genfs_vnops.c revision 1.35 1 /* $NetBSD: genfs_vnops.c,v 1.35 2001/06/14 08:22:14 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include "opt_nfsserver.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/poll.h>
49
50 #include <miscfs/genfs/genfs.h>
51 #include <miscfs/specfs/specdev.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55
56 #ifdef NFSSERVER
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs.h>
60 #include <nfs/nqnfs.h>
61 #include <nfs/nfs_var.h>
62 #endif
63
64 int
65 genfs_poll(v)
66 void *v;
67 {
68 struct vop_poll_args /* {
69 struct vnode *a_vp;
70 int a_events;
71 struct proc *a_p;
72 } */ *ap = v;
73
74 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
75 }
76
77 int
78 genfs_fsync(v)
79 void *v;
80 {
81 struct vop_fsync_args /* {
82 struct vnode *a_vp;
83 struct ucred *a_cred;
84 int a_flags;
85 off_t offlo;
86 off_t offhi;
87 struct proc *a_p;
88 } */ *ap = v;
89 struct vnode *vp = ap->a_vp;
90 int wait;
91
92 wait = (ap->a_flags & FSYNC_WAIT) != 0;
93 vflushbuf(vp, wait);
94 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
95 return (0);
96 else
97 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
98 }
99
100 int
101 genfs_seek(v)
102 void *v;
103 {
104 struct vop_seek_args /* {
105 struct vnode *a_vp;
106 off_t a_oldoff;
107 off_t a_newoff;
108 struct ucred *a_ucred;
109 } */ *ap = v;
110
111 if (ap->a_newoff < 0)
112 return (EINVAL);
113
114 return (0);
115 }
116
117 int
118 genfs_abortop(v)
119 void *v;
120 {
121 struct vop_abortop_args /* {
122 struct vnode *a_dvp;
123 struct componentname *a_cnp;
124 } */ *ap = v;
125
126 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
127 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
128 return (0);
129 }
130
131 int
132 genfs_fcntl(v)
133 void *v;
134 {
135 struct vop_fcntl_args /* {
136 struct vnode *a_vp;
137 u_int a_command;
138 caddr_t a_data;
139 int a_fflag;
140 struct ucred *a_cred;
141 struct proc *a_p;
142 } */ *ap = v;
143
144 if (ap->a_command == F_SETFL)
145 return (0);
146 else
147 return (EOPNOTSUPP);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_badop(v)
153 void *v;
154 {
155
156 panic("genfs: bad op");
157 }
158
159 /*ARGSUSED*/
160 int
161 genfs_nullop(v)
162 void *v;
163 {
164
165 return (0);
166 }
167
168 /*ARGSUSED*/
169 int
170 genfs_einval(v)
171 void *v;
172 {
173
174 return (EINVAL);
175 }
176
177 /*ARGSUSED*/
178 int
179 genfs_eopnotsupp(v)
180 void *v;
181 {
182
183 return (EOPNOTSUPP);
184 }
185
186 /*
187 * Called when an fs doesn't support a particular vop but the vop needs to
188 * vrele, vput, or vunlock passed in vnodes.
189 */
190 int
191 genfs_eopnotsupp_rele(v)
192 void *v;
193 {
194 struct vop_generic_args /*
195 struct vnodeop_desc *a_desc;
196 / * other random data follows, presumably * /
197 } */ *ap = v;
198 struct vnodeop_desc *desc = ap->a_desc;
199 struct vnode *vp;
200 int flags, i, j, offset;
201
202 flags = desc->vdesc_flags;
203 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
204 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
205 break; /* stop at end of list */
206 if ((j = flags & VDESC_VP0_WILLPUT)) {
207 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
208 switch (j) {
209 case VDESC_VP0_WILLPUT:
210 vput(vp);
211 break;
212 case VDESC_VP0_WILLUNLOCK:
213 VOP_UNLOCK(vp, 0);
214 break;
215 case VDESC_VP0_WILLRELE:
216 vrele(vp);
217 break;
218 }
219 }
220 }
221
222 return (EOPNOTSUPP);
223 }
224
225 /*ARGSUSED*/
226 int
227 genfs_ebadf(v)
228 void *v;
229 {
230
231 return (EBADF);
232 }
233
234 /* ARGSUSED */
235 int
236 genfs_enoioctl(v)
237 void *v;
238 {
239
240 return (ENOTTY);
241 }
242
243
244 /*
245 * Eliminate all activity associated with the requested vnode
246 * and with all vnodes aliased to the requested vnode.
