheaper to do one
   1033  *	or the other.   we set "by_list" to true if we are using memq.
   1034  *	if the cost of a hash lookup was equal to the cost of the list
   1035  *	traversal we could compare the number of pages in the start->stop
   1036  *	range to the total number of pages in the object.   however, it
   1037  *	seems that a hash table lookup is more expensive than the linked
   1038  *	list traversal, so we multiply the number of pages in the
   1039  *	range by an estimate of the relatively higher cost of the hash lookup.
   1040  */
   1041 
   1042 int
   1043 genfs_putpages(void *v)
   1044 {
   1045 	struct vop_putpages_args /* {
   1046 		struct vnode *a_vp;
   1047 		voff_t a_offlo;
   1048 		voff_t a_offhi;
   1049 		int a_flags;
   1050 	} */ *ap = v;
   1051 
   1052 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1053 	    ap->a_flags, NULL);
   1054 }
   1055 
   1056 int
   1057 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
   1058 	struct vm_page **busypg)
   1059 {
   1060 	struct uvm_object *uobj = &vp->v_uobj;
   1061 	struct simplelock *slock = &uobj->vmobjlock;
   1062 	off_t off;
   1063 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1064 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1065 	int i, s, error, npages, nback;
   1066 	int freeflag;
   1067 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1068 	bool wasclean, by_list, needs_clean, yld;
   1069 	bool async = (flags & PGO_SYNCIO) == 0;
   1070 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1071 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1072 	struct genfs_node *gp = VTOG(vp);
   1073 	int dirtygen;
   1074 	bool modified = false;
   1075 	bool has_trans = false;
   1076 	bool cleanall;
   1077 
   1078 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1079 
   1080 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1081 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1082 	KASSERT(startoff < endoff || endoff == 0);
   1083 
   1084 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1085 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1086 
   1087 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1088 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1089 	if (uobj->uo_npages == 0) {
   1090 		s = splbio();
   1091 		if (vp->v_iflag & VI_ONWORKLST) {
   1092 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1093 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1094 				vn_syncer_remove_from_worklist(vp);
   1095 		}
   1096 		splx(s);
   1097 		simple_unlock(slock);
   1098 		return (0);
   1099 	}
   1100 
   1101 	/*
   1102 	 * the vnode has pages, set up to process the request.
   1103 	 */
   1104 
   1105 	if ((flags & PGO_CLEANIT) != 0) {
   1106 		simple_unlock(slock);
   1107 		if (pagedaemon) {
   1108 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1109 			if (error)
   1110 				return error;
   1111 		} else
   1112 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1113 		has_trans = true;
   1114 		simple_lock(slock);
   1115 	}
   1116 
   1117 	error = 0;
   1118 	s = splbio();
   1119 	simple_lock(&global_v_numoutput_slock);
   1120 	wasclean = (vp->v_numoutput == 0);
   1121 	simple_unlock(&global_v_numoutput_slock);
   1122 	splx(s);
   1123 	off = startoff;
   1124 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1125 		endoff = trunc_page(LLONG_MAX);
   1126 	}
   1127 	by_list = (uobj->uo_npages <=
   1128 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1129 
   1130 #if !defined(DEBUG)
   1131 	/*
   1132 	 * if this vnode is known not to have dirty pages,
   1133 	 * don't bother to clean it out.
   1134 	 */
   1135 
   1136 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1137 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1138 			goto skip_scan;
   1139 		}
   1140 		flags &= ~PGO_CLEANIT;
   1141 	}
   1142 #endif /* !defined(DEBUG) */
   1143 
   1144 	/*
   1145 	 * start the loop.  when scanning by list, hold the last page
   1146 	 * in the list before we start.  pages allocated after we start
   1147 	 * will be added to the end of the list, so we can stop at the
   1148 	 * current last page.
   1149 	 */
   1150 
   1151 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1152 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1153 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1154 	dirtygen = gp->g_dirtygen;
   1155 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1156 	if (by_list) {
   1157 		curmp.uobject = uobj;
   1158 		curmp.offset = (voff_t)-1;
   1159 		curmp.flags = PG_BUSY;
   1160 		endmp.uobject = uobj;
   1161 		endmp.offset = (voff_t)-1;
   1162 		endmp.flags = PG_BUSY;
   1163 		pg = TAILQ_FIRST(&uobj->memq);
   1164 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1165 		uvm_lwp_hold(l);
   1166 	} else {
   1167 		pg = uvm_pagelookup(uobj, off);
   1168 	}
   1169 	nextpg = NULL;
   1170 	while (by_list || off < endoff) {
   1171 
   1172 		/*
   1173 		 * if the current page is not interesting, move on to the next.
