genfs_vnops.c revision 1.36.2.2 1 /* $NetBSD: genfs_vnops.c,v 1.36.2.2 2001/09/26 15:28:23 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include "opt_nfsserver.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/poll.h>
49
50 #include <miscfs/genfs/genfs.h>
51 #include <miscfs/specfs/specdev.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55
56 #ifdef NFSSERVER
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs.h>
60 #include <nfs/nqnfs.h>
61 #include <nfs/nfs_var.h>
62 #endif
63
64 int
65 genfs_poll(v)
66 void *v;
67 {
68 struct vop_poll_args /* {
69 struct vnode *a_vp;
70 int a_events;
71 struct proc *a_p;
72 } */ *ap = v;
73
74 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
75 }
76
77 int
78 genfs_fsync(v)
79 void *v;
80 {
81 struct vop_fsync_args /* {
82 struct vnode *a_vp;
83 struct ucred *a_cred;
84 int a_flags;
85 off_t offlo;
86 off_t offhi;
87 struct proc *a_p;
88 } */ *ap = v;
89 struct vnode *vp = ap->a_vp;
90 int wait;
91
92 wait = (ap->a_flags & FSYNC_WAIT) != 0;
93 vflushbuf(vp, wait);
94 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
95 return (0);
96 else
97 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
98 }
99
100 int
101 genfs_seek(v)
102 void *v;
103 {
104 struct vop_seek_args /* {
105 struct vnode *a_vp;
106 off_t a_oldoff;
107 off_t a_newoff;
108 struct ucred *a_ucred;
109 } */ *ap = v;
110
111 if (ap->a_newoff < 0)
112 return (EINVAL);
113
114 return (0);
115 }
116
117 int
118 genfs_abortop(v)
119 void *v;
120 {
121 struct vop_abortop_args /* {
122 struct vnode *a_dvp;
123 struct componentname *a_cnp;
124 } */ *ap = v;
125
126 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
127 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
128 return (0);
129 }
130
131 int
132 genfs_fcntl(v)
133 void *v;
134 {
135 struct vop_fcntl_args /* {
136 struct vnode *a_vp;
137 u_int a_command;
138 caddr_t a_data;
139 int a_fflag;
140 struct ucred *a_cred;
141 struct proc *a_p;
142 } */ *ap = v;
143
144 if (ap->a_command == F_SETFL)
145 return (0);
146 else
147 return (EOPNOTSUPP);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_badop(v)
153 void *v;
154 {
155
156 panic("genfs: bad op");
157 }
158
159 /*ARGSUSED*/
160 int
161 genfs_nullop(v)
162 void *v;
163 {
164
165 return (0);
166 }
167
168 /*ARGSUSED*/
169 int
170 genfs_einval(v)
171 void *v;
172 {
173
174 return (EINVAL);
175 }
176
177 /*ARGSUSED*/
178 int
179 genfs_eopnotsupp(v)
180 void *v;
181 {
182
183 return (EOPNOTSUPP);
184 }
185
186 /*
187 * Called when an fs doesn't support a particular vop but the vop needs to
188 * vrele, vput, or vunlock passed in vnodes.
189 */
190 int
191 genfs_eopnotsupp_rele(v)
192 void *v;
193 {
194 struct vop_generic_args /*
195 struct vnodeop_desc *a_desc;
196 / * other random data follows, presumably * /
197 } */ *ap = v;
198 struct vnodeop_desc *desc = ap->a_desc;
199 struct vnode *vp;
200 int flags, i, j, offset;
201
202 flags = desc->vdesc_flags;
203 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
204 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
205 break; /* stop at end of list */
206 if ((j = flags & VDESC_VP0_WILLPUT)) {
207 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
208 switch (j) {
209 case VDESC_VP0_WILLPUT:
210 vput(vp);
211 break;
212 case VDESC_VP0_WILLUNLOCK:
213 VOP_UNLOCK(vp, 0);
214 break;
215 case VDESC_VP0_WILLRELE:
216 vrele(vp);
217 break;
218 }
219 }
220 }
221
222 return (EOPNOTSUPP);
223 }
224
225 /*ARGSUSED*/
226 int
227 genfs_ebadf(v)
228 void *v;
229 {
230
231 return (EBADF);
232 }
233
234 /* ARGSUSED */
235 int
236 genfs_enoioctl(v)
237 void *v;
238 {
239
240 return (ENOTTY);
241 }
242
243
244 /*
245 * Eliminate all activity associated with the requested vnode
246 * and with all vnodes aliased to the requested vnode.