247 */
248 int
249 genfs_revoke(v)
250 void *v;
251 {
252 struct vop_revoke_args /* {
253 struct vnode *a_vp;
254 int a_flags;
255 } */ *ap = v;
256 struct vnode *vp, *vq;
257 struct proc *p = curproc; /* XXX */
258
259 #ifdef DIAGNOSTIC
260 if ((ap->a_flags & REVOKEALL) == 0)
261 panic("genfs_revoke: not revokeall");
262 #endif
263
264 vp = ap->a_vp;
265 simple_lock(&vp->v_interlock);
266
267 if (vp->v_flag & VALIASED) {
268 /*
269 * If a vgone (or vclean) is already in progress,
270 * wait until it is done and return.
271 */
272 if (vp->v_flag & VXLOCK) {
273 vp->v_flag |= VXWANT;
274 simple_unlock(&vp->v_interlock);
275 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
276 return (0);
277 }
278 /*
279 * Ensure that vp will not be vgone'd while we
280 * are eliminating its aliases.
281 */
282 vp->v_flag |= VXLOCK;
283 simple_unlock(&vp->v_interlock);
284 while (vp->v_flag & VALIASED) {
285 simple_lock(&spechash_slock);
286 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
287 if (vq->v_rdev != vp->v_rdev ||
288 vq->v_type != vp->v_type || vp == vq)
289 continue;
290 simple_unlock(&spechash_slock);
291 vgone(vq);
292 break;
293 }
294 if (vq == NULLVP)
295 simple_unlock(&spechash_slock);
296 }
297 /*
298 * Remove the lock so that vgone below will
299 * really eliminate the vnode after which time
300 * vgone will awaken any sleepers.
301 */
302 simple_lock(&vp->v_interlock);
303 vp->v_flag &= ~VXLOCK;
304 }
305 vgonel(vp, p);
306 return (0);
307 }
308
309 /*
310 * Lock the node.
311 */
312 int
313 genfs_lock(v)
314 void *v;
315 {
316 struct vop_lock_args /* {
317 struct vnode *a_vp;
318 int a_flags;
319 } */ *ap = v;
320 struct vnode *vp = ap->a_vp;
321
322 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
323 }
324
325 /*
326 * Unlock the node.
327 */
328 int
329 genfs_unlock(v)
330 void *v;
331 {
332 struct vop_unlock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
339 &vp->v_interlock));
340 }
341
342 /*
343 * Return whether or not the node is locked.
344 */
345 int
346 genfs_islocked(v)
347 void *v;
348 {
349 struct vop_islocked_args /* {
350 struct vnode *a_vp;
351 } */ *ap = v;
352 struct vnode *vp = ap->a_vp;
353
354 return (lockstatus(&vp->v_lock));
355 }
356
357 /*
358 * Stubs to use when there is no locking to be done on the underlying object.
359 */
360 int
361 genfs_nolock(v)
362 void *v;
363 {
364 struct vop_lock_args /* {
365 struct vnode *a_vp;
366 int a_flags;
367 struct proc *a_p;
368 } */ *ap = v;
369
370 /*
371 * Since we are not using the lock manager, we must clear
372 * the interlock here.
373 */
374 if (ap->a_flags & LK_INTERLOCK)
375 simple_unlock(&ap->a_vp->v_interlock);
376 return (0);
377 }
378
379 int
380 genfs_nounlock(v)
381 void *v;
382 {
383 return (0);
384 }
385
386 int
387 genfs_noislocked(v)
388 void *v;
389 {
390 return (0);
391 }
392
393 /*
394 * Local lease check for NFS servers. Just set up args and let
395 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
396 * this is a null operation.
