genfs_vnops.c revision 1.29 1 /* $NetBSD: genfs_vnops.c,v 1.29 2001/02/18 15:03:42 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include "opt_nfsserver.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/poll.h>
49
50 #include <miscfs/genfs/genfs.h>
51 #include <miscfs/specfs/specdev.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55
56 #ifdef NFSSERVER
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs.h>
60 #include <nfs/nqnfs.h>
61 #include <nfs/nfs_var.h>
62 #endif
63
64 int
65 genfs_poll(v)
66 void *v;
67 {
68 struct vop_poll_args /* {
69 struct vnode *a_vp;
70 int a_events;
71 struct proc *a_p;
72 } */ *ap = v;
73
74 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
75 }
76
77 int
78 genfs_fsync(v)
79 void *v;
80 {
81 struct vop_fsync_args /* {
82 struct vnode *a_vp;
83 struct ucred *a_cred;
84 int a_flags;
85 off_t offlo;
86 off_t offhi;
87 struct proc *a_p;
88 } */ *ap = v;
89 struct vnode *vp = ap->a_vp;
90 int wait;
91
92 wait = (ap->a_flags & FSYNC_WAIT) != 0;
93 vflushbuf(vp, wait);
94 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
95 return (0);
96 else
97 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
98 }
99
100 int
101 genfs_seek(v)
102 void *v;
103 {
104 struct vop_seek_args /* {
105 struct vnode *a_vp;
106 off_t a_oldoff;
107 off_t a_newoff;
108 struct ucred *a_ucred;
109 } */ *ap = v;
110
111 if (ap->a_newoff < 0)
112 return (EINVAL);
113
114 return (0);
115 }
116
117 int
118 genfs_abortop(v)
119 void *v;
120 {
121 struct vop_abortop_args /* {
122 struct vnode *a_dvp;
123 struct componentname *a_cnp;
124 } */ *ap = v;
125
126 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
127 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
128 return (0);
129 }
130
131 int
132 genfs_fcntl(v)
133 void *v;
134 {
135 struct vop_fcntl_args /* {
136 struct vnode *a_vp;
137 u_int a_command;
138 caddr_t a_data;
139 int a_fflag;
140 struct ucred *a_cred;
141 struct proc *a_p;
142 } */ *ap = v;
143
144 if (ap->a_command == F_SETFL)
145 return (0);
146 else
147 return (EOPNOTSUPP);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_badop(v)
153 void *v;
154 {
155
156 panic("genfs: bad op");
157 }
158
159 /*ARGSUSED*/
160 int
161 genfs_nullop(v)
162 void *v;
163 {
164
165 return (0);
166 }
167
168 /*ARGSUSED*/
169 int
170 genfs_einval(v)
171 void *v;
172 {
173
174 return (EINVAL);
175 }
176
177 /*ARGSUSED*/
178 int
179 genfs_eopnotsupp(v)
180 void *v;
181 {
182
183 return (EOPNOTSUPP);
184 }
185
186 /*
187 * Called when an fs doesn't support a particular vop but the vop needs to
188 * vrele, vput, or vunlock passed in vnodes.
189 */
190 int
191 genfs_eopnotsupp_rele(v)
192 void *v;
193 {
194 struct vop_generic_args /*
195 struct vnodeop_desc *a_desc;
196 / * other random data follows, presumably * /
197 } */ *ap = v;
198 struct vnodeop_desc *desc = ap->a_desc;
199 struct vnode *vp;
200 int flags, i, j, offset;
201
202 flags = desc->vdesc_flags;
203 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
204 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
205 break; /* stop at end of list */
206 if ((j = flags & VDESC_VP0_WILLPUT)) {
207 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
208 switch (j) {
209 case VDESC_VP0_WILLPUT:
210 vput(vp);
211 break;
212 case VDESC_VP0_WILLUNLOCK:
213 VOP_UNLOCK(vp, 0);
214 break;
215 case VDESC_VP0_WILLRELE:
216 vrele(vp);
217 break;
218 }
219 }
220 }
221
222 return (EOPNOTSUPP);
223 }
224
225 /*ARGSUSED*/
226 int
227 genfs_ebadf(v)
228 void *v;
229 {
230
231 return (EBADF);
232 }
233
234 /* ARGSUSED */
235 int
236 genfs_enoioctl(v)
237 void *v;
238 {
239
240 return (ENOTTY);
241 }
242
243
244 /*
245 * Eliminate all activity associated with the requested vnode
246 * and with all vnodes aliased to the requested vnode.