247 */
248 int
249 genfs_revoke(v)
250 void *v;
251 {
252 struct vop_revoke_args /* {
253 struct vnode *a_vp;
254 int a_flags;
255 } */ *ap = v;
256 struct vnode *vp, *vq;
257 struct proc *p = curproc; /* XXX */
258
259 #ifdef DIAGNOSTIC
260 if ((ap->a_flags & (REVOKEALIAS | REVOKECLONE)) == 0)
261 panic("genfs_revoke: not revokealias or revokeclone");
262 #endif
263
264 vp = ap->a_vp;
265 simple_lock(&vp->v_interlock);
266
267 /*
268 * Rules:
269 * - a cloned vnode has both VALIASED and VCLONED set
270 * - an aliased vnode only has VALIASED set.
271 * - revoking a cloned vnode will only revoke the vnode itself.
272 * - revoking a normal vnode will revoke all aliased vnodes
273 * for the same device if REVOKEALIAS is set in the flags argument
274 * - revoking a normal vnode will revoke cloned vnodes for the same
275 * device if REVOKECLONE is set.
276 */
277 if ((vp->v_flag & (VALIASED | VCLONED)) == VALIASED) {
278 /*
279 * If a vgone (or vclean) is already in progress,
280 * wait until it is done and return.
281 */
282 if (vp->v_flag & VXLOCK) {
283 vp->v_flag |= VXWANT;
284 simple_unlock(&vp->v_interlock);
285 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
286 return (0);
287 }
288 /*
289 * Ensure that vp will not be vgone'd while we
290 * are eliminating its aliases.
291 */
292 vp->v_flag |= VXLOCK;
293 simple_unlock(&vp->v_interlock);
294 while (vp->v_flag & VALIASED) {
295 simple_lock(&spechash_slock);
296 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
297 if (vq->v_rdev != vp->v_rdev ||
298 vq->v_type != vp->v_type || vp == vq)
299 if ((ap->a_flags & REVOKECLONE) == 0 &&
300 (vq->v_flag & VCLONED) != 0)
301 continue;
302 if ((ap->a_flags & REVOKEALIAS) == 0 &&
303 (vq->v_flag & VCLONED) == 0)
304 continue;
305 simple_unlock(&spechash_slock);
306 vgone(vq);
307 break;
308 }
309 if (vq == NULLVP)
310 simple_unlock(&spechash_slock);
311 }
312 /*
313 * Remove the lock so that vgone below will
314 * really eliminate the vnode after which time
315 * vgone will awaken any sleepers.
316 */
317 simple_lock(&vp->v_interlock);
318 vp->v_flag &= ~VXLOCK;
319 }
320 vgonel(vp, p);
321 return (0);
322 }
323
324 /*
325 * Lock the node.
326 */
327 int
328 genfs_lock(v)
329 void *v;
330 {
331 struct vop_lock_args /* {
332 struct vnode *a_vp;
333 int a_flags;
334 } */ *ap = v;
335 struct vnode *vp = ap->a_vp;
336
337 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
338 }
339
340 /*
341 * Unlock the node.
342 */
343 int
344 genfs_unlock(v)
345 void *v;
346 {
347 struct vop_unlock_args /* {
348 struct vnode *a_vp;
349 int a_flags;
350 } */ *ap = v;
351 struct vnode *vp = ap->a_vp;
352
353 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
354 &vp->v_interlock));
355 }
356
357 /*
358 * Return whether or not the node is locked.
359 */
360 int
361 genfs_islocked(v)
362 void *v;
363 {
364 struct vop_islocked_args /* {
365 struct vnode *a_vp;
366 } */ *ap = v;
367 struct vnode *vp = ap->a_vp;
368
369 return (lockstatus(&vp->v_lock));
370 }
371
372 /*
373 * Stubs to use when there is no locking to be done on the underlying object.
374 */
375 int
376 genfs_nolock(v)
377 void *v;
378 {
379 struct vop_lock_args /* {
380 struct vnode *a_vp;
381 int a_flags;
382 struct proc *a_p;
383 } */ *ap = v;
384
385 /*
386 * Since we are not using the lock manager, we must clear
387 * the interlock here.