397 */
398 int
399 genfs_lease_check(v)
400 void *v;
401 {
402 #ifdef NFSSERVER
403 struct vop_lease_args /* {
404 struct vnode *a_vp;
405 struct proc *a_p;
406 struct ucred *a_cred;
407 int a_flag;
408 } */ *ap = v;
409 u_int32_t duration = 0;
410 int cache;
411 u_quad_t frev;
412
413 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
414 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
415 return (0);
416 #else
417 return (0);
418 #endif /* NFSSERVER */
419 }
420
421 int
422 genfs_mmap(v)
423 void *v;
424 {
425 return 0;
426 }
427
428 /*
429 * generic VM getpages routine.
430 * Return PG_BUSY pages for the given range,
431 * reading from backing store if necessary.
432 */
433
434 int
435 genfs_getpages(v)
436 void *v;
437 {
438 struct vop_getpages_args /* {
439 struct vnode *a_vp;
440 voff_t a_offset;
441 struct vm_page **a_m;
442 int *a_count;
443 int a_centeridx;
444 vm_prot_t a_access_type;
445 int a_advice;
446 int a_flags;
447 } */ *ap = v;
448
449 off_t newsize, diskeof, memeof;
450 off_t offset, origoffset, startoffset, endoffset, raoffset;
451 daddr_t lbn, blkno;
452 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
453 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
454 int flags = ap->a_flags;
455 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
456 vaddr_t kva;
457 struct buf *bp, *mbp;
458 struct vnode *vp = ap->a_vp;
459 struct uvm_object *uobj = &vp->v_uvm.u_obj;
460 struct vm_page *pgs[16]; /* XXXUBC 16 */
461 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
462 boolean_t async = (flags & PGO_SYNCIO) == 0;
463 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
464 boolean_t sawhole = FALSE;
465 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
466
467 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
468 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
469
470 /* XXXUBC temp limit */
471 if (*ap->a_count > 16) {
472 return EINVAL;
473 }
474
475 error = 0;
476 origoffset = ap->a_offset;
477 orignpages = *ap->a_count;
478 error = VOP_SIZE(vp, vp->v_uvm.u_size, &diskeof);
479 if (error) {
480 return error;
481 }
482 if (flags & PGO_PASTEOF) {
483 newsize = MAX(vp->v_uvm.u_size,
484 origoffset + (orignpages << PAGE_SHIFT));
485 error = VOP_SIZE(vp, newsize, &memeof);
486 if (error) {
487 return error;
488 }
489 } else {
490 memeof = diskeof;
491 }
492 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
493 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
494 KASSERT(orignpages > 0);
495
496 /*
497 * Bounds-check the request.
498 */
499
500 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
501 if ((flags & PGO_LOCKED) == 0) {
502 simple_unlock(&uobj->vmobjlock);
503 }
504 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
505 origoffset, *ap->a_count, memeof,0);
506 return EINVAL;
507 }
508
509 /*
510 * For PGO_LOCKED requests, just return whatever's in memory.
511 */
512
513 if (flags & PGO_LOCKED) {
514 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
515 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
516
517 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
518 }
519
520 /* vnode is VOP_LOCKed, uobj is locked */
521
522 if (write && (vp->v_flag & VONWORKLST) == 0) {
523 vn_syncer_add_to_worklist(vp, filedelay);
524 }
525
526 /*
527 * find the requested pages and make some simple checks.
528 * leave space in the page array for a whole block.
529 */
530
531 fs_bshift = vp->v_mount->mnt_fs_bshift;
532 fs_bsize = 1 << fs_bshift;
533 dev_bshift = vp->v_mount->mnt_dev_bshift;
534 dev_bsize = 1 << dev_bshift;
535 KASSERT((diskeof & (dev_bsize - 1)) == 0);
536 KASSERT((memeof & (dev_bsize - 1)) == 0);
537
538 orignpages = MIN(orignpages,
539 round_page(memeof - origoffset) >> PAGE_SHIFT);
540 npages = orignpages;
541 startoffset = origoffset & ~(fs_bsize - 1);
542 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
543 + fs_bsize - 1) & ~(fs_bsize - 1));
544 endoffset = MIN(endoffset, round_page(memeof));
545 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
546
547 memset(pgs, 0, sizeof(pgs));
548 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
549
550 /*
551 * if PGO_OVERWRITE is set, don't bother reading the pages.
