genfs_vnops.c revision 1.36.2.3 1 /* $NetBSD: genfs_vnops.c,v 1.36.2.3 2001/09/27 14:48:22 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include "opt_nfsserver.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/poll.h>
49
50 #include <miscfs/genfs/genfs.h>
51 #include <miscfs/specfs/specdev.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55
56 #ifdef NFSSERVER
57 #include <nfs/rpcv2.h>
58 #include <nfs/nfsproto.h>
59 #include <nfs/nfs.h>
60 #include <nfs/nqnfs.h>
61 #include <nfs/nfs_var.h>
62 #endif
63
64 int
65 genfs_poll(v)
66 void *v;
67 {
68 struct vop_poll_args /* {
69 struct vnode *a_vp;
70 int a_events;
71 struct proc *a_p;
72 } */ *ap = v;
73
74 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
75 }
76
77 int
78 genfs_fsync(v)
79 void *v;
80 {
81 struct vop_fsync_args /* {
82 struct vnode *a_vp;
83 struct ucred *a_cred;
84 int a_flags;
85 off_t offlo;
86 off_t offhi;
87 struct proc *a_p;
88 } */ *ap = v;
89 struct vnode *vp = ap->a_vp;
90 int wait;
91
92 wait = (ap->a_flags & FSYNC_WAIT) != 0;
93 vflushbuf(vp, wait);
94 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
95 return (0);
96 else
97 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
98 }
99
100 int
101 genfs_seek(v)
102 void *v;
103 {
104 struct vop_seek_args /* {
105 struct vnode *a_vp;
106 off_t a_oldoff;
107 off_t a_newoff;
108 struct ucred *a_ucred;
109 } */ *ap = v;
110
111 if (ap->a_newoff < 0)
112 return (EINVAL);
113
114 return (0);
115 }
116
117 int
118 genfs_abortop(v)
119 void *v;
120 {
121 struct vop_abortop_args /* {
122 struct vnode *a_dvp;
123 struct componentname *a_cnp;
124 } */ *ap = v;
125
126 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
127 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
128 return (0);
129 }
130
131 int
132 genfs_fcntl(v)
133 void *v;
134 {
135 struct vop_fcntl_args /* {
136 struct vnode *a_vp;
137 u_int a_command;
138 caddr_t a_data;
139 int a_fflag;
140 struct ucred *a_cred;
141 struct proc *a_p;
142 } */ *ap = v;
143
144 if (ap->a_command == F_SETFL)
145 return (0);
146 else
147 return (EOPNOTSUPP);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_badop(v)
153 void *v;
154 {
155
156 panic("genfs: bad op");
157 }
158
159 /*ARGSUSED*/
160 int
161 genfs_nullop(v)
162 void *v;
163 {
164
165 return (0);
166 }
167
168 /*ARGSUSED*/
169 int
170 genfs_einval(v)
171 void *v;
172 {
173
174 return (EINVAL);
175 }
176
177 /*ARGSUSED*/
178 int
179 genfs_eopnotsupp(v)
180 void *v;
181 {
182
183 return (EOPNOTSUPP);
184 }
185
186 /*
187 * Called when an fs doesn't support a particular vop but the vop needs to
188 * vrele, vput, or vunlock passed in vnodes.