388 */
389 if (ap->a_flags & LK_INTERLOCK)
390 simple_unlock(&ap->a_vp->v_interlock);
391 return (0);
392 }
393
394 int
395 genfs_nounlock(v)
396 void *v;
397 {
398 return (0);
399 }
400
401 int
402 genfs_noislocked(v)
403 void *v;
404 {
405 return (0);
406 }
407
408 /*
409 * Local lease check for NFS servers. Just set up args and let
410 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
411 * this is a null operation.
412 */
413 int
414 genfs_lease_check(v)
415 void *v;
416 {
417 #ifdef NFSSERVER
418 struct vop_lease_args /* {
419 struct vnode *a_vp;
420 struct proc *a_p;
421 struct ucred *a_cred;
422 int a_flag;
423 } */ *ap = v;
424 u_int32_t duration = 0;
425 int cache;
426 u_quad_t frev;
427
428 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
429 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
430 return (0);
431 #else
432 return (0);
433 #endif /* NFSSERVER */
434 }
435
436 int
437 genfs_mmap(v)
438 void *v;
439 {
440 return 0;
441 }
442
443 /*
444 * generic VM getpages routine.
445 * Return PG_BUSY pages for the given range,
446 * reading from backing store if necessary.
447 */
448
449 int
450 genfs_getpages(v)
451 void *v;
452 {
453 struct vop_getpages_args /* {
454 struct vnode *a_vp;
455 voff_t a_offset;
456 struct vm_page **a_m;
457 int *a_count;
458 int a_centeridx;
459 vm_prot_t a_access_type;
460 int a_advice;
461 int a_flags;
462 } */ *ap = v;
463
464 off_t newsize, diskeof, memeof;
465 off_t offset, origoffset, startoffset, endoffset, raoffset;
466 daddr_t lbn, blkno;
467 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
468 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
469 int flags = ap->a_flags;
470 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
471 vaddr_t kva;
472 struct buf *bp, *mbp;
473 struct vnode *vp = ap->a_vp;
474 struct vnode *devvp;
475 struct uvm_object *uobj = &vp->v_uvm.u_obj;
476 struct vm_page *pgs[16]; /* XXXUBC 16 */
477 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
478 boolean_t async = (flags & PGO_SYNCIO) == 0;
479 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
480 boolean_t sawhole = FALSE;
481 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
482
483 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
484 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
485
486 /* XXXUBC temp limit */
487 if (*ap->a_count > 16) {
488 return EINVAL;
489 }
490
491 error = 0;
492 origoffset = ap->a_offset;
493 orignpages = *ap->a_count;
494 error = VOP_SIZE(vp, vp->v_uvm.u_size, &diskeof);
495 if (error) {
496 return error;
497 }
498 if (flags & PGO_PASTEOF) {
499 newsize = MAX(vp->v_uvm.u_size,
500 origoffset + (orignpages << PAGE_SHIFT));
501 error = VOP_SIZE(vp, newsize, &memeof);
502 if (error) {
503 return error;
504 }
505 } else {
506 memeof = diskeof;
507 }
508 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
509 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
510 KASSERT(orignpages > 0);
511
512 /*
513 * Bounds-check the request.
514 */
515
516 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
517 if ((flags & PGO_LOCKED) == 0) {
518 simple_unlock(&uobj->vmobjlock);
519 }
520 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
521 origoffset, *ap->a_count, memeof,0);
522 return EINVAL;
523 }
524
525 /*
526 * For PGO_LOCKED requests, just return whatever's in memory.
527 */
528
529 if (flags & PGO_LOCKED) {
530 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
531 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
532
533 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
534 }
535
536 /* vnode is VOP_LOCKed, uobj is locked */
537
538 if (write && (vp->v_flag & VONWORKLST) == 0) {
539 vn_syncer_add_to_worklist(vp, filedelay);
540 }
541
542 /*
543 * find the requested pages and make some simple checks.
544 * leave space in the page array for a whole block.
545 */
546
547 if (vp->v_type == VREG) {
548 fs_bshift = vp->v_mount->mnt_fs_bshift;
549 dev_bshift = vp->v_mount->mnt_dev_bshift;
550 } else {
551 fs_bshift = DEV_BSHIFT;
552 dev_bshift = DEV_BSHIFT;
553 }
554 fs_bsize = 1 << fs_bshift;
555 dev_bsize = 1 << dev_bshift;
556 KASSERT((diskeof & (dev_bsize - 1)) == 0);
557 KASSERT((memeof & (dev_bsize - 1)) == 0);
558
559 orignpages = MIN(orignpages,
560 round_page(memeof - origoffset) >> PAGE_SHIFT);
561 npages = orignpages;
562 startoffset = origoffset & ~(fs_bsize - 1);
563 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
564 + fs_bsize - 1) & ~(fs_bsize - 1));
565 endoffset = MIN(endoffset, round_page(memeof));
566 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
567
568 memset(pgs, 0, sizeof(pgs));
569 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
570
571 /*
572 * if PGO_OVERWRITE is set, don't bother reading the pages.