   1174 		 */
   1175 
   1176 		KASSERT(pg == NULL || pg->uobject == uobj);
   1177 		KASSERT(pg == NULL ||
   1178 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1179 		    (pg->flags & PG_BUSY) != 0);
   1180 		if (by_list) {
   1181 			if (pg == &endmp) {
   1182 				break;
   1183 			}
   1184 			if (pg->offset < startoff || pg->offset >= endoff ||
   1185 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1186 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1187 					wasclean = false;
   1188 				}
   1189 				pg = TAILQ_NEXT(pg, listq);
   1190 				continue;
   1191 			}
   1192 			off = pg->offset;
   1193 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1194 			if (pg != NULL) {
   1195 				wasclean = false;
   1196 			}
   1197 			off += PAGE_SIZE;
   1198 			if (off < endoff) {
   1199 				pg = uvm_pagelookup(uobj, off);
   1200 			}
   1201 			continue;
   1202 		}
   1203 
   1204 		/*
   1205 		 * if the current page needs to be cleaned and it's busy,
   1206 		 * wait for it to become unbusy.
   1207 		 */
   1208 
   1209 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1210 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1211 		if (pg->flags & PG_BUSY || yld) {
   1212 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1213 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1214 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1215 				error = EDEADLK;
   1216 				if (busypg != NULL)
   1217 					*busypg = pg;
   1218 				break;
   1219 			}
   1220 			if (pagedaemon) {
   1221 				/*
   1222 				 * someone has taken the page while we
   1223 				 * dropped the lock for fstrans_start.
   1224 				 */
   1225 				break;
   1226 			}
   1227 			if (by_list) {
   1228 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1229 				UVMHIST_LOG(ubchist, "curmp next %p",
   1230 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1231 			}
   1232 			if (yld) {
   1233 				simple_unlock(slock);
   1234 				preempt();
   1235 				simple_lock(slock);
   1236 			} else {
   1237 				pg->flags |= PG_WANTED;
   1238 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1239 				simple_lock(slock);
   1240 			}
   1241 			if (by_list) {
   1242 				UVMHIST_LOG(ubchist, "after next %p",
   1243 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1244 				pg = TAILQ_NEXT(&curmp, listq);
   1245 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1246 			} else {
   1247 				pg = uvm_pagelookup(uobj, off);
   1248 			}
   1249 			continue;
   1250 		}
   1251 
   1252 		/*
   1253 		 * if we're freeing, remove all mappings of the page now.
   1254 		 * if we're cleaning, check if the page is needs to be cleaned.
   1255 		 */
   1256 
   1257 		if (flags & PGO_FREE) {
   1258 			pmap_page_protect(pg, VM_PROT_NONE);
   1259 		} else if (flags & PGO_CLEANIT) {
   1260 
   1261 			/*
   1262 			 * if we still have some hope to pull this vnode off
   1263 			 * from the syncer queue, write-protect the page.
   1264 			 */
   1265 
   1266 			if (cleanall && wasclean &&
   1267 			    gp->g_dirtygen == dirtygen) {
   1268 
   1269 				/*
   1270 				 * uobj pages get wired only by uvm_fault
   1271 				 * where uobj is locked.
   1272 				 */
   1273 
   1274 				if (pg->wire_count == 0) {
   1275 					pmap_page_protect(pg,
   1276 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1277 				} else {
   1278 					cleanall = false;
   1279 				}
   1280 			}
   1281 		}
   1282 
   1283 		if (flags & PGO_CLEANIT) {
   1284 			needs_clean = pmap_clear_modify(pg) ||
   1285 			    (pg->flags & PG_CLEAN) == 0;
   1286 			pg->flags |= PG_CLEAN;
   1287 		} else {
   1288 			needs_clean = false;
   1289 		}
   1290 
   1291 		/*
   1292 		 * if we're cleaning, build a cluster.
   1293 		 * the cluster will consist of pages which are currently dirty,
   1294 		 * but they will be returned to us marked clean.
   1295 		 * if not cleaning, just operate on the one page.
   1296 		 */
   1297 
   1298 		if (needs_clean) {
   1299 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1300 			wasclean = false;
   1301 			memset(pgs, 0, sizeof(pgs));
   1302 			pg->flags |= PG_BUSY;
   1303 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1304 
   1305 			/*
   1306 			 * first look backward.