189 */
190 int
191 genfs_eopnotsupp_rele(v)
192 void *v;
193 {
194 struct vop_generic_args /*
195 struct vnodeop_desc *a_desc;
196 / * other random data follows, presumably * /
197 } */ *ap = v;
198 struct vnodeop_desc *desc = ap->a_desc;
199 struct vnode *vp;
200 int flags, i, j, offset;
201
202 flags = desc->vdesc_flags;
203 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
204 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
205 break; /* stop at end of list */
206 if ((j = flags & VDESC_VP0_WILLPUT)) {
207 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
208 switch (j) {
209 case VDESC_VP0_WILLPUT:
210 vput(vp);
211 break;
212 case VDESC_VP0_WILLUNLOCK:
213 VOP_UNLOCK(vp, 0);
214 break;
215 case VDESC_VP0_WILLRELE:
216 vrele(vp);
217 break;
218 }
219 }
220 }
221
222 return (EOPNOTSUPP);
223 }
224
225 /*ARGSUSED*/
226 int
227 genfs_ebadf(v)
228 void *v;
229 {
230
231 return (EBADF);
232 }
233
234 /* ARGSUSED */
235 int
236 genfs_enoioctl(v)
237 void *v;
238 {
239
240 return (ENOTTY);
241 }
242
243
244 /*
245 * Eliminate all activity associated with the requested vnode
246 * and with all vnodes aliased to the requested vnode.
247 */
248 int
249 genfs_revoke(v)
250 void *v;
251 {
252 struct vop_revoke_args /* {
253 struct vnode *a_vp;
254 int a_flags;
255 } */ *ap = v;
256 struct vnode *vp, *vq;
257 struct proc *p = curproc; /* XXX */
258
259 #ifdef DIAGNOSTIC
260 if ((ap->a_flags & (REVOKEALIAS | REVOKECLONE)) == 0)
261 panic("genfs_revoke: not revokealias or revokeclone");
262 #endif
263
264 vp = ap->a_vp;
265 simple_lock(&vp->v_interlock);
266
267 /*
268 * Rules:
269 * - a cloned vnode has both VALIASED and VCLONED set
270 * - an aliased vnode only has VALIASED set.
271 * - revoking a cloned vnode will only revoke the vnode itself.
272 * - revoking a normal vnode will revoke all aliased vnodes
273 * for the same device if REVOKEALIAS is set in the flags argument
274 * - revoking a normal vnode will revoke cloned vnodes for the same
275 * device if REVOKECLONE is set.
276 */
277 if ((vp->v_flag & (VALIASED | VCLONED)) == VALIASED) {
278 /*
279 * If a vgone (or vclean) is already in progress,
280 * wait until it is done and return.
281 */
282 if (vp->v_flag & VXLOCK) {
283 vp->v_flag |= VXWANT;
284 simple_unlock(&vp->v_interlock);
285 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
286 return (0);
287 }
288 /*
289 * Ensure that vp will not be vgone'd while we
290 * are eliminating its aliases.
291 */
292 vp->v_flag |= VXLOCK;
293 simple_unlock(&vp->v_interlock);
294 while (vp->v_flag & VALIASED) {
295 simple_lock(&spechash_slock);
296 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
297 if (vq->v_rdev != vp->v_rdev ||
298 vq->v_type != vp->v_type || vp == vq)
299 continue;
300 if ((ap->a_flags & REVOKECLONE) == 0 &&
301 (vq->v_flag & VCLONED) != 0)
302 continue;
303 if ((ap->a_flags & REVOKEALIAS) == 0 &&
304 (vq->v_flag & VCLONED) == 0)
305 continue;
306 simple_unlock(&spechash_slock);
307 vgone(vq);
308 break;
309 }
310 if (vq == NULLVP)
311 simple_unlock(&spechash_slock);
312 }
313 /*
314 * Remove the lock so that vgone below will
315 * really eliminate the vnode after which time
316 * vgone will awaken any sleepers.
317 */
318 simple_lock(&vp->v_interlock);
319 vp->v_flag &= ~VXLOCK;
320 }
321 vgonel(vp, p);
322 return (0);
323 }
324
325 /*
326 * Lock the node.
327 */
328 int
329 genfs_lock(v)
330 void *v;
331 {
332 struct vop_lock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
339 }
340
341 /*
342 * Unlock the node.