247 */
248 int
249 genfs_revoke(v)
250 void *v;
251 {
252 struct vop_revoke_args /* {
253 struct vnode *a_vp;
254 int a_flags;
255 } */ *ap = v;
256 struct vnode *vp, *vq;
257 struct proc *p = curproc; /* XXX */
258
259 #ifdef DIAGNOSTIC
260 if ((ap->a_flags & REVOKEALL) == 0)
261 panic("genfs_revoke: not revokeall");
262 #endif
263
264 vp = ap->a_vp;
265 simple_lock(&vp->v_interlock);
266
267 if (vp->v_flag & VALIASED) {
268 /*
269 * If a vgone (or vclean) is already in progress,
270 * wait until it is done and return.
271 */
272 if (vp->v_flag & VXLOCK) {
273 vp->v_flag |= VXWANT;
274 simple_unlock(&vp->v_interlock);
275 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
276 return (0);
277 }
278 /*
279 * Ensure that vp will not be vgone'd while we
280 * are eliminating its aliases.
281 */
282 vp->v_flag |= VXLOCK;
283 simple_unlock(&vp->v_interlock);
284 while (vp->v_flag & VALIASED) {
285 simple_lock(&spechash_slock);
286 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
287 if (vq->v_rdev != vp->v_rdev ||
288 vq->v_type != vp->v_type || vp == vq)
289 continue;
290 simple_unlock(&spechash_slock);
291 vgone(vq);
292 break;
293 }
294 if (vq == NULLVP)
295 simple_unlock(&spechash_slock);
296 }
297 /*
298 * Remove the lock so that vgone below will
299 * really eliminate the vnode after which time
300 * vgone will awaken any sleepers.
301 */
302 simple_lock(&vp->v_interlock);
303 vp->v_flag &= ~VXLOCK;
304 }
305 vgonel(vp, p);
306 return (0);
307 }
308
309 /*
310 * Lock the node.
311 */
312 int
313 genfs_lock(v)
314 void *v;
315 {
316 struct vop_lock_args /* {
317 struct vnode *a_vp;
318 int a_flags;
319 } */ *ap = v;
320 struct vnode *vp = ap->a_vp;
321
322 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
323 }
324
325 /*
326 * Unlock the node.
327 */
328 int
329 genfs_unlock(v)
330 void *v;
331 {
332 struct vop_unlock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
339 &vp->v_interlock));
340 }
341
342 /*
343 * Return whether or not the node is locked.
344 */
345 int
346 genfs_islocked(v)
347 void *v;
348 {
349 struct vop_islocked_args /* {
350 struct vnode *a_vp;
351 } */ *ap = v;
352 struct vnode *vp = ap->a_vp;
353
354 return (lockstatus(&vp->v_lock));
355 }
356
357 /*
358 * Stubs to use when there is no locking to be done on the underlying object.
359 */
360 int
361 genfs_nolock(v)
362 void *v;
363 {
364 struct vop_lock_args /* {
365 struct vnode *a_vp;
366 int a_flags;
367 struct proc *a_p;
368 } */ *ap = v;
369
370 /*
371 * Since we are not using the lock manager, we must clear
372 * the interlock here.
373 */
374 if (ap->a_flags & LK_INTERLOCK)
375 simple_unlock(&ap->a_vp->v_interlock);
376 return (0);
377 }
378
379 int
380 genfs_nounlock(v)
381 void *v;
382 {
383 return (0);
384 }
385
386 int
387 genfs_noislocked(v)
388 void *v;
389 {
390 return (0);
391 }
392
393 /*
394 * Local lease check for NFS servers. Just set up args and let
395 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
396 * this is a null operation.
397 */
398 int
399 genfs_lease_check(v)
400 void *v;
401 {
402 #ifdef NFSSERVER
403 struct vop_lease_args /* {
404 struct vnode *a_vp;
405 struct proc *a_p;
406 struct ucred *a_cred;
407 int a_flag;
408 } */ *ap = v;
409 u_int32_t duration = 0;
410 int cache;
411 u_quad_t frev;
412
413 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
414 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
415 return (0);
416 #else
417 return (0);
418 #endif /* NFSSERVER */
419 }
420
421 /*
422 * generic VM getpages routine.