   1307 			 */
   1308 
   1309 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1310 			nback = npages;
   1311 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1312 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1313 			if (nback) {
   1314 				memmove(&pgs[0], &pgs[npages - nback],
   1315 				    nback * sizeof(pgs[0]));
   1316 				if (npages - nback < nback)
   1317 					memset(&pgs[nback], 0,
   1318 					    (npages - nback) * sizeof(pgs[0]));
   1319 				else
   1320 					memset(&pgs[npages - nback], 0,
   1321 					    nback * sizeof(pgs[0]));
   1322 			}
   1323 
   1324 			/*
   1325 			 * then plug in our page of interest.
   1326 			 */
   1327 
   1328 			pgs[nback] = pg;
   1329 
   1330 			/*
   1331 			 * then look forward to fill in the remaining space in
   1332 			 * the array of pages.
   1333 			 */
   1334 
   1335 			npages = maxpages - nback - 1;
   1336 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1337 			    &pgs[nback + 1],
   1338 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1339 			npages += nback + 1;
   1340 		} else {
   1341 			pgs[0] = pg;
   1342 			npages = 1;
   1343 			nback = 0;
   1344 		}
   1345 
   1346 		/*
   1347 		 * apply FREE or DEACTIVATE options if requested.
   1348 		 */
   1349 
   1350 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1351 			uvm_lock_pageq();
   1352 		}
   1353 		for (i = 0; i < npages; i++) {
   1354 			tpg = pgs[i];
   1355 			KASSERT(tpg->uobject == uobj);
   1356 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1357 				pg = tpg;
   1358 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1359 				continue;
   1360 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1361 				(void) pmap_clear_reference(tpg);
   1362 				uvm_pagedeactivate(tpg);
   1363 			} else if (flags & PGO_FREE) {
   1364 				pmap_page_protect(tpg, VM_PROT_NONE);
   1365 				if (tpg->flags & PG_BUSY) {
   1366 					tpg->flags |= freeflag;
   1367 					if (pagedaemon) {
   1368 						uvmexp.paging++;
   1369 						uvm_pagedequeue(tpg);
   1370 					}
   1371 				} else {
   1372 
   1373 					/*
   1374 					 * ``page is not busy''
   1375 					 * implies that npages is 1
   1376 					 * and needs_clean is false.
   1377 					 */
   1378 
   1379 					nextpg = TAILQ_NEXT(tpg, listq);
   1380 					uvm_pagefree(tpg);
   1381 					if (pagedaemon)
   1382 						uvmexp.pdfreed++;
   1383 				}
   1384 			}
   1385 		}
   1386 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1387 			uvm_unlock_pageq();
   1388 		}
   1389 		if (needs_clean) {
   1390 			modified = true;
   1391 
   1392 			/*
   1393 			 * start the i/o.  if we're traversing by list,
   1394 			 * keep our place in the list with a marker page.
   1395 			 */
   1396 
   1397 			if (by_list) {
   1398 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1399 				    listq);
   1400 			}
   1401 			simple_unlock(slock);
   1402 			error = GOP_WRITE(vp, pgs, npages, flags);
   1403 			simple_lock(slock);
   1404 			if (by_list) {
   1405 				pg = TAILQ_NEXT(&curmp, listq);
   1406 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1407 			}
   1408 			if (error) {
   1409 				break;
   1410 			}
   1411 			if (by_list) {
   1412 				continue;
   1413 			}
   1414 		}
   1415 
   1416 		/*
   1417 		 * find the next page and continue if there was no error.
   1418 		 */
   1419 
   1420 		if (by_list) {
   1421 			if (nextpg) {
   1422 				pg = nextpg;
   1423 				nextpg = NULL;
   1424 			} else {
   1425 				pg = TAILQ_NEXT(pg, listq);
   1426 			}
   1427 		} else {
   1428 			off += (npages - nback) << PAGE_SHIFT;
   1429 			if (off < endoff) {
   1430 				pg = uvm_pagelookup(uobj, off);
   1431 			}
   1432 		}
   1433 	}
   1434 	if (by_list) {
   1435 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1436 		uvm_lwp_rele(l);
   1437 	}
   1438 
   1439 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1440 	    (vp->v_type != VBLK ||
   1441 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1442 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1443 	}
   1444 
   1445 	/*
   1446 	 * if we're cleaning and there was nothing to clean,
   1447 	 * take us off the syncer list.  if we started any i/o
   1448 	 * and we're doing sync i/o, wait for all writes to finish.