343 */
344 int
345 genfs_unlock(v)
346 void *v;
347 {
348 struct vop_unlock_args /* {
349 struct vnode *a_vp;
350 int a_flags;
351 } */ *ap = v;
352 struct vnode *vp = ap->a_vp;
353
354 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
355 &vp->v_interlock));
356 }
357
358 /*
359 * Return whether or not the node is locked.
360 */
361 int
362 genfs_islocked(v)
363 void *v;
364 {
365 struct vop_islocked_args /* {
366 struct vnode *a_vp;
367 } */ *ap = v;
368 struct vnode *vp = ap->a_vp;
369
370 return (lockstatus(&vp->v_lock));
371 }
372
373 /*
374 * Stubs to use when there is no locking to be done on the underlying object.
375 */
376 int
377 genfs_nolock(v)
378 void *v;
379 {
380 struct vop_lock_args /* {
381 struct vnode *a_vp;
382 int a_flags;
383 struct proc *a_p;
384 } */ *ap = v;
385
386 /*
387 * Since we are not using the lock manager, we must clear
388 * the interlock here.
389 */
390 if (ap->a_flags & LK_INTERLOCK)
391 simple_unlock(&ap->a_vp->v_interlock);
392 return (0);
393 }
394
395 int
396 genfs_nounlock(v)
397 void *v;
398 {
399 return (0);
400 }
401
402 int
403 genfs_noislocked(v)
404 void *v;
405 {
406 return (0);
407 }
408
409 /*
410 * Local lease check for NFS servers. Just set up args and let
411 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
412 * this is a null operation.
413 */
414 int
415 genfs_lease_check(v)
416 void *v;
417 {
418 #ifdef NFSSERVER
419 struct vop_lease_args /* {
420 struct vnode *a_vp;
421 struct proc *a_p;
422 struct ucred *a_cred;
423 int a_flag;
424 } */ *ap = v;
425 u_int32_t duration = 0;
426 int cache;
427 u_quad_t frev;
428
429 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
430 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
431 return (0);
432 #else
433 return (0);
434 #endif /* NFSSERVER */
435 }
436
437 int
438 genfs_mmap(v)
439 void *v;
440 {
441 return 0;
442 }
443
444 /*
445 * generic VM getpages routine.
446 * Return PG_BUSY pages for the given range,
447 * reading from backing store if necessary.
448 */
449
450 int
451 genfs_getpages(v)
452 void *v;
453 {
454 struct vop_getpages_args /* {
455 struct vnode *a_vp;
456 voff_t a_offset;
457 struct vm_page **a_m;
458 int *a_count;
459 int a_centeridx;
460 vm_prot_t a_access_type;
461 int a_advice;
462 int a_flags;
463 } */ *ap = v;
464
465 off_t newsize, diskeof, memeof;
466 off_t offset, origoffset, startoffset, endoffset, raoffset;
467 daddr_t lbn, blkno;
468 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
469 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
470 int flags = ap->a_flags;
471 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
472 vaddr_t kva;
473 struct buf *bp, *mbp;
474 struct vnode *vp = ap->a_vp;
475 struct vnode *devvp;
476 struct uvm_object *uobj = &vp->v_uvm.u_obj;
477 struct vm_page *pgs[16]; /* XXXUBC 16 */
478 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
479 boolean_t async = (flags & PGO_SYNCIO) == 0;
480 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
481 boolean_t sawhole = FALSE;
482 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
483
484 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
485 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
486
487 /* XXXUBC temp limit */
488 if (*ap->a_count > 16) {
489 return EINVAL;
490 }
491
492 error = 0;
493 origoffset = ap->a_offset;
494 orignpages = *ap->a_count;
495 error = VOP_SIZE(vp, vp->v_uvm.u_size, &diskeof);
496 if (error) {
497 return error;
498 }
499 if (flags & PGO_PASTEOF) {
500 newsize = MAX(vp->v_uvm.u_size,
501 origoffset + (orignpages << PAGE_SHIFT));
502 error = VOP_SIZE(vp, newsize, &memeof);
503 if (error) {
504 return error;
505 }
506 } else {
507 memeof = diskeof;
508 }
509 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
510 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
511 KASSERT(orignpages > 0);
512
513 /*
514 * Bounds-check the request.