573 * PGO_OVERWRITE also means that the caller guarantees
574 * that the pages already have backing store allocated.
575 */
576
577 if (flags & PGO_OVERWRITE) {
578 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
579
580 for (i = 0; i < npages; i++) {
581 struct vm_page *pg = pgs[ridx + i];
582
583 if (pg->flags & PG_FAKE) {
584 uvm_pagezero(pg);
585 pg->flags &= ~(PG_FAKE);
586 }
587 pg->flags &= ~(PG_RDONLY);
588 }
589 npages += ridx;
590 goto out;
591 }
592
593 /*
594 * if the pages are already resident, just return them.
595 */
596
597 for (i = 0; i < npages; i++) {
598 struct vm_page *pg = pgs[ridx + i];
599
600 if ((pg->flags & PG_FAKE) ||
601 (write && (pg->flags & PG_RDONLY))) {
602 break;
603 }
604 }
605 if (i == npages) {
606 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
607 raoffset = origoffset + (orignpages << PAGE_SHIFT);
608 npages += ridx;
609 goto raout;
610 }
611
612 /*
613 * the page wasn't resident and we're not overwriting,
614 * so we're going to have to do some i/o.
615 * find any additional pages needed to cover the expanded range.
616 */
617
618 npages = (endoffset - startoffset) >> PAGE_SHIFT;
619 if (startoffset != origoffset || npages != orignpages) {
620
621 /*
622 * XXXUBC we need to avoid deadlocks caused by locking
623 * additional pages at lower offsets than pages we
624 * already have locked. for now, unlock them all and
625 * start over.
626 */
627
628 for (i = 0; i < orignpages; i++) {
629 struct vm_page *pg = pgs[ridx + i];
630
631 if (pg->flags & PG_FAKE) {
632 pg->flags |= PG_RELEASED;
633 }
634 }
635 uvm_page_unbusy(&pgs[ridx], orignpages);
636 memset(pgs, 0, sizeof(pgs));
637
638 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
639 startoffset, endoffset, 0,0);
640 npgs = npages;
641 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
642 }
643 simple_unlock(&uobj->vmobjlock);
644
645 /*
646 * read the desired page(s).
647 */
648
649 totalbytes = npages << PAGE_SHIFT;
650 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
651 tailbytes = totalbytes - bytes;
652 skipbytes = 0;
653
654 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
655 UVMPAGER_MAPIN_READ);
656
657 s = splbio();
658 mbp = pool_get(&bufpool, PR_WAITOK);
659 splx(s);
660 mbp->b_bufsize = totalbytes;
661 mbp->b_data = (void *)kva;
662 mbp->b_resid = mbp->b_bcount = bytes;
663 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
664 mbp->b_iodone = uvm_aio_biodone;
665 mbp->b_vp = vp;
666 LIST_INIT(&mbp->b_dep);
667
668 /*
669 * if EOF is in the middle of the range, zero the part past EOF.
670 */
671
672 if (tailbytes > 0) {
673 memset((void *)(kva + bytes), 0, tailbytes);
674 }
675
676 /*
677 * now loop over the pages, reading as needed.
678 */
679
680 if (write) {
681 lockmgr(&vp->v_glock, LK_EXCLUSIVE, NULL);
682 } else {
683 lockmgr(&vp->v_glock, LK_SHARED, NULL);
684 }
685
686 bp = NULL;
687 for (offset = startoffset;
688 bytes > 0;
689 offset += iobytes, bytes -= iobytes) {
690
691 /*
692 * skip pages which don't need to be read.
693 */
694
695 pidx = (offset - startoffset) >> PAGE_SHIFT;
696 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
697 size_t b;
698
699 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
700 b = MIN(PAGE_SIZE, bytes);
701 offset += b;
702 bytes -= b;
703 skipbytes += b;
704 pidx++;
705 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
706 offset, 0,0,0);
707 if (bytes == 0) {
708 goto loopdone;
709 }
710 }
711
712 /*
713 * bmap the file to find out the blkno to read from and
714 * how much we can read in one i/o. if bmap returns an error,
715 * skip the rest of the top-level i/o.