   1449 	 */
   1450 
   1451 	s = splbio();
   1452 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1453 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1454 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1455 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1456 			vn_syncer_remove_from_worklist(vp);
   1457 	}
   1458 	splx(s);
   1459 
   1460 #if !defined(DEBUG)
   1461 skip_scan:
   1462 #endif /* !defined(DEBUG) */
   1463 	if (!wasclean && !async) {
   1464 		s = splbio();
   1465 		/*
   1466 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1467 		 *	 but the slot in ltsleep() is taken!
   1468 		 * XXX - try to recover from missed wakeups with a timeout..
   1469 		 *	 must think of something better.
   1470 		 */
   1471 		while (vp->v_numoutput != 0) {
   1472 			vp->v_iflag |= VI_BWAIT;
   1473 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
   1474 			    "genput2", hz);
   1475 			simple_lock(slock);
   1476 		}
   1477 		splx(s);
   1478 	}
   1479 	simple_unlock(slock);
   1480 
   1481 	if (has_trans)
   1482 		fstrans_done(vp->v_mount);
   1483 
   1484 	return (error);
   1485 }
   1486 
   1487 int
   1488 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1489 {
   1490 	off_t off;
   1491 	vaddr_t kva;
   1492 	size_t len;
   1493 	int error;
   1494 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1495 
   1496 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1497 	    vp, pgs, npages, flags);
   1498 
   1499 	off = pgs[0]->offset;
   1500 	kva = uvm_pagermapin(pgs, npages,
   1501 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1502 	len = npages << PAGE_SHIFT;
   1503 
   1504 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1505 			    uvm_aio_biodone);
   1506 
   1507 	return error;
   1508 }
   1509 
   1510 /*
   1511  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1512  * and mapped into kernel memory.  Here we just look up the underlying
   1513  * device block addresses and call the strategy routine.
   1514  */
   1515 
   1516 static int
   1517 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1518     enum uio_rw rw, void (*iodone)(struct buf *))
   1519 {
   1520 	int s, error, run;
   1521 	int fs_bshift, dev_bshift;
   1522 	off_t eof, offset, startoffset;
   1523 	size_t bytes, iobytes, skipbytes;
   1524 	daddr_t lbn, blkno;
   1525 	struct buf *mbp, *bp;
   1526 	struct vnode *devvp;
   1527 	bool async = (flags & PGO_SYNCIO) == 0;
   1528 	bool write = rw == UIO_WRITE;
   1529 	int brw = write ? B_WRITE : B_READ;
   1530 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1531 
   1532 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1533 	    vp, kva, len, flags);
   1534 
   1535 	KASSERT(vp->v_size <= vp->v_writesize);
   1536 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1537 	if (vp->v_type != VBLK) {
   1538 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1539 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1540 	} else {
   1541 		fs_bshift = DEV_BSHIFT;
   1542 		dev_bshift = DEV_BSHIFT;
   1543 	}
   1544 	error = 0;
   1545 	startoffset = off;
   1546 	bytes = MIN(len, eof - startoffset);
   1547 	skipbytes = 0;
   1548 	KASSERT(bytes != 0);
   1549 
   1550 	if (write) {
   1551 		s = splbio();
   1552 		simple_lock(&global_v_numoutput_slock);
   1553 		vp->v_numoutput += 2;
   1554 		simple_unlock(&global_v_numoutput_slock);
   1555 		splx(s);
   1556 	}
   1557 	mbp = getiobuf();
   1558 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1559 	    vp, mbp, vp->v_numoutput, bytes);
   1560 	mbp->b_bufsize = len;
   1561 	mbp->b_data = (void *)kva;
   1562 	mbp->b_resid = mbp->b_bcount = bytes;
   1563 	mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
   1564 	mbp->b_iodone = iodone;
   1565 	mbp->b_vp = vp;
   1566 	if (curlwp == uvm.pagedaemon_lwp)
   1567 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1568 	else if (async)
   1569 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1570 	else