515 */
516
517 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
518 if ((flags & PGO_LOCKED) == 0) {
519 simple_unlock(&uobj->vmobjlock);
520 }
521 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
522 origoffset, *ap->a_count, memeof,0);
523 return EINVAL;
524 }
525
526 /*
527 * For PGO_LOCKED requests, just return whatever's in memory.
528 */
529
530 if (flags & PGO_LOCKED) {
531 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
532 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
533
534 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
535 }
536
537 /* vnode is VOP_LOCKed, uobj is locked */
538
539 if (write && (vp->v_flag & VONWORKLST) == 0) {
540 vn_syncer_add_to_worklist(vp, filedelay);
541 }
542
543 /*
544 * find the requested pages and make some simple checks.
545 * leave space in the page array for a whole block.
546 */
547
548 if (vp->v_type == VREG) {
549 fs_bshift = vp->v_mount->mnt_fs_bshift;
550 dev_bshift = vp->v_mount->mnt_dev_bshift;
551 } else {
552 fs_bshift = DEV_BSHIFT;
553 dev_bshift = DEV_BSHIFT;
554 }
555 fs_bsize = 1 << fs_bshift;
556 dev_bsize = 1 << dev_bshift;
557 KASSERT((diskeof & (dev_bsize - 1)) == 0);
558 KASSERT((memeof & (dev_bsize - 1)) == 0);
559
560 orignpages = MIN(orignpages,
561 round_page(memeof - origoffset) >> PAGE_SHIFT);
562 npages = orignpages;
563 startoffset = origoffset & ~(fs_bsize - 1);
564 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
565 + fs_bsize - 1) & ~(fs_bsize - 1));
566 endoffset = MIN(endoffset, round_page(memeof));
567 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
568
569 memset(pgs, 0, sizeof(pgs));
570 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
571
572 /*
573 * if PGO_OVERWRITE is set, don't bother reading the pages.
574 * PGO_OVERWRITE also means that the caller guarantees
575 * that the pages already have backing store allocated.
576 */
577
578 if (flags & PGO_OVERWRITE) {
579 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
580
581 for (i = 0; i < npages; i++) {
582 struct vm_page *pg = pgs[ridx + i];
583
584 if (pg->flags & PG_FAKE) {
585 uvm_pagezero(pg);
586 pg->flags &= ~(PG_FAKE);
587 }
588 pg->flags &= ~(PG_RDONLY);
589 }
590 npages += ridx;
591 goto out;
592 }
593
594 /*
595 * if the pages are already resident, just return them.
596 */
597
598 for (i = 0; i < npages; i++) {
599 struct vm_page *pg = pgs[ridx + i];
600
601 if ((pg->flags & PG_FAKE) ||
602 (write && (pg->flags & PG_RDONLY))) {
603 break;
604 }
605 }
606 if (i == npages) {
607 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
608 raoffset = origoffset + (orignpages << PAGE_SHIFT);
609 npages += ridx;
610 goto raout;
611 }
612
613 /*
614 * the page wasn't resident and we're not overwriting,
615 * so we're going to have to do some i/o.
616 * find any additional pages needed to cover the expanded range.
617 */
618
619 npages = (endoffset - startoffset) >> PAGE_SHIFT;
620 if (startoffset != origoffset || npages != orignpages) {
621
622 /*
623 * XXXUBC we need to avoid deadlocks caused by locking
624 * additional pages at lower offsets than pages we
625 * already have locked. for now, unlock them all and
626 * start over.