716 */
717
718 lbn = offset >> fs_bshift;
719 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
720 if (error) {
721 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
722 lbn, error,0,0);
723 skipbytes += bytes;
724 goto loopdone;
725 }
726
727 /*
728 * see how many pages can be read with this i/o.
729 * reduce the i/o size if necessary to avoid
730 * overwriting pages with valid data.
731 */
732
733 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
734 bytes);
735 if (offset + iobytes > round_page(offset)) {
736 pcount = 1;
737 while (pidx + pcount < npages &&
738 pgs[pidx + pcount]->flags & PG_FAKE) {
739 pcount++;
740 }
741 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
742 (offset - trunc_page(offset)));
743 }
744
745 /*
746 * if this block isn't allocated, zero it instead of reading it.
747 * if this is a read access, mark the pages we zeroed PG_RDONLY.
748 */
749
750 if (blkno < 0) {
751 int holepages = (round_page(offset + iobytes) -
752 trunc_page(offset)) >> PAGE_SHIFT;
753 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
754
755 sawhole = TRUE;
756 memset((char *)kva + (offset - startoffset), 0,
757 iobytes);
758 skipbytes += iobytes;
759
760 for (i = 0; i < holepages; i++) {
761 if (write) {
762 pgs[pidx + i]->flags &= ~PG_CLEAN;
763 } else {
764 pgs[pidx + i]->flags |= PG_RDONLY;
765 }
766 }
767 continue;
768 }
769
770 /*
771 * allocate a sub-buf for this piece of the i/o
772 * (or just use mbp if there's only 1 piece),
773 * and start it going.
774 */
775
776 if (offset == startoffset && iobytes == bytes) {
777 bp = mbp;
778 } else {
779 s = splbio();
780 bp = pool_get(&bufpool, PR_WAITOK);
781 splx(s);
782 bp->b_data = (char *)kva + offset - startoffset;
783 bp->b_resid = bp->b_bcount = iobytes;
784 bp->b_flags = B_BUSY|B_READ|B_CALL;
785 bp->b_iodone = uvm_aio_biodone1;
786 bp->b_vp = vp;
787 LIST_INIT(&bp->b_dep);
788 }
789 bp->b_lblkno = 0;
790 bp->b_private = mbp;
791 bp->b_devvp = devvp;
792
793 /* adjust physical blkno for partial blocks */
794 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
795 dev_bshift);
796
797 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
798 bp, offset, iobytes, bp->b_blkno);
799
800 VOP_STRATEGY(bp);
801 }
802
803 loopdone:
804 if (skipbytes) {
805 s = splbio();
806 if (error) {
807 mbp->b_flags |= B_ERROR;
808 mbp->b_error = error;
809 }
810 mbp->b_resid -= skipbytes;
811 if (mbp->b_resid == 0) {
812 biodone(mbp);
813 }
814 splx(s);
815 }
816
817 if (async) {
818 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
819 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
820 return 0;
821 }
822 if (bp != NULL) {
823 error = biowait(mbp);
824 }
825 s = splbio();
826 pool_put(&bufpool, mbp);
827 splx(s);
828 uvm_pagermapout(kva, npages);
829 raoffset = startoffset + totalbytes;
830
831 /*
832 * if this we encountered a hole then we have to do a little more work.
833 * for read faults, we marked the page PG_RDONLY so that future
834 * write accesses to the page will fault again.
835 * for write faults, we must make sure that the backing store for
836 * the page is completely allocated while the pages are locked.
837 */
838
839 if (error == 0 && sawhole && write) {
840 error = VOP_BALLOCN(vp, startoffset, npages << PAGE_SHIFT,
841 cred, 0);
842 if (error) {
843 UVMHIST_LOG(ubchist, "balloc lbn 0x%x -> %d",
844 lbn, error,0,0);
845 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
846 simple_lock(&uobj->vmobjlock);
847 goto out;
848 }
849 }
850 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
851 simple_lock(&uobj->vmobjlock);
852
853 /*
854 * see if we want to start any readahead.
855 * XXXUBC for now, just read the next 128k on 64k boundaries.
856 * this is pretty nonsensical, but it is 50% faster than reading
857 * just the next 64k.