423 * Return PG_BUSY pages for the given range,
424 * reading from backing store if necessary.
425 */
426
427 int
428 genfs_getpages(v)
429 void *v;
430 {
431 struct vop_getpages_args /* {
432 struct vnode *a_vp;
433 voff_t a_offset;
434 vm_page_t *a_m;
435 int *a_count;
436 int a_centeridx;
437 vm_prot_t a_access_type;
438 int a_advice;
439 int a_flags;
440 } */ *ap = v;
441
442 off_t newsize, eof;
443 off_t offset, origoffset, startoffset, endoffset, raoffset;
444 daddr_t lbn, blkno;
445 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
446 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
447 int flags = ap->a_flags;
448 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
449 vaddr_t kva;
450 struct buf *bp, *mbp;
451 struct vnode *vp = ap->a_vp;
452 struct uvm_object *uobj = &vp->v_uvm.u_obj;
453 struct vm_page *pgs[16]; /* XXXUBC 16 */
454 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
455 boolean_t async = (flags & PGO_SYNCIO) == 0;
456 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
457 boolean_t sawhole = FALSE;
458 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
459
460 /* XXXUBC temp limit */
461 if (*ap->a_count > 16) {
462 return EINVAL;
463 }
464
465 error = 0;
466 origoffset = ap->a_offset;
467 orignpages = *ap->a_count;
468 if (flags & PGO_PASTEOF) {
469 newsize = MAX(vp->v_uvm.u_size,
470 origoffset + (orignpages << PAGE_SHIFT));
471 } else {
472 newsize = vp->v_uvm.u_size;
473 }
474 error = VOP_SIZE(vp, newsize, &eof);
475 if (error) {
476 return error;
477 }
478
479 #ifdef DIAGNOSTIC
480 if (ap->a_centeridx < 0 || ap->a_centeridx > *ap->a_count) {
481 panic("genfs_getpages: centeridx %d out of range",
482 ap->a_centeridx);
483 }
484 if (origoffset & (PAGE_SIZE - 1) || origoffset < 0) {
485 panic("genfs_getpages: offset 0x%x", (int)ap->a_offset);
486 }
487 if (*ap->a_count < 0) {
488 panic("genfs_getpages: count %d < 0", *ap->a_count);
489 }
490 #endif
491
492 /*
493 * Bounds-check the request.
494 */
495
496 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= eof &&
497 (flags & PGO_PASTEOF) == 0) {
498 if ((flags & PGO_LOCKED) == 0) {
499 simple_unlock(&uobj->vmobjlock);
500 }
501 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
502 origoffset, *ap->a_count, eof,0);
503 return EINVAL;
504 }
505
506 /*
507 * For PGO_LOCKED requests, just return whatever's in memory.
508 */
509
510 if (flags & PGO_LOCKED) {
511 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
512 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
513
514 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
515 }
516
517 /* vnode is VOP_LOCKed, uobj is locked */
518
519 if (write && (vp->v_flag & VONWORKLST) == 0) {
520 vn_syncer_add_to_worklist(vp, filedelay);
521 }
522
523 /*
524 * find the requested pages and make some simple checks.
525 * leave space in the page array for a whole block.
526 */
527
528 fs_bshift = vp->v_mount->mnt_fs_bshift;
529 fs_bsize = 1 << fs_bshift;
530 dev_bshift = vp->v_mount->mnt_dev_bshift;
531 dev_bsize = 1 << dev_bshift;
532 KASSERT((eof & (dev_bsize - 1)) == 0);
533
534 if ((flags & PGO_PASTEOF) == 0) {
535 orignpages = MIN(orignpages,
536 round_page(eof - origoffset) >> PAGE_SHIFT);
537 }
538 npages = orignpages;
539 startoffset = origoffset & ~(fs_bsize - 1);
540 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
541 + fs_bsize - 1) & ~(fs_bsize - 1));
542 if ((flags & PGO_PASTEOF) == 0) {
543 endoffset = MIN(endoffset, round_page(eof));
544 }
545 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
546
547 memset(pgs, 0, sizeof(pgs));
548 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
549
550 /*
551 * if PGO_OVERWRITE is set, don't bother reading the pages.