627 */
628
629 for (i = 0; i < orignpages; i++) {
630 struct vm_page *pg = pgs[ridx + i];
631
632 if (pg->flags & PG_FAKE) {
633 pg->flags |= PG_RELEASED;
634 }
635 }
636 uvm_page_unbusy(&pgs[ridx], orignpages);
637 memset(pgs, 0, sizeof(pgs));
638
639 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
640 startoffset, endoffset, 0,0);
641 npgs = npages;
642 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
643 }
644 simple_unlock(&uobj->vmobjlock);
645
646 /*
647 * read the desired page(s).
648 */
649
650 totalbytes = npages << PAGE_SHIFT;
651 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
652 tailbytes = totalbytes - bytes;
653 skipbytes = 0;
654
655 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
656 UVMPAGER_MAPIN_READ);
657
658 s = splbio();
659 mbp = pool_get(&bufpool, PR_WAITOK);
660 splx(s);
661 mbp->b_bufsize = totalbytes;
662 mbp->b_data = (void *)kva;
663 mbp->b_resid = mbp->b_bcount = bytes;
664 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
665 mbp->b_iodone = uvm_aio_biodone;
666 mbp->b_vp = vp;
667 LIST_INIT(&mbp->b_dep);
668
669 /*
670 * if EOF is in the middle of the range, zero the part past EOF.
671 */
672
673 if (tailbytes > 0) {
674 memset((void *)(kva + bytes), 0, tailbytes);
675 }
676
677 /*
678 * now loop over the pages, reading as needed.
679 */
680
681 if (write) {
682 lockmgr(&vp->v_glock, LK_EXCLUSIVE, NULL);
683 } else {
684 lockmgr(&vp->v_glock, LK_SHARED, NULL);
685 }
686
687 bp = NULL;
688 for (offset = startoffset;
689 bytes > 0;
690 offset += iobytes, bytes -= iobytes) {
691
692 /*
693 * skip pages which don't need to be read.
694 */
695
696 pidx = (offset - startoffset) >> PAGE_SHIFT;
697 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
698 size_t b;
699
700 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
701 b = MIN(PAGE_SIZE, bytes);
702 offset += b;
703 bytes -= b;
704 skipbytes += b;
705 pidx++;
706 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
707 offset, 0,0,0);
708 if (bytes == 0) {
709 goto loopdone;
710 }
711 }
712
713 /*
714 * bmap the file to find out the blkno to read from and
715 * how much we can read in one i/o. if bmap returns an error,
716 * skip the rest of the top-level i/o.
717 */
718
719 lbn = offset >> fs_bshift;
720 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
721 if (error) {
722 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
723 lbn, error,0,0);
724 skipbytes += bytes;
725 goto loopdone;
726 }
727
728 /*
729 * see how many pages can be read with this i/o.
730 * reduce the i/o size if necessary to avoid
731 * overwriting pages with valid data.
732 */
733
734 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
735 bytes);
736 if (offset + iobytes > round_page(offset)) {
737 pcount = 1;
738 while (pidx + pcount < npages &&
739 pgs[pidx + pcount]->flags & PG_FAKE) {
740 pcount++;
741 }
742 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
743 (offset - trunc_page(offset)));
744 }
745
746 /*
747 * if this block isn't allocated, zero it instead of reading it.
748 * if this is a read access, mark the pages we zeroed PG_RDONLY.
749 */
750
751 if (blkno < 0) {
752 int holepages = (round_page(offset + iobytes) -
753 trunc_page(offset)) >> PAGE_SHIFT;
754 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
755
756 sawhole = TRUE;
757 memset((char *)kva + (offset - startoffset), 0,
758 iobytes);
759 skipbytes += iobytes;
760
761 for (i = 0; i < holepages; i++) {
762 if (write) {
763 pgs[pidx + i]->flags &= ~PG_CLEAN;
764 } else {
765 pgs[pidx + i]->flags |= PG_RDONLY;
766 }
767 }
768 continue;
769 }
770
771 /*
772 * allocate a sub-buf for this piece of the i/o
773 * (or just use mbp if there's only 1 piece),
774 * and start it going.