858 */
859
860 raout:
861 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
862 PAGE_SHIFT <= 16) {
863 int racount;
864
865 racount = 1 << (16 - PAGE_SHIFT);
866 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
867 VM_PROT_READ, 0, 0);
868 simple_lock(&uobj->vmobjlock);
869
870 racount = 1 << (16 - PAGE_SHIFT);
871 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
872 VM_PROT_READ, 0, 0);
873 simple_lock(&uobj->vmobjlock);
874 }
875
876 /*
877 * we're almost done! release the pages...
878 * for errors, we free the pages.
879 * otherwise we activate them and mark them as valid and clean.
880 * also, unbusy pages that were not actually requested.
881 */
882
883 out:
884 if (error) {
885 uvm_lock_pageq();
886 for (i = 0; i < npages; i++) {
887 if (pgs[i] == NULL) {
888 continue;
889 }
890 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
891 pgs[i], pgs[i]->flags, 0,0);
892 if (pgs[i]->flags & PG_WANTED) {
893 wakeup(pgs[i]);
894 }
895 if (pgs[i]->flags & PG_RELEASED) {
896 uvm_unlock_pageq();
897 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
898 uvm_lock_pageq();
899 continue;
900 }
901 if (pgs[i]->flags & PG_FAKE) {
902 uvm_pagefree(pgs[i]);
903 continue;
904 }
905 uvm_pageactivate(pgs[i]);
906 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
907 UVM_PAGE_OWN(pgs[i], NULL);
908 }
909 uvm_unlock_pageq();
910 simple_unlock(&uobj->vmobjlock);
911 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
912 return error;
913 }
914
915 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
916 uvm_lock_pageq();
917 for (i = 0; i < npages; i++) {
918 if (pgs[i] == NULL) {
919 continue;
920 }
921 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
922 pgs[i], pgs[i]->flags, 0,0);
923 if (pgs[i]->flags & PG_FAKE) {
924 UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x",
925 pgs[i], pgs[i]->offset,0,0);
926 pgs[i]->flags &= ~(PG_FAKE);
927 pmap_clear_modify(pgs[i]);
928 pmap_clear_reference(pgs[i]);
929 }
930 if (write) {
931 pgs[i]->flags &= ~(PG_RDONLY);
932 }
933 if (i < ridx || i >= ridx + orignpages || async) {
934 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
935 pgs[i], pgs[i]->offset,0,0);
936 if (pgs[i]->flags & PG_WANTED) {
937 wakeup(pgs[i]);
938 }
939 if (pgs[i]->flags & PG_RELEASED) {
940 uvm_unlock_pageq();
941 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
942 uvm_lock_pageq();
943 continue;
944 }
945 uvm_pageactivate(pgs[i]);
946 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
947 UVM_PAGE_OWN(pgs[i], NULL);
948 }
949 }
950 uvm_unlock_pageq();
951 simple_unlock(&uobj->vmobjlock);
952 if (ap->a_m != NULL) {
953 memcpy(ap->a_m, &pgs[ridx],
954 orignpages * sizeof(struct vm_page *));
955 }
956 return 0;
957 }
958
959 /*
960 * generic VM putpages routine.
961 * Write the given range of pages to backing store.
