genfs_vnops.c revision 1.38 1 /* $NetBSD: genfs_vnops.c,v 1.38 2001/09/21 07:52:25 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include "opt_nfsserver.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/malloc.h>
48 #include <sys/poll.h>
49 #include <sys/mman.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 #ifdef NFSSERVER
59 #include <nfs/rpcv2.h>
60 #include <nfs/nfsproto.h>
61 #include <nfs/nfs.h>
62 #include <nfs/nqnfs.h>
63 #include <nfs/nfs_var.h>
64 #endif
65
66 int
67 genfs_poll(v)
68 void *v;
69 {
70 struct vop_poll_args /* {
71 struct vnode *a_vp;
72 int a_events;
73 struct proc *a_p;
74 } */ *ap = v;
75
76 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
77 }
78
79 int
80 genfs_fsync(v)
81 void *v;
82 {
83 struct vop_fsync_args /* {
84 struct vnode *a_vp;
85 struct ucred *a_cred;
86 int a_flags;
87 off_t offlo;
88 off_t offhi;
89 struct proc *a_p;
90 } */ *ap = v;
91 struct vnode *vp = ap->a_vp;
92 int wait;
93
94 wait = (ap->a_flags & FSYNC_WAIT) != 0;
95 vflushbuf(vp, wait);
96 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
97 return (0);
98 else
99 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
100 }
101
102 int
103 genfs_seek(v)
104 void *v;
105 {
106 struct vop_seek_args /* {
107 struct vnode *a_vp;
108 off_t a_oldoff;
109 off_t a_newoff;
110 struct ucred *a_ucred;
111 } */ *ap = v;
112
113 if (ap->a_newoff < 0)
114 return (EINVAL);
115
116 return (0);
117 }
118
119 int
120 genfs_abortop(v)
121 void *v;
122 {
123 struct vop_abortop_args /* {
124 struct vnode *a_dvp;
125 struct componentname *a_cnp;
126 } */ *ap = v;
127
128 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
129 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
130 return (0);
131 }
132
133 int
134 genfs_fcntl(v)
135 void *v;
136 {
137 struct vop_fcntl_args /* {
138 struct vnode *a_vp;
139 u_int a_command;
140 caddr_t a_data;
141 int a_fflag;
142 struct ucred *a_cred;
143 struct proc *a_p;
144 } */ *ap = v;
145
146 if (ap->a_command == F_SETFL)
147 return (0);
148 else
149 return (EOPNOTSUPP);
150 }
151
152 /*ARGSUSED*/
153 int
154 genfs_badop(v)
155 void *v;
156 {
157
158 panic("genfs: bad op");
159 }
160
161 /*ARGSUSED*/
162 int
163 genfs_nullop(v)
164 void *v;
165 {
166
167 return (0);
168 }
169
170 /*ARGSUSED*/
171 int
172 genfs_einval(v)
173 void *v;
174 {
175
176 return (EINVAL);
177 }
178
179 /*ARGSUSED*/
180 int
181 genfs_eopnotsupp(v)
182 void *v;
183 {
184
185 return (EOPNOTSUPP);
186 }
187
188 /*
189 * Called when an fs doesn't support a particular vop but the vop needs to
190 * vrele, vput, or vunlock passed in vnodes.
191 */
192 int
193 genfs_eopnotsupp_rele(v)
194 void *v;
195 {
196 struct vop_generic_args /*
197 struct vnodeop_desc *a_desc;
198 / * other random data follows, presumably * /
199 } */ *ap = v;
200 struct vnodeop_desc *desc = ap->a_desc;
201 struct vnode *vp;
202 int flags, i, j, offset;
203
204 flags = desc->vdesc_flags;
205 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
206 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
207 break; /* stop at end of list */
208 if ((j = flags & VDESC_VP0_WILLPUT)) {
209 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
210 switch (j) {
211 case VDESC_VP0_WILLPUT:
212 vput(vp);
213 break;
214 case VDESC_VP0_WILLUNLOCK:
215 VOP_UNLOCK(vp, 0);
216 break;
217 case VDESC_VP0_WILLRELE:
218 vrele(vp);
219 break;
220 }
221 }
222 }
223
224 return (EOPNOTSUPP);
225 }
226
227 /*ARGSUSED*/
228 int
229 genfs_ebadf(v)
230 void *v;
231 {
232
233 return (EBADF);
234 }
235
236 /* ARGSUSED */
237 int
238 genfs_enoioctl(v)
239 void *v;
240 {
241
242 return (ENOTTY);
243 }
244
245
246 /*
247 * Eliminate all activity associated with the requested vnode
248 * and with all vnodes aliased to the requested vnode.