   1571 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1572 
   1573 	bp = NULL;
   1574 	for (offset = startoffset;
   1575 	    bytes > 0;
   1576 	    offset += iobytes, bytes -= iobytes) {
   1577 		lbn = offset >> fs_bshift;
   1578 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1579 		if (error) {
   1580 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1581 			skipbytes += bytes;
   1582 			bytes = 0;
   1583 			break;
   1584 		}
   1585 
   1586 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1587 		    bytes);
   1588 		if (blkno == (daddr_t)-1) {
   1589 			if (!write) {
   1590 				memset((char *)kva + (offset - startoffset), 0,
   1591 				   iobytes);
   1592 			}
   1593 			skipbytes += iobytes;
   1594 			continue;
   1595 		}
   1596 
   1597 		/* if it's really one i/o, don't make a second buf */
   1598 		if (offset == startoffset && iobytes == bytes) {
   1599 			bp = mbp;
   1600 		} else {
   1601 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1602 			    vp, bp, vp->v_numoutput, 0);
   1603 			bp = getiobuf();
   1604 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1605 		}
   1606 		bp->b_lblkno = 0;
   1607 
   1608 		/* adjust physical blkno for partial blocks */
   1609 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1610 		    dev_bshift);
   1611 		UVMHIST_LOG(ubchist,
   1612 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1613 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1614 
   1615 		VOP_STRATEGY(devvp, bp);
   1616 	}
   1617 	if (skipbytes) {
   1618 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1619 	}
   1620 	nestiobuf_done(mbp, skipbytes, error);
   1621 	if (async) {
   1622 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1623 		return (0);
   1624 	}
   1625 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1626 	error = biowait(mbp);
   1627 	s = splbio();
   1628 	(*iodone)(mbp);
   1629 	splx(s);
   1630 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1631 	return (error);
   1632 }
   1633 
   1634 /*
   1635  * VOP_PUTPAGES() for vnodes which never have pages.
   1636  */
   1637 
   1638 int
   1639 genfs_null_putpages(void *v)
   1640 {
   1641 	struct vop_putpages_args /* {
   1642 		struct vnode *a_vp;
   1643 		voff_t a_offlo;
   1644 		voff_t a_offhi;
   1645 		int a_flags;
   1646 	} */ *ap = v;
   1647 	struct vnode *vp = ap->a_vp;
   1648 
   1649 	KASSERT(vp->v_uobj.uo_npages == 0);
   1650 	simple_unlock(&vp->v_interlock);
   1651 	return (0);
   1652 }
   1653 
   1654 void
   1655 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
   1656 {
   1657 	struct genfs_node *gp = VTOG(vp);
   1658 
   1659 	rw_init(&gp->g_glock);
   1660 	gp->g_op = ops;
   1661 }
   1662 
   1663 void
   1664 genfs_node_destroy(struct vnode *vp)
   1665 {
   1666 	struct genfs_node *gp = VTOG(vp);
   1667 
   1668 	rw_destroy(&gp->g_glock);
   1669 }
   1670 
   1671 void
   1672 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1673 {
   1674 	int bsize;
   1675 
   1676 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1677 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1678 }
   1679 
   1680 int
   1681 genfs_compat_getpages(void *v)
   1682 {
   1683 	struct vop_getpages_args /* {
   1684 		struct vnode *a_vp;
   1685 		voff_t a_offset;
   1686 		struct vm_page **a_m;
   1687 		int *a_count;
   1688 		int a_centeridx;
   1689 		vm_prot_t a_access_type;
   1690 		int a_advice;
   1691 		int a_flags;
   1692 	} */ *ap = v;
   1693 
   1694 	off_t origoffset;
   1695 	struct vnode *vp = ap->a_vp;
   1696 	struct uvm_object *uobj = &vp->v_uobj;
   1697 	struct vm_page *pg, **pgs;
   1698 	vaddr_t kva;
   1699 	int i, error, orignpages, npages;
   1700 	struct iovec iov;
   1701 	struct uio uio;
   1702 	kauth_cred_t cred = curlwp->l_cred;
   1703 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1704 
   1705 	error = 0;
   1706 	origoffset = ap->a_offset;
   1707 	orignpages = *ap->a_count;
   1708 	pgs = ap->a_m;
   1709 