552 * PGO_OVERWRITE also means that the caller guarantees
553 * that the pages already have backing store allocated.
554 */
555
556 if (flags & PGO_OVERWRITE) {
557 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
558
559 for (i = 0; i < npages; i++) {
560 struct vm_page *pg = pgs[ridx + i];
561
562 if (pg->flags & PG_FAKE) {
563 uvm_pagezero(pg);
564 pg->flags &= ~(PG_FAKE);
565 }
566 pg->flags &= ~(PG_RDONLY);
567 }
568 npages += ridx;
569 goto out;
570 }
571
572 /*
573 * if the pages are already resident, just return them.
574 */
575
576 for (i = 0; i < npages; i++) {
577 struct vm_page *pg = pgs[ridx + i];
578
579 if ((pg->flags & PG_FAKE) ||
580 (write && (pg->flags & PG_RDONLY))) {
581 break;
582 }
583 }
584 if (i == npages) {
585 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
586 raoffset = origoffset + (orignpages << PAGE_SHIFT);
587 npages += ridx;
588 goto raout;
589 }
590
591 /*
592 * the page wasn't resident and we're not overwriting,
593 * so we're going to have to do some i/o.
594 * find any additional pages needed to cover the expanded range.
595 */
596
597 npages = (endoffset - startoffset) >> PAGE_SHIFT;
598 if (startoffset != origoffset || npages != orignpages) {
599
600 /*
601 * XXXUBC we need to avoid deadlocks caused by locking
602 * additional pages at lower offsets than pages we
603 * already have locked. for now, unlock them all and
604 * start over.
605 */
606
607 for (i = 0; i < orignpages; i++) {
608 struct vm_page *pg = pgs[ridx + i];
609
610 if (pg->flags & PG_FAKE) {
611 pg->flags |= PG_RELEASED;
612 }
613 }
614 uvm_page_unbusy(&pgs[ridx], orignpages);
615 memset(pgs, 0, sizeof(pgs));
616
617 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
618 startoffset, endoffset, 0,0);
619 npgs = npages;
620 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
621 }
622 simple_unlock(&uobj->vmobjlock);
623
624 /*
625 * read the desired page(s).
626 */
627
628 totalbytes = npages << PAGE_SHIFT;
629 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
630 tailbytes = totalbytes - bytes;
631 skipbytes = 0;
632
633 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
634 UVMPAGER_MAPIN_READ);
635
636 s = splbio();
637 mbp = pool_get(&bufpool, PR_WAITOK);
638 splx(s);
639 mbp->b_bufsize = totalbytes;
640 mbp->b_data = (void *)kva;
641 mbp->b_resid = mbp->b_bcount = bytes;
642 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
643 mbp->b_iodone = uvm_aio_biodone;
644 mbp->b_vp = vp;
645 LIST_INIT(&mbp->b_dep);
646
647 /*
648 * if EOF is in the middle of the range, zero the part past EOF.
649 */
650
651 if (tailbytes > 0) {
652 memset((void *)(kva + bytes), 0, tailbytes);
653 }
654
655 /*
656 * now loop over the pages, reading as needed.
657 */
658
659 if (write) {
660 lockmgr(&vp->v_glock, LK_EXCLUSIVE, NULL);
661 } else {
662 lockmgr(&vp->v_glock, LK_SHARED, NULL);
663 }
664
665 bp = NULL;
666 for (offset = startoffset;
667 bytes > 0;
668 offset += iobytes, bytes -= iobytes) {
669
670 /*
671 * skip pages which don't need to be read.
672 */
673
674 pidx = (offset - startoffset) >> PAGE_SHIFT;
675 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
676 size_t b;
677
678 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
679 b = MIN(PAGE_SIZE, bytes);
680 offset += b;
681 bytes -= b;
682 skipbytes += b;
683 pidx++;
684 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
685 offset, 0,0,0);
686 if (bytes == 0) {
687 goto loopdone;
688 }
689 }
690
691 /*
692 * bmap the file to find out the blkno to read from and
693 * how much we can read in one i/o. if bmap returns an error,
694 * skip the rest of the top-level i/o.