552 * PGO_OVERWRITE also means that the caller guarantees
553 * that the pages already have backing store allocated.
554 */
555
556 if (flags & PGO_OVERWRITE) {
557 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
558
559 for (i = 0; i < npages; i++) {
560 struct vm_page *pg = pgs[ridx + i];
561
562 if (pg->flags & PG_FAKE) {
563 uvm_pagezero(pg);
564 pg->flags &= ~(PG_FAKE);
565 }
566 pg->flags &= ~(PG_RDONLY);
567 }
568 npages += ridx;
569 goto out;
570 }
571
572 /*
573 * if the pages are already resident, just return them.
574 */
575
576 for (i = 0; i < npages; i++) {
577 struct vm_page *pg = pgs[ridx + i];
578
579 if ((pg->flags & PG_FAKE) ||
580 (write && (pg->flags & PG_RDONLY))) {
581 break;
582 }
583 }
584 if (i == npages) {
585 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
586 raoffset = origoffset + (orignpages << PAGE_SHIFT);
587 npages += ridx;
588 goto raout;
589 }
590
591 /*
592 * the page wasn't resident and we're not overwriting,
593 * so we're going to have to do some i/o.
594 * find any additional pages needed to cover the expanded range.
595 */
596
597 if (startoffset != origoffset) {
598
599 /*
600 * XXXUBC we need to avoid deadlocks caused by locking
601 * additional pages at lower offsets than pages we
602 * already have locked. for now, unlock them all and
603 * start over.
604 */
605
606 for (i = 0; i < npages; i++) {
607 struct vm_page *pg = pgs[ridx + i];
608
609 if (pg->flags & PG_FAKE) {
610 pg->flags |= PG_RELEASED;
611 }
612 }
613 uvm_page_unbusy(&pgs[ridx], npages);
614 memset(pgs, 0, sizeof(pgs));
615
616 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
617 startoffset, endoffset, 0,0);
618 npages = (endoffset - startoffset) >> PAGE_SHIFT;
619 npgs = npages;
620 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
621 }
622 simple_unlock(&uobj->vmobjlock);
623
624 /*
625 * read the desired page(s).
626 */
627
628 totalbytes = npages << PAGE_SHIFT;
629 bytes = MIN(totalbytes, eof - startoffset);
630 tailbytes = totalbytes - bytes;
631 skipbytes = 0;
632
633 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
634 UVMPAGER_MAPIN_READ);
635
636 s = splbio();
637 mbp = pool_get(&bufpool, PR_WAITOK);
638 splx(s);
639 mbp->b_bufsize = totalbytes;
640 mbp->b_data = (void *)kva;
641 mbp->b_resid = mbp->b_bcount = bytes;
642 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
643 mbp->b_iodone = uvm_aio_biodone;
644 mbp->b_vp = vp;
645 LIST_INIT(&mbp->b_dep);
646
647 /*
648 * if EOF is in the middle of the last page, zero the part past EOF.
649 */
650
651 if (tailbytes > 0 && (pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE)) {
652 memset((void *)(kva + bytes), 0, tailbytes);
653 }
654
655 /*
656 * now loop over the pages, reading as needed.
657 */
658
659 if (write) {
660 lockmgr(&vp->v_glock, LK_EXCLUSIVE, NULL);
661 } else {
662 lockmgr(&vp->v_glock, LK_SHARED, NULL);
663 }
664
665 bp = NULL;
666 for (offset = startoffset;
667 bytes > 0;
668 offset += iobytes, bytes -= iobytes) {
669
670 /*
671 * skip pages which don't need to be read.
672 */
673
674 pidx = (offset - startoffset) >> PAGE_SHIFT;
675 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
676 size_t b;
677
678 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
679 b = MIN(PAGE_SIZE, bytes);
680 offset += b;
681 bytes -= b;
682 skipbytes += b;
683 pidx++;
684 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
685 offset, 0,0,0);
686 if (bytes == 0) {
687 goto loopdone;
688 }
689 }
690
691 /*
692 * bmap the file to find out the blkno to read from and
693 * how much we can read in one i/o. if bmap returns an error,
694 * skip the rest of the top-level i/o.