775 */
776
777 if (offset == startoffset && iobytes == bytes) {
778 bp = mbp;
779 } else {
780 s = splbio();
781 bp = pool_get(&bufpool, PR_WAITOK);
782 splx(s);
783 bp->b_data = (char *)kva + offset - startoffset;
784 bp->b_resid = bp->b_bcount = iobytes;
785 bp->b_flags = B_BUSY|B_READ|B_CALL;
786 bp->b_iodone = uvm_aio_biodone1;
787 bp->b_vp = vp;
788 LIST_INIT(&bp->b_dep);
789 }
790 bp->b_lblkno = 0;
791 bp->b_private = mbp;
792 bp->b_devvp = devvp;
793
794 /* adjust physical blkno for partial blocks */
795 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
796 dev_bshift);
797
798 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
799 bp, offset, iobytes, bp->b_blkno);
800
801 VOP_STRATEGY(bp);
802 }
803
804 loopdone:
805 if (skipbytes) {
806 s = splbio();
807 if (error) {
808 mbp->b_flags |= B_ERROR;
809 mbp->b_error = error;
810 }
811 mbp->b_resid -= skipbytes;
812 if (mbp->b_resid == 0) {
813 biodone(mbp);
814 }
815 splx(s);
816 }
817
818 if (async) {
819 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
820 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
821 return 0;
822 }
823 if (bp != NULL) {
824 error = biowait(mbp);
825 }
826 s = splbio();
827 pool_put(&bufpool, mbp);
828 splx(s);
829 uvm_pagermapout(kva, npages);
830 raoffset = startoffset + totalbytes;
831
832 /*
833 * if this we encountered a hole then we have to do a little more work.
834 * for read faults, we marked the page PG_RDONLY so that future
835 * write accesses to the page will fault again.
836 * for write faults, we must make sure that the backing store for
837 * the page is completely allocated while the pages are locked.
838 */
839
840 if (error == 0 && sawhole && write) {
841 error = VOP_BALLOCN(vp, startoffset, npages << PAGE_SHIFT,
842 cred, 0);
843 if (error) {
844 UVMHIST_LOG(ubchist, "balloc lbn 0x%x -> %d",
845 lbn, error,0,0);
846 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
847 simple_lock(&uobj->vmobjlock);
848 goto out;
849 }
850 }
851 lockmgr(&vp->v_glock, LK_RELEASE, NULL);
852 simple_lock(&uobj->vmobjlock);
853
854 /*
855 * see if we want to start any readahead.
856 * XXXUBC for now, just read the next 128k on 64k boundaries.
857 * this is pretty nonsensical, but it is 50% faster than reading
858 * just the next 64k.
859 */
860
861 raout:
862 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
863 PAGE_SHIFT <= 16) {
864 int racount;
865
866 racount = 1 << (16 - PAGE_SHIFT);
867 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
868 VM_PROT_READ, 0, 0);
869 simple_lock(&uobj->vmobjlock);
870
871 racount = 1 << (16 - PAGE_SHIFT);
872 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
873 VM_PROT_READ, 0, 0);
874 simple_lock(&uobj->vmobjlock);
875 }
876
877 /*
878 * we're almost done! release the pages...
879 * for errors, we free the pages.
880 * otherwise we activate them and mark them as valid and clean.
881 * also, unbusy pages that were not actually requested.