   1710 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1711 		vn_syncer_add_to_worklist(vp, filedelay);
   1712 	}
   1713 	if (ap->a_flags & PGO_LOCKED) {
   1714 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1715 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1716 
   1717 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1718 	}
   1719 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1720 		simple_unlock(&uobj->vmobjlock);
   1721 		return (EINVAL);
   1722 	}
   1723 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1724 		simple_unlock(&uobj->vmobjlock);
   1725 		return 0;
   1726 	}
   1727 	npages = orignpages;
   1728 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1729 	simple_unlock(&uobj->vmobjlock);
   1730 	kva = uvm_pagermapin(pgs, npages,
   1731 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1732 	for (i = 0; i < npages; i++) {
   1733 		pg = pgs[i];
   1734 		if ((pg->flags & PG_FAKE) == 0) {
   1735 			continue;
   1736 		}
   1737 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1738 		iov.iov_len = PAGE_SIZE;
   1739 		uio.uio_iov = &iov;
   1740 		uio.uio_iovcnt = 1;
   1741 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1742 		uio.uio_rw = UIO_READ;
   1743 		uio.uio_resid = PAGE_SIZE;
   1744 		UIO_SETUP_SYSSPACE(&uio);
   1745 		/* XXX vn_lock */
   1746 		error = VOP_READ(vp, &uio, 0, cred);
   1747 		if (error) {
   1748 			break;
   1749 		}
   1750 		if (uio.uio_resid) {
   1751 			memset(iov.iov_base, 0, uio.uio_resid);
   1752 		}
   1753 	}
   1754 	uvm_pagermapout(kva, npages);
   1755 	simple_lock(&uobj->vmobjlock);
   1756 	uvm_lock_pageq();
   1757 	for (i = 0; i < npages; i++) {
   1758 		pg = pgs[i];
   1759 		if (error && (pg->flags & PG_FAKE) != 0) {
   1760 			pg->flags |= PG_RELEASED;
   1761 		} else {
   1762 			pmap_clear_modify(pg);
   1763 			uvm_pageactivate(pg);
   1764 		}
   1765 	}
   1766 	if (error) {
   1767 		uvm_page_unbusy(pgs, npages);
   1768 	}
   1769 	uvm_unlock_pageq();
   1770 	simple_unlock(&uobj->vmobjlock);
   1771 	return (error);
   1772 }
   1773 
   1774 int
   1775 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1776     int flags)
   1777 {
   1778 	off_t offset;
   1779 	struct iovec iov;
   1780 	struct uio uio;
   1781 	kauth_cred_t cred = curlwp->l_cred;
   1782 	struct buf *bp;
   1783 	vaddr_t kva;
   1784 	int s, error;
   1785 
   1786 	offset = pgs[0]->offset;
   1787 	kva = uvm_pagermapin(pgs, npages,
   1788 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1789 
   1790 	iov.iov_base = (void *)kva;
   1791 	iov.iov_len = npages << PAGE_SHIFT;
   1792 	uio.uio_iov = &iov;
   1793 	uio.uio_iovcnt = 1;
   1794 	uio.uio_offset = offset;
   1795 	uio.uio_rw = UIO_WRITE;
   1796 	uio.uio_resid = npages << PAGE_SHIFT;
   1797 	UIO_SETUP_SYSSPACE(&uio);
   1798 	/* XXX vn_lock */
   1799 	error = VOP_WRITE(vp, &uio, 0, cred);
   1800 
   1801 	s = splbio();
   1802 	V_INCR_NUMOUTPUT(vp);
   1803 	splx(s);
   1804 
   1805 	bp = getiobuf();
   1806 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1807 	bp->b_vp = vp;
   1808 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1809 	bp->b_data = (char *)kva;
   1810 	bp->b_bcount = npages << PAGE_SHIFT;
   1811 	bp->b_bufsize = npages << PAGE_SHIFT;
   1812 	bp->b_resid = 0;
   1813 	bp->b_error = error;
   1814 	uvm_aio_aiodone(bp);
   1815 	return (error);
   1816 }
   1817 
   1818 /*
   1819  * Process a uio using direct I/O.  If we reach a part of the request
   1820  * which cannot be processed in this fashion for some reason, just return.
   1821  * The caller must handle some additional part of the request using
   1822  * buffered I/O before trying direct I/O again.
   1823  */
   1824 
   1825 void
   1826 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1827 {
   1828 	struct vmspace *vs;
   1829 	struct iovec *iov;
   1830 	vaddr_t va;
   1831 	size_t len;
   1832 	const int mask = DEV_BSIZE - 1;
   1833 	int error;
   1834 
   1835 	/*
   1836 	 * We only support direct I/O to user space for now.