695 */
696
697 lbn = offset >> fs_bshift;
698 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
699 if (error) {
700 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
701 lbn, error,0,0);
702 skipbytes += bytes;
703 goto loopdone;
704 }
705
706 /*
707 * see how many pages can be read with this i/o.
708 * reduce the i/o size if necessary to avoid
709 * overwriting pages with valid data.
710 */
711
712 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
713 bytes);
714 if (offset + iobytes > round_page(offset)) {
715 pcount = 1;
716 while (pidx + pcount < npages &&
717 pgs[pidx + pcount]->flags & PG_FAKE) {
718 pcount++;
719 }
720 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
721 (offset - trunc_page(offset)));
722 }
723
724 /*
725 * if this block isn't allocated, zero it instead of reading it.
726 * if this is a read access, mark the pages we zeroed PG_RDONLY.
727 */
728
729 if (blkno < 0) {
730 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
731
732 sawhole = TRUE;
733 memset((char *)kva + (offset - startoffset), 0,
734 iobytes);
735 skipbytes += iobytes;
736
737 if (!write) {
738 int holepages =
739 (round_page(offset + iobytes) -
740 trunc_page(offset)) >> PAGE_SHIFT;
741 for (i = 0; i < holepages; i++) {
742 pgs[pidx + i]->flags |= PG_RDONLY;
743 }
744 }
745 continue;
746 }
747
748 /*
749 * allocate a sub-buf for this piece of the i/o
750 * (or just use mbp if there's only 1 piece),
751 * and start it going.
752 */
753
754 if (offset == startoffset && iobytes == bytes) {
755 bp = mbp;
756 } else {
757 s = splbio();
758 bp = pool_get(&bufpool, PR_WAITOK);
759 splx(s);
760 bp->b_data = (char *)kva + offset - startoffset;
761 bp->b_resid = bp->b_bcount = iobytes;
762 bp->b_flags = B_BUSY|B_READ|B_CALL;
763 bp->b_iodone = uvm_aio_biodone1;
764 bp->b_vp = vp;
765 LIST_INIT(&bp->b_dep);
766 }
767 bp->b_lblkno = 0;
768 bp->b_private = mbp;
769
770 /* adjust physical blkno for partial blocks */
771 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
772 dev_bshift);
773
774 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
775 bp, offset, iobytes, bp->b_blkno);
776
777 VOP_STRATEGY(bp);
778 }
779
780 loopdone:
781 if (skipbytes) {
782 s = splbio();
783 if (error) {
784 mbp->b_flags |= B_ERROR;
785 mbp->b_error = error;
786 }
787 mbp->b_resid -= skipbytes;
788 if (mbp->b_resid == 0) {
789 biodone(mbp);
790 }
791 splx(s);
792 }
793
794 if (async) {
795 UVMHIST_LOG(ubchist, "returning PEND",0,0,0,0);
796 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
797 return EINPROGRESS;
798 }
799 if (bp != NULL) {
800 error = biowait(mbp);
801 }
802 s = splbio();
803 pool_put(&bufpool, mbp);
804 splx(s);
805 uvm_pagermapout(kva, npages);
806 raoffset = startoffset + totalbytes;
807
808 /*
809 * if this we encountered a hole then we have to do a little more work.
810 * for read faults, we marked the page PG_RDONLY so that future
811 * write accesses to the page will fault again.
812 * for write faults, we must make sure that the backing store for
813 * the page is completely allocated while the pages are locked.
814 */
815
816 if (error == 0 && sawhole && write) {
817 error = VOP_BALLOCN(vp, startoffset, npages << PAGE_SHIFT,
818 cred, 0);
819 if (error) {
820 UVMHIST_LOG(ubchist, "balloc lbn 0x%x -> %d",
821 lbn, error,0,0);
822 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
823 simple_lock(&uobj->vmobjlock);
824 goto out;
825 }
826 }
827 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
828 simple_lock(&uobj->vmobjlock);
829
830 /*
831 * see if we want to start any readahead.
832 * XXXUBC for now, just read the next 128k on 64k boundaries.
833 * this is pretty nonsensical, but it is 50% faster than reading
834 * just the next 64k.