962 */
963
964 int
965 genfs_putpages(v)
966 void *v;
967 {
968 struct vop_putpages_args /* {
969 struct vnode *a_vp;
970 struct vm_page **a_m;
971 int a_count;
972 int a_flags;
973 int *a_rtvals;
974 } */ *ap = v;
975
976 int s, error, npages, run;
977 int fs_bshift, dev_bshift, dev_bsize;
978 vaddr_t kva;
979 off_t eof, offset, startoffset;
980 size_t bytes, iobytes, skipbytes;
981 daddr_t lbn, blkno;
982 struct vm_page *pg;
983 struct buf *mbp, *bp;
984 struct vnode *vp = ap->a_vp;
985 struct vnode *devvp;
986 boolean_t async = (ap->a_flags & PGO_SYNCIO) == 0;
987 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
988 UVMHIST_LOG(ubchist, "vp %p offset 0x%x count %d",
989 vp, ap->a_m[0]->offset, ap->a_count, 0);
990
991 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
992
993 error = VOP_SIZE(vp, vp->v_uvm.u_size, &eof);
994 if (error) {
995 return error;
996 }
997
998 error = 0;
999 npages = ap->a_count;
1000 if (vp->v_type == VREG) {
1001 fs_bshift = vp->v_mount->mnt_fs_bshift;
1002 dev_bshift = vp->v_mount->mnt_dev_bshift;
1003 } else {
1004 fs_bshift = DEV_BSHIFT;
1005 dev_bshift = DEV_BSHIFT;
1006 }
1007 dev_bsize = 1 << dev_bshift;
1008 KASSERT((eof & (dev_bsize - 1)) == 0);
1009
1010 pg = ap->a_m[0];
1011 startoffset = pg->offset;
1012 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1013 skipbytes = 0;
1014 KASSERT(bytes != 0);
1015
1016 kva = uvm_pagermapin(ap->a_m, npages, UVMPAGER_MAPIN_WAITOK);
1017
1018 s = splbio();
1019 vp->v_numoutput += 2;
1020 mbp = pool_get(&bufpool, PR_WAITOK);
1021 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1022 vp, mbp, vp->v_numoutput, bytes);
1023 splx(s);
1024 mbp->b_bufsize = npages << PAGE_SHIFT;
1025 mbp->b_data = (void *)kva;
1026 mbp->b_resid = mbp->b_bcount = bytes;
1027 mbp->b_flags = B_BUSY|B_WRITE|B_AGE |
1028 (async ? B_CALL : 0) |
1029 (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0);
1030 mbp->b_iodone = uvm_aio_biodone;
1031 mbp->b_vp = vp;
1032 LIST_INIT(&mbp->b_dep);
1033
1034 bp = NULL;
1035 for (offset = startoffset;
1036 bytes > 0;
1037 offset += iobytes, bytes -= iobytes) {
1038 lbn = offset >> fs_bshift;
1039 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1040 if (error) {
1041 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1042 skipbytes += bytes;
1043 bytes = 0;
1044 break;
1045 }
1046
1047 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1048 bytes);
1049 if (blkno == (daddr_t)-1) {
1050 skipbytes += iobytes;
1051 continue;
1052 }
1053
1054 /* if it's really one i/o, don't make a second buf */
1055 if (offset == startoffset && iobytes == bytes) {
1056 bp = mbp;
1057 } else {
1058 s = splbio();
1059 vp->v_numoutput++;
1060 bp = pool_get(&bufpool, PR_WAITOK);
1061 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1062 vp, bp, vp->v_numoutput, 0);
1063 splx(s);
1064 bp->b_data = (char *)kva +
1065 (vaddr_t)(offset - pg->offset);
1066 bp->b_resid = bp->b_bcount = iobytes;
1067 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1068 bp->b_iodone = uvm_aio_biodone1;
1069 bp->b_vp = vp;
1070 LIST_INIT(&bp->b_dep);
1071 }
1072 bp->b_lblkno = 0;
1073 bp->b_private = mbp;
1074 bp->b_devvp = devvp;
1075
1076 /* adjust physical blkno for partial blocks */
1077 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1078 dev_bshift);
1079 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1080 vp, offset, bp->b_bcount, bp->b_blkno);
1081 VOP_STRATEGY(bp);
1082 }
1083 if (skipbytes) {
1084 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1085 s = splbio();
1086 mbp->b_resid -= skipbytes;
1087 if (error) {
1088 mbp->b_flags |= B_ERROR;
1089 mbp->b_error = error;
1090 }
1091 if (mbp->b_resid == 0) {
1092 biodone(mbp);
1093 }
1094 splx(s);
1095 }
1096 if (async) {
1097 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1098 return 0;
1099 }
1100 if (bp != NULL) {
1101 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1102 error = biowait(mbp);
1103 }
1104 if (bioops.io_pageiodone) {
1105 (*bioops.io_pageiodone)(mbp);
1106 }
1107 s = splbio();
1108 vwakeup(mbp);
1109 pool_put(&bufpool, mbp);
1110 splx(s);
1111 uvm_pagermapout(kva, npages);
1112 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1113 return error;
1114 }
1115
1116 int
1117 genfs_size(v)
1118 void *v;
1119 {
1120 struct vop_size_args /* {
1121 struct vnode *a_vp;
1122 off_t a_size;
1123 off_t *a_eobp;
1124 } */ *ap = v;
1125 int bsize;
1126
1127 bsize = 1 << ap->a_vp->v_mount->mnt_fs_bshift;
1128 *ap->a_eobp = (ap->a_size + bsize - 1) & ~(bsize - 1);
1129 return 0;
1130 }
1131