   1837 	 */
   1838 
   1839 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1840 		return;
   1841 	}
   1842 
   1843 	/*
   1844 	 * If the vnode is mapped, we would need to get the getpages lock
   1845 	 * to stabilize the bmap, but then we would get into trouble whil e
   1846 	 * locking the pages if the pages belong to this same vnode (or a
   1847 	 * multi-vnode cascade to the same effect).  Just fall back to
   1848 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1849 	 */
   1850 
   1851 	if (vp->v_vflag & VV_MAPPED) {
   1852 		return;
   1853 	}
   1854 
   1855 	/*
   1856 	 * Do as much of the uio as possible with direct I/O.
   1857 	 */
   1858 
   1859 	vs = uio->uio_vmspace;
   1860 	while (uio->uio_resid) {
   1861 		iov = uio->uio_iov;
   1862 		if (iov->iov_len == 0) {
   1863 			uio->uio_iov++;
   1864 			uio->uio_iovcnt--;
   1865 			continue;
   1866 		}
   1867 		va = (vaddr_t)iov->iov_base;
   1868 		len = MIN(iov->iov_len, genfs_maxdio);
   1869 		len &= ~mask;
   1870 
   1871 		/*
   1872 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1873 		 * the current EOF, then fall back to buffered I/O.
   1874 		 */
   1875 
   1876 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1877 			return;
   1878 		}
   1879 
   1880 		/*
   1881 		 * Check alignment.  The file offset must be at least
   1882 		 * sector-aligned.  The exact constraint on memory alignment
   1883 		 * is very hardware-dependent, but requiring sector-aligned
   1884 		 * addresses there too is safe.
   1885 		 */
   1886 
   1887 		if (uio->uio_offset & mask || va & mask) {
   1888 			return;
   1889 		}
   1890 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1891 					  uio->uio_rw);
   1892 		if (error) {
   1893 			break;
   1894 		}
   1895 		iov->iov_base = (char *)iov->iov_base + len;
   1896 		iov->iov_len -= len;
   1897 		uio->uio_offset += len;
   1898 		uio->uio_resid -= len;
   1899 	}
   1900 }
   1901 
   1902 /*
   1903  * Iodone routine for direct I/O.  We don't do much here since the request is
   1904  * always synchronous, so the caller will do most of the work after biowait().
   1905  */
   1906 
   1907 static void
   1908 genfs_dio_iodone(struct buf *bp)
   1909 {
   1910 	int s;
   1911 
   1912 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1913 	s = splbio();
   1914 	if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
   1915 		vwakeup(bp);
   1916 	}
   1917 	putiobuf(bp);
   1918 	splx(s);
   1919 }
   1920 
   1921 /*
   1922  * Process one chunk of a direct I/O request.
   1923  */
   1924 
   1925 static int
   1926 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1927     off_t off, enum uio_rw rw)
   1928 {
   1929 	struct vm_map *map;
   1930 	struct pmap *upm, *kpm;
   1931 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1932 	off_t spoff, epoff;
   1933 	vaddr_t kva, puva;
   1934 	paddr_t pa;
   1935 	vm_prot_t prot;
   1936 	int error, rv, poff, koff;
   1937 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
   1938 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1939 
   1940 	/*
   1941 	 * For writes, verify that this range of the file already has fully
   1942 	 * allocated backing store.  If there are any holes, just punt and
   1943 	 * make the caller take the buffered write path.
   1944 	 */
   1945 
   1946 	if (rw == UIO_WRITE) {
   1947 		daddr_t lbn, elbn, blkno;
   1948 		int bsize, bshift, run;
   1949 
   1950 		bshift = vp->v_mount->mnt_fs_bshift;
   1951 		bsize = 1 << bshift;
   1952 		lbn = off >> bshift;
   1953 		elbn = (off + len + bsize - 1) >> bshift;
   1954 		while (lbn < elbn) {
   1955 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1956 			if (error) {
   1957 				return error;
   1958 			}
   1959 			if (blkno == (daddr_t)-1) {
   1960 				return ENOSPC;
   1961 			}
   1962 			lbn += 1 + run;
   1963 		}
   1964 	}
   1965 
   1966 	/*
   1967 	 * Flush any cached pages for parts of the file that we're about to
   1968 	 * access.  If we're writing, invalidate pages as well.
   1969 	 */
   1970 
   1971 	spoff = trunc_page(off);
   1972 	epoff = round_page(off + len);
   1973 	simple_lock(&vp->v_interlock);
   1974 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1975 	if (error) {
   1976 		return error;
   1977 	}
   1978 
   1979 	/*
   1980 	 * Wire the user pages and remap them into kernel memory.