882 */
883
884 out:
885 if (error) {
886 uvm_lock_pageq();
887 for (i = 0; i < npages; i++) {
888 if (pgs[i] == NULL) {
889 continue;
890 }
891 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
892 pgs[i], pgs[i]->flags, 0,0);
893 if (pgs[i]->flags & PG_WANTED) {
894 wakeup(pgs[i]);
895 }
896 if (pgs[i]->flags & PG_RELEASED) {
897 uvm_unlock_pageq();
898 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
899 uvm_lock_pageq();
900 continue;
901 }
902 if (pgs[i]->flags & PG_FAKE) {
903 uvm_pagefree(pgs[i]);
904 continue;
905 }
906 uvm_pageactivate(pgs[i]);
907 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
908 UVM_PAGE_OWN(pgs[i], NULL);
909 }
910 uvm_unlock_pageq();
911 simple_unlock(&uobj->vmobjlock);
912 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
913 return error;
914 }
915
916 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
917 uvm_lock_pageq();
918 for (i = 0; i < npages; i++) {
919 if (pgs[i] == NULL) {
920 continue;
921 }
922 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
923 pgs[i], pgs[i]->flags, 0,0);
924 if (pgs[i]->flags & PG_FAKE) {
925 UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x",
926 pgs[i], pgs[i]->offset,0,0);
927 pgs[i]->flags &= ~(PG_FAKE);
928 pmap_clear_modify(pgs[i]);
929 pmap_clear_reference(pgs[i]);
930 }
931 if (write) {
932 pgs[i]->flags &= ~(PG_RDONLY);
933 }
934 if (i < ridx || i >= ridx + orignpages || async) {
935 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
936 pgs[i], pgs[i]->offset,0,0);
937 if (pgs[i]->flags & PG_WANTED) {
938 wakeup(pgs[i]);
939 }
940 if (pgs[i]->flags & PG_RELEASED) {
941 uvm_unlock_pageq();
942 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
943 uvm_lock_pageq();
944 continue;
945 }
946 uvm_pageactivate(pgs[i]);
947 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
948 UVM_PAGE_OWN(pgs[i], NULL);
949 }
950 }
951 uvm_unlock_pageq();
952 simple_unlock(&uobj->vmobjlock);
953 if (ap->a_m != NULL) {
954 memcpy(ap->a_m, &pgs[ridx],
955 orignpages * sizeof(struct vm_page *));
956 }
957 return 0;
958 }
959
960 /*
961 * generic VM putpages routine.
962 * Write the given range of pages to backing store.
963 */
964
965 int
966 genfs_putpages(v)
967 void *v;
968 {
969 struct vop_putpages_args /* {
970 struct vnode *a_vp;
971 struct vm_page **a_m;
972 int a_count;
973 int a_flags;
974 int *a_rtvals;
975 } */ *ap = v;
976
977 int s, error, npages, run;
978 int fs_bshift, dev_bshift, dev_bsize;
979 vaddr_t kva;
980 off_t eof, offset, startoffset;
981 size_t bytes, iobytes, skipbytes;
982 daddr_t lbn, blkno;
983 struct vm_page *pg;
984 struct buf *mbp, *bp;
985 struct vnode *vp = ap->a_vp;
986 struct vnode *devvp;
987 boolean_t async = (ap->a_flags & PGO_SYNCIO) == 0;
988 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
989 UVMHIST_LOG(ubchist, "vp %p offset 0x%x count %d",
990 vp, ap->a_m[0]->offset, ap->a_count, 0);
991
992 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
993
994 error = VOP_SIZE(vp, vp->v_uvm.u_size, &eof);
995 if (error) {
996 return error;
997 }
998
999 error = 0;
1000 npages = ap->a_count;
1001 if (vp->v_type == VREG) {
1002 fs_bshift = vp->v_mount->mnt_fs_bshift;
1003 dev_bshift = vp->v_mount->mnt_dev_bshift;
1004 } else {
1005 fs_bshift = DEV_BSHIFT;
1006 dev_bshift = DEV_BSHIFT;
1007 }
1008 dev_bsize = 1 << dev_bshift;
1009 KASSERT((eof & (dev_bsize - 1)) == 0);