835 */
836
837 raout:
838 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
839 PAGE_SHIFT <= 16) {
840 int racount;
841
842 racount = 1 << (16 - PAGE_SHIFT);
843 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
844 VM_PROT_READ, 0, 0);
845 simple_lock(&uobj->vmobjlock);
846
847 racount = 1 << (16 - PAGE_SHIFT);
848 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
849 VM_PROT_READ, 0, 0);
850 simple_lock(&uobj->vmobjlock);
851 }
852
853 /*
854 * we're almost done! release the pages...
855 * for errors, we free the pages.
856 * otherwise we activate them and mark them as valid and clean.
857 * also, unbusy pages that were not actually requested.
858 */
859
860 out:
861 if (error) {
862 uvm_lock_pageq();
863 for (i = 0; i < npages; i++) {
864 if (pgs[i] == NULL) {
865 continue;
866 }
867 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
868 pgs[i], pgs[i]->flags, 0,0);
869 if (pgs[i]->flags & PG_WANTED) {
870 wakeup(pgs[i]);
871 }
872 if (pgs[i]->flags & PG_RELEASED) {
873 uvm_unlock_pageq();
874 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
875 uvm_lock_pageq();
876 continue;
877 }
878 if (pgs[i]->flags & PG_FAKE) {
879 uvm_pagefree(pgs[i]);
880 continue;
881 }
882 uvm_pageactivate(pgs[i]);
883 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
884 UVM_PAGE_OWN(pgs[i], NULL);
885 }
886 uvm_unlock_pageq();
887 simple_unlock(&uobj->vmobjlock);
888 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
889 return error;
890 }
891
892 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
893 uvm_lock_pageq();
894 for (i = 0; i < npages; i++) {
895 if (pgs[i] == NULL) {
896 continue;
897 }
898 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
899 pgs[i], pgs[i]->flags, 0,0);
900 if (pgs[i]->flags & PG_FAKE) {
901 UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x",
902 pgs[i], pgs[i]->offset,0,0);
903 pgs[i]->flags &= ~(PG_FAKE);
904 pmap_clear_modify(pgs[i]);
905 pmap_clear_reference(pgs[i]);
906 }
907 if (write) {
908 pgs[i]->flags &= ~(PG_RDONLY);
909 }
910 if (i < ridx || i >= ridx + orignpages || async) {
911 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
912 pgs[i], pgs[i]->offset,0,0);
913 if (pgs[i]->flags & PG_WANTED) {
914 wakeup(pgs[i]);
915 }
916 if (pgs[i]->flags & PG_RELEASED) {
917 uvm_unlock_pageq();
918 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
919 uvm_lock_pageq();
920 continue;
921 }
922 uvm_pageactivate(pgs[i]);
923 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
924 UVM_PAGE_OWN(pgs[i], NULL);
925 }
926 }
927 uvm_unlock_pageq();
928 simple_unlock(&uobj->vmobjlock);
929 if (ap->a_m != NULL) {
930 memcpy(ap->a_m, &pgs[ridx],
931 orignpages * sizeof(struct vm_page *));
932 }
933 return 0;
934 }
935
936 /*
937 * generic VM putpages routine.
938 * Write the given range of pages to backing store.