   1981 	 */
   1982 
   1983 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1984 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1985 	if (error) {
   1986 		return error;
   1987 	}
   1988 
   1989 	map = &vs->vm_map;
   1990 	upm = vm_map_pmap(map);
   1991 	kpm = vm_map_pmap(kernel_map);
   1992 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1993 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1994 	puva = trunc_page(uva);
   1995 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1996 		rv = pmap_extract(upm, puva + poff, &pa);
   1997 		KASSERT(rv);
   1998 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1999 	}
   2000 	pmap_update(kpm);
   2001 
   2002 	/*
   2003 	 * Do the I/O.
   2004 	 */
   2005 
   2006 	koff = uva - trunc_page(uva);
   2007 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2008 			    genfs_dio_iodone);
   2009 
   2010 	/*
   2011 	 * Tear down the kernel mapping.
   2012 	 */
   2013 
   2014 	pmap_remove(kpm, kva, kva + klen);
   2015 	pmap_update(kpm);
   2016 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2017 
   2018 	/*
   2019 	 * Unwire the user pages.
   2020 	 */
   2021 
   2022 	uvm_vsunlock(vs, (void *)uva, len);
   2023 	return error;
   2024 }
   2025 
   2026 
   2027 static void
   2028 filt_genfsdetach(struct knote *kn)
   2029 {
   2030 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   2031 
   2032 	/* XXXLUKEM lock the struct? */
   2033 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   2034 }
   2035 
   2036 static int
   2037 filt_genfsread(struct knote *kn, long hint)
   2038 {
   2039 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   2040 
   2041 	/*
   2042 	 * filesystem is gone, so set the EOF flag and schedule
   2043 	 * the knote for deletion.
   2044 	 */
   2045 	if (hint == NOTE_REVOKE) {
   2046 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   2047 		return (1);
   2048 	}
   2049 
   2050 	/* XXXLUKEM lock the struct? */
   2051 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   2052         return (kn->kn_data != 0);
   2053 }
   2054 
   2055 static int
   2056 filt_genfsvnode(struct knote *kn, long hint)
   2057 {
   2058 
   2059 	if (kn->kn_sfflags & hint)
   2060 		kn->kn_fflags |= hint;
   2061 	if (hint == NOTE_REVOKE) {
   2062 		kn->kn_flags |= EV_EOF;
   2063 		return (1);
   2064 	}
   2065 	return (kn->kn_fflags != 0);
   2066 }
   2067 
   2068 static const struct filterops genfsread_filtops =
   2069 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   2070 static const struct filterops genfsvnode_filtops =
   2071 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   2072 
   2073 int
   2074 genfs_kqfilter(void *v)
   2075 {
   2076 	struct vop_kqfilter_args /* {
   2077 		struct vnode	*a_vp;
   2078 		struct knote	*a_kn;
   2079 	} */ *ap = v;
   2080 	struct vnode *vp;
   2081 	struct knote *kn;
   2082 
   2083 	vp = ap->a_vp;
   2084 	kn = ap->a_kn;
   2085 	switch (kn->kn_filter) {
   2086 	case EVFILT_READ:
   2087 		kn->kn_fop = &genfsread_filtops;
   2088 		break;
   2089 	case EVFILT_VNODE:
   2090 		kn->kn_fop = &genfsvnode_filtops;
   2091 		break;
   2092 	default:
   2093 		return (1);
   2094 	}
   2095 
   2096 	kn->kn_hook = vp;
   2097 
   2098 	/* XXXLUKEM lock the struct? */
   2099 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   2100 
   2101 	return (0);
   2102 }
   2103 
   2104 void
   2105 genfs_node_wrlock(struct vnode *vp)
   2106 {
   2107 	struct genfs_node *gp = VTOG(vp);
   2108 
   2109 	rw_enter(&gp->g_glock, RW_WRITER);
   2110 }
   2111 
   2112 void
   2113 genfs_node_rdlock(struct vnode *vp)
   2114 {
   2115 	struct genfs_node *gp = VTOG(vp);
   2116 
   2117 	rw_enter(&gp->g_glock, RW_READER);
   2118 }
   2119 
   2120 void
   2121 genfs_node_unlock(struct vnode *vp)
   2122 {
   2123 	struct genfs_node *gp = VTOG(vp);
   2124 
   2125 	rw_exit(&gp->g_glock);
   2126 }
   2127