1010
1011 pg = ap->a_m[0];
1012 startoffset = pg->offset;
1013 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1014 skipbytes = 0;
1015 KASSERT(bytes != 0);
1016
1017 kva = uvm_pagermapin(ap->a_m, npages, UVMPAGER_MAPIN_WAITOK);
1018
1019 s = splbio();
1020 vp->v_numoutput += 2;
1021 mbp = pool_get(&bufpool, PR_WAITOK);
1022 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1023 vp, mbp, vp->v_numoutput, bytes);
1024 splx(s);
1025 mbp->b_bufsize = npages << PAGE_SHIFT;
1026 mbp->b_data = (void *)kva;
1027 mbp->b_resid = mbp->b_bcount = bytes;
1028 mbp->b_flags = B_BUSY|B_WRITE|B_AGE |
1029 (async ? B_CALL : 0) |
1030 (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0);
1031 mbp->b_iodone = uvm_aio_biodone;
1032 mbp->b_vp = vp;
1033 LIST_INIT(&mbp->b_dep);
1034
1035 bp = NULL;
1036 for (offset = startoffset;
1037 bytes > 0;
1038 offset += iobytes, bytes -= iobytes) {
1039 lbn = offset >> fs_bshift;
1040 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1041 if (error) {
1042 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1043 skipbytes += bytes;
1044 bytes = 0;
1045 break;
1046 }
1047
1048 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1049 bytes);
1050 if (blkno == (daddr_t)-1) {
1051 skipbytes += iobytes;
1052 continue;
1053 }
1054
1055 /* if it's really one i/o, don't make a second buf */
1056 if (offset == startoffset && iobytes == bytes) {
1057 bp = mbp;
1058 } else {
1059 s = splbio();
1060 vp->v_numoutput++;
1061 bp = pool_get(&bufpool, PR_WAITOK);
1062 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1063 vp, bp, vp->v_numoutput, 0);
1064 splx(s);
1065 bp->b_data = (char *)kva +
1066 (vaddr_t)(offset - pg->offset);
1067 bp->b_resid = bp->b_bcount = iobytes;
1068 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1069 bp->b_iodone = uvm_aio_biodone1;
1070 bp->b_vp = vp;
1071 LIST_INIT(&bp->b_dep);
1072 }
1073 bp->b_lblkno = 0;
1074 bp->b_private = mbp;
1075 bp->b_devvp = devvp;
1076
1077 /* adjust physical blkno for partial blocks */
1078 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1079 dev_bshift);
1080 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1081 vp, offset, bp->b_bcount, bp->b_blkno);
1082 VOP_STRATEGY(bp);
1083 }
1084 if (skipbytes) {
1085 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1086 s = splbio();
1087 mbp->b_resid -= skipbytes;
1088 if (error) {
1089 mbp->b_flags |= B_ERROR;
1090 mbp->b_error = error;
1091 }
1092 if (mbp->b_resid == 0) {
1093 biodone(mbp);
1094 }
1095 splx(s);
1096 }
1097 if (async) {
1098 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1099 return 0;
1100 }
1101 if (bp != NULL) {
1102 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1103 error = biowait(mbp);
1104 }
1105 if (bioops.io_pageiodone) {
1106 (*bioops.io_pageiodone)(mbp);
1107 }
1108 s = splbio();
1109 vwakeup(mbp);
1110 pool_put(&bufpool, mbp);
1111 splx(s);
1112 uvm_pagermapout(kva, npages);
1113 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1114 return error;
1115 }
1116
1117 int
1118 genfs_size(v)
1119 void *v;
1120 {
1121 struct vop_size_args /* {
1122 struct vnode *a_vp;
1123 off_t a_size;
1124 off_t *a_eobp;
1125 } */ *ap = v;
1126 int bsize;
1127
1128 bsize = 1 << ap->a_vp->v_mount->mnt_fs_bshift;
1129 *ap->a_eobp = (ap->a_size + bsize - 1) & ~(bsize - 1);
1130 return 0;
1131 }
1132