939 */
940
941 int
942 genfs_putpages(v)
943 void *v;
944 {
945 struct vop_putpages_args /* {
946 struct vnode *a_vp;
947 struct vm_page **a_m;
948 int a_count;
949 int a_flags;
950 int *a_rtvals;
951 } */ *ap = v;
952
953 int s, error, npages, run;
954 int fs_bshift, dev_bshift, dev_bsize;
955 vaddr_t kva;
956 off_t eof, offset, startoffset;
957 size_t bytes, iobytes, skipbytes;
958 daddr_t lbn, blkno;
959 struct vm_page *pg;
960 struct buf *mbp, *bp;
961 struct vnode *vp = ap->a_vp;
962 boolean_t async = (ap->a_flags & PGO_SYNCIO) == 0;
963 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
964 UVMHIST_LOG(ubchist, "vp %p offset 0x%x count %d",
965 vp, ap->a_m[0]->offset, ap->a_count, 0);
966
967 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
968
969 error = VOP_SIZE(vp, vp->v_uvm.u_size, &eof);
970 if (error) {
971 return error;
972 }
973
974 error = 0;
975 npages = ap->a_count;
976 fs_bshift = vp->v_mount->mnt_fs_bshift;
977 dev_bshift = vp->v_mount->mnt_dev_bshift;
978 dev_bsize = 1 << dev_bshift;
979 KASSERT((eof & (dev_bsize - 1)) == 0);
980
981 pg = ap->a_m[0];
982 startoffset = pg->offset;
983 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
984 skipbytes = 0;
985 KASSERT(bytes != 0);
986
987 kva = uvm_pagermapin(ap->a_m, npages, UVMPAGER_MAPIN_WAITOK);
988
989 s = splbio();
990 vp->v_numoutput += 2;
991 mbp = pool_get(&bufpool, PR_WAITOK);
992 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
993 vp, mbp, vp->v_numoutput, bytes);
994 splx(s);
995 mbp->b_bufsize = npages << PAGE_SHIFT;
996 mbp->b_data = (void *)kva;
997 mbp->b_resid = mbp->b_bcount = bytes;
998 mbp->b_flags = B_BUSY|B_WRITE|B_AGE |
999 (async ? B_CALL : 0) |
1000 (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0);
1001 mbp->b_iodone = uvm_aio_biodone;
1002 mbp->b_vp = vp;
1003 LIST_INIT(&mbp->b_dep);
1004
1005 bp = NULL;
1006 for (offset = startoffset;
1007 bytes > 0;
1008 offset += iobytes, bytes -= iobytes) {
1009 lbn = offset >> fs_bshift;
1010 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1011 if (error) {
1012 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1013 skipbytes += bytes;
1014 bytes = 0;
1015 break;
1016 }
1017
1018 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1019 bytes);
1020 if (blkno == (daddr_t)-1) {
1021 skipbytes += iobytes;
1022 continue;
1023 }
1024
1025 /* if it's really one i/o, don't make a second buf */
1026 if (offset == startoffset && iobytes == bytes) {
1027 bp = mbp;
1028 } else {
1029 s = splbio();
1030 vp->v_numoutput++;
1031 bp = pool_get(&bufpool, PR_WAITOK);
1032 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1033 vp, bp, vp->v_numoutput, 0);
1034 splx(s);
1035 bp->b_data = (char *)kva +
1036 (vaddr_t)(offset - pg->offset);
1037 bp->b_resid = bp->b_bcount = iobytes;
1038 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1039 bp->b_iodone = uvm_aio_biodone1;
1040 bp->b_vp = vp;
1041 LIST_INIT(&bp->b_dep);
1042 }
1043 bp->b_lblkno = 0;
1044 bp->b_private = mbp;
1045
1046 /* adjust physical blkno for partial blocks */
1047 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1048 dev_bshift);
1049 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1050 vp, offset, bp->b_bcount, bp->b_blkno);
1051 VOP_STRATEGY(bp);
1052 }
1053 if (skipbytes) {
1054 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1055 s = splbio();
1056 mbp->b_resid -= skipbytes;
1057 if (error) {
1058 mbp->b_flags |= B_ERROR;
1059 mbp->b_error = error;
1060 }
1061 if (mbp->b_resid == 0) {
1062 biodone(mbp);
1063 }
1064 splx(s);
1065 }
1066 if (async) {
1067 UVMHIST_LOG(ubchist, "returning PEND", 0,0,0,0);
1068 return EINPROGRESS;
1069 }
1070 if (bp != NULL) {
1071 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1072 error = biowait(mbp);
1073 }
1074 if (bioops.io_pageiodone) {
1075 (*bioops.io_pageiodone)(mbp);
1076 }
1077 s = splbio();
1078 vwakeup(mbp);
1079 pool_put(&bufpool, mbp);
1080 splx(s);
1081 uvm_pagermapout(kva, npages);
1082 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1083 return error;
1084 }
1085
1086 int
1087 genfs_size(v)
1088 void *v;
1089 {
1090 struct vop_size_args /* {
1091 struct vnode *a_vp;
1092 off_t a_size;
1093 off_t *a_eobp;
1094 } */ *ap = v;
1095 int bsize;
1096
1097 bsize = 1 << ap->a_vp->v_mount->mnt_fs_bshift;
1098 *ap->a_eobp = (ap->a_size + bsize - 1) & ~(bsize - 1);
1099 return 0;
1100 }
1101