695 */
696
697 lbn = offset >> fs_bshift;
698 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
699 if (error) {
700 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
701 lbn, error,0,0);
702 skipbytes += bytes;
703 goto loopdone;
704 }
705
706 /*
707 * see how many pages can be read with this i/o.
708 * reduce the i/o size if necessary to avoid
709 * overwriting pages with valid data.
710 */
711
712 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
713 bytes);
714 if (offset + iobytes > round_page(offset)) {
715 pcount = 1;
716 while (pidx + pcount < npages &&
717 pgs[pidx + pcount]->flags & PG_FAKE) {
718 pcount++;
719 }
720 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
721 (offset - trunc_page(offset)));
722 }
723
724 /*
725 * if this block isn't allocated, zero it instead of reading it.
726 * if this is a read access, mark the pages we zeroed PG_RDONLY.
727 */
728
729 if (blkno < 0) {
730 int holepages = (round_page(offset + iobytes) -
731 trunc_page(offset)) >> PAGE_SHIFT;
732 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
733
734 sawhole = TRUE;
735 memset((char *)kva + (offset - startoffset), 0,
736 iobytes);
737 skipbytes += iobytes;
738
739 for (i = 0; i < holepages; i++) {
740 if (write) {
741 pgs[pidx + i]->flags &= ~PG_CLEAN;
742 } else {
743 pgs[pidx + i]->flags |= PG_RDONLY;
744 }
745 }
746 continue;
747 }
748
749 /*
750 * allocate a sub-buf for this piece of the i/o
751 * (or just use mbp if there's only 1 piece),
752 * and start it going.
753 */
754
755 if (offset == startoffset && iobytes == bytes) {
756 bp = mbp;
757 } else {
758 s = splbio();
759 bp = pool_get(&bufpool, PR_WAITOK);
760 splx(s);
761 bp->b_data = (char *)kva + offset - startoffset;
762 bp->b_resid = bp->b_bcount = iobytes;
763 bp->b_flags = B_BUSY|B_READ|B_CALL;
764 bp->b_iodone = uvm_aio_biodone1;
765 bp->b_vp = vp;
766 LIST_INIT(&bp->b_dep);
767 }
768 bp->b_lblkno = 0;
769 bp->b_private = mbp;
770
771 /* adjust physical blkno for partial blocks */
772 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
773 dev_bshift);
774
775 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
776 bp, offset, iobytes, bp->b_blkno);
777
778 VOP_STRATEGY(bp);
779 }
780
781 loopdone:
782 if (skipbytes) {
783 s = splbio();
784 if (error) {
785 mbp->b_flags |= B_ERROR;
786 mbp->b_error = error;
787 }
788 mbp->b_resid -= skipbytes;
789 if (mbp->b_resid == 0) {
790 biodone(mbp);
791 }
792 splx(s);
793 }
794
795 if (async) {
796 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
797 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
798 return 0;
799 }
800 if (bp != NULL) {
801 error = biowait(mbp);
802 }
803 s = splbio();
804 pool_put(&bufpool, mbp);
805 splx(s);
806 uvm_pagermapout(kva, npages);
807 raoffset = startoffset + totalbytes;
808
809 /*
810 * if this we encountered a hole then we have to do a little more work.
811 * for read faults, we marked the page PG_RDONLY so that future
812 * write accesses to the page will fault again.
813 * for write faults, we must make sure that the backing store for
814 * the page is completely allocated while the pages are locked.
815 */
816
817 if (error == 0 && sawhole && write) {
818 error = VOP_BALLOCN(vp, startoffset, npages << PAGE_SHIFT,
819 cred, 0);
820 if (error) {
821 UVMHIST_LOG(ubchist, "balloc lbn 0x%x -> %d",
822 lbn, error,0,0);
823 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
824 simple_lock(&uobj->vmobjlock);
825 goto out;
826 }
827 }
828 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
829 simple_lock(&uobj->vmobjlock);
830
831 /*
832 * see if we want to start any readahead.
833 * XXXUBC for now, just read the next 128k on 64k boundaries.
834 * this is pretty nonsensical, but it is 50% faster than reading
835 * just the next 64k.
836 */
837
838 raout:
839 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
840 PAGE_SHIFT <= 16) {
841 int racount;
842
843 racount = 1 << (16 - PAGE_SHIFT);
844 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
845 VM_PROT_READ, 0, 0);
846 simple_lock(&uobj->vmobjlock);
847
848 racount = 1 << (16 - PAGE_SHIFT);
849 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
850 VM_PROT_READ, 0, 0);
851 simple_lock(&uobj->vmobjlock);
852 }
853
854 /*
855 * we're almost done! release the pages...
856 * for errors, we free the pages.
857 * otherwise we activate them and mark them as valid and clean.
858 * also, unbusy pages that were not actually requested.
859 */
860
861 out:
862 if (error) {
863 uvm_lock_pageq();
864 for (i = 0; i < npages; i++) {
865 if (pgs[i] == NULL) {
866 continue;
867 }
868 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
869 pgs[i], pgs[i]->flags, 0,0);
870 if (pgs[i]->flags & PG_WANTED) {
871 wakeup(pgs[i]);
872 }
873 if (pgs[i]->flags & PG_RELEASED) {
874 uvm_unlock_pageq();
875 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
876 uvm_lock_pageq();
877 continue;
878 }
879 if (pgs[i]->flags & PG_FAKE) {
880 uvm_pagefree(pgs[i]);
881 continue;
882 }
883 uvm_pageactivate(pgs[i]);
884 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
885 UVM_PAGE_OWN(pgs[i], NULL);
886 }
887 uvm_unlock_pageq();
888 simple_unlock(&uobj->vmobjlock);
889 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
890 return error;
891 }
892
893 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
894 uvm_lock_pageq();
895 for (i = 0; i < npages; i++) {
896 if (pgs[i] == NULL) {
897 continue;
898 }
899 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
900 pgs[i], pgs[i]->flags, 0,0);
901 if (pgs[i]->flags & PG_FAKE) {
902 UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x",
903 pgs[i], pgs[i]->offset,0,0);
904 pgs[i]->flags &= ~(PG_FAKE);
905 pmap_clear_modify(pgs[i]);
906 pmap_clear_reference(pgs[i]);
907 }
908 if (write) {
909 pgs[i]->flags &= ~(PG_RDONLY);
910 }
911 if (i < ridx || i >= ridx + orignpages || async) {
912 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
913 pgs[i], pgs[i]->offset,0,0);
914 if (pgs[i]->flags & PG_WANTED) {
915 wakeup(pgs[i]);
916 }
917 if (pgs[i]->flags & PG_RELEASED) {
918 uvm_unlock_pageq();
919 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
920 uvm_lock_pageq();
921 continue;
922 }
923 uvm_pageactivate(pgs[i]);
924 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
925 UVM_PAGE_OWN(pgs[i], NULL);
926 }
927 }
928 uvm_unlock_pageq();
929 simple_unlock(&uobj->vmobjlock);
930 if (ap->a_m != NULL) {
931 memcpy(ap->a_m, &pgs[ridx],
932 orignpages * sizeof(struct vm_page *));
933 }
934 return 0;
935 }
936
937 /*
938 * generic VM putpages routine.
939 * Write the given range of pages to backing store.
940 */
941
942 int
943 genfs_putpages(v)
944 void *v;
945 {
946 struct vop_putpages_args /* {
947 struct vnode *a_vp;
948 struct vm_page **a_m;
949 int a_count;
950 int a_flags;
951 int *a_rtvals;
952 } */ *ap = v;
953
954 int s, error, npages, run;
955 int fs_bshift, dev_bshift, dev_bsize;
956 vaddr_t kva;
957 off_t eof, offset, startoffset;
958 size_t bytes, iobytes, skipbytes;
959 daddr_t lbn, blkno;
960 struct vm_page *pg;
961 struct buf *mbp, *bp;
962 struct vnode *vp = ap->a_vp;
963 boolean_t async = (ap->a_flags & PGO_SYNCIO) == 0;
964 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
965 UVMHIST_LOG(ubchist, "vp %p offset 0x%x count %d",
966 vp, ap->a_m[0]->offset, ap->a_count, 0);
967
968 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
969
970 error = VOP_SIZE(vp, vp->v_uvm.u_size, &eof);
971 if (error) {
972 return error;
973 }
974
975 error = 0;
976 npages = ap->a_count;
977 fs_bshift = vp->v_mount->mnt_fs_bshift;
978 dev_bshift = vp->v_mount->mnt_dev_bshift;
979 dev_bsize = 1 << dev_bshift;
980 KASSERT((eof & (dev_bsize - 1)) == 0);
981
982 pg = ap->a_m[0];
983 startoffset = pg->offset;
984 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
985 skipbytes = 0;
986 KASSERT(bytes != 0);
987
988 kva = uvm_pagermapin(ap->a_m, npages, UVMPAGER_MAPIN_WAITOK);
989
990 s = splbio();
991 vp->v_numoutput += 2;
992 mbp = pool_get(&bufpool, PR_WAITOK);
993 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
994 vp, mbp, vp->v_numoutput, bytes);
995 splx(s);
996 mbp->b_bufsize = npages << PAGE_SHIFT;
997 mbp->b_data = (void *)kva;
998 mbp->b_resid = mbp->b_bcount = bytes;
999 mbp->b_flags = B_BUSY|B_WRITE|B_AGE |
1000 (async ? B_CALL : 0) |
1001 (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0);
1002 mbp->b_iodone = uvm_aio_biodone;
1003 mbp->b_vp = vp;
1004 LIST_INIT(&mbp->b_dep);
1005
1006 bp = NULL;
1007 for (offset = startoffset;
1008 bytes > 0;
1009 offset += iobytes, bytes -= iobytes) {
1010 lbn = offset >> fs_bshift;
1011 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1012 if (error) {
1013 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1014 skipbytes += bytes;
1015 bytes = 0;
1016 break;
1017 }
1018
1019 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1020 bytes);
1021 if (blkno == (daddr_t)-1) {
1022 skipbytes += iobytes;
1023 continue;
1024 }
1025
1026 /* if it's really one i/o, don't make a second buf */
1027 if (offset == startoffset && iobytes == bytes) {
1028 bp = mbp;
1029 } else {
1030 s = splbio();
1031 vp->v_numoutput++;
1032 bp = pool_get(&bufpool, PR_WAITOK);
1033 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1034 vp, bp, vp->v_numoutput, 0);
1035 splx(s);
1036 bp->b_data = (char *)kva +
1037 (vaddr_t)(offset - pg->offset);
1038 bp->b_resid = bp->b_bcount = iobytes;
1039 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1040 bp->b_iodone = uvm_aio_biodone1;
1041 bp->b_vp = vp;
1042 LIST_INIT(&bp->b_dep);
1043 }
1044 bp->b_lblkno = 0;
1045 bp->b_private = mbp;
1046
1047 /* adjust physical blkno for partial blocks */
1048 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1049 dev_bshift);
1050 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1051 vp, offset, bp->b_bcount, bp->b_blkno);
1052 VOP_STRATEGY(bp);
1053 }
1054 if (skipbytes) {
1055 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1056 s = splbio();
1057 mbp->b_resid -= skipbytes;
1058 if (error) {
1059 mbp->b_flags |= B_ERROR;
1060 mbp->b_error = error;
1061 }
1062 if (mbp->b_resid == 0) {
1063 biodone(mbp);
1064 }
1065 splx(s);
1066 }
1067 if (async) {
1068 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1069 return 0;
1070 }
1071 if (bp != NULL) {
1072 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1073 error = biowait(mbp);
1074 }
1075 if (bioops.io_pageiodone) {
1076 (*bioops.io_pageiodone)(mbp);
1077 }
1078 s = splbio();
1079 vwakeup(mbp);
1080 pool_put(&bufpool, mbp);
1081 splx(s);
1082 uvm_pagermapout(kva, npages);
1083 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1084 return error;
1085 }
1086
1087 int
1088 genfs_size(v)
1089 void *v;
1090 {
1091 struct vop_size_args /* {
1092 struct vnode *a_vp;
1093 off_t a_size;
1094 off_t *a_eobp;
1095 } */ *ap = v;
1096 int bsize;
1097
1098 bsize = 1 << ap->a_vp->v_mount->mnt_fs_bshift;
1099 *ap->a_eobp = (ap->a_size + bsize - 1) & ~(bsize - 1);
1100 return 0;
1101 }
1102