249 */
250 int
251 genfs_revoke(v)
252 void *v;
253 {
254 struct vop_revoke_args /* {
255 struct vnode *a_vp;
256 int a_flags;
257 } */ *ap = v;
258 struct vnode *vp, *vq;
259 struct proc *p = curproc; /* XXX */
260
261 #ifdef DIAGNOSTIC
262 if ((ap->a_flags & REVOKEALL) == 0)
263 panic("genfs_revoke: not revokeall");
264 #endif
265
266 vp = ap->a_vp;
267 simple_lock(&vp->v_interlock);
268
269 if (vp->v_flag & VALIASED) {
270 /*
271 * If a vgone (or vclean) is already in progress,
272 * wait until it is done and return.
273 */
274 if (vp->v_flag & VXLOCK) {
275 vp->v_flag |= VXWANT;
276 simple_unlock(&vp->v_interlock);
277 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
278 return (0);
279 }
280 /*
281 * Ensure that vp will not be vgone'd while we
282 * are eliminating its aliases.
283 */
284 vp->v_flag |= VXLOCK;
285 simple_unlock(&vp->v_interlock);
286 while (vp->v_flag & VALIASED) {
287 simple_lock(&spechash_slock);
288 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
289 if (vq->v_rdev != vp->v_rdev ||
290 vq->v_type != vp->v_type || vp == vq)
291 continue;
292 simple_unlock(&spechash_slock);
293 vgone(vq);
294 break;
295 }
296 if (vq == NULLVP)
297 simple_unlock(&spechash_slock);
298 }
299 /*
300 * Remove the lock so that vgone below will
301 * really eliminate the vnode after which time
302 * vgone will awaken any sleepers.
303 */
304 simple_lock(&vp->v_interlock);
305 vp->v_flag &= ~VXLOCK;
306 }
307 vgonel(vp, p);
308 return (0);
309 }
310
311 /*
312 * Lock the node.
313 */
314 int
315 genfs_lock(v)
316 void *v;
317 {
318 struct vop_lock_args /* {
319 struct vnode *a_vp;
320 int a_flags;
321 } */ *ap = v;
322 struct vnode *vp = ap->a_vp;
323
324 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
325 }
326
327 /*
328 * Unlock the node.
329 */
330 int
331 genfs_unlock(v)
332 void *v;
333 {
334 struct vop_unlock_args /* {
335 struct vnode *a_vp;
336 int a_flags;
337 } */ *ap = v;
338 struct vnode *vp = ap->a_vp;
339
340 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
341 &vp->v_interlock));
342 }
343
344 /*
345 * Return whether or not the node is locked.
346 */
347 int
348 genfs_islocked(v)
349 void *v;
350 {
351 struct vop_islocked_args /* {
352 struct vnode *a_vp;
353 } */ *ap = v;
354 struct vnode *vp = ap->a_vp;
355
356 return (lockstatus(&vp->v_lock));
357 }
358
359 /*
360 * Stubs to use when there is no locking to be done on the underlying object.
361 */
362 int
363 genfs_nolock(v)
364 void *v;
365 {
366 struct vop_lock_args /* {
367 struct vnode *a_vp;
368 int a_flags;
369 struct proc *a_p;
370 } */ *ap = v;
371
372 /*
373 * Since we are not using the lock manager, we must clear
374 * the interlock here.
375 */
376 if (ap->a_flags & LK_INTERLOCK)
377 simple_unlock(&ap->a_vp->v_interlock);
378 return (0);
379 }
380
381 int
382 genfs_nounlock(v)
383 void *v;
384 {
385 return (0);
386 }
387
388 int
389 genfs_noislocked(v)
390 void *v;
391 {
392 return (0);
393 }
394
395 /*
396 * Local lease check for NFS servers. Just set up args and let
397 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
398 * this is a null operation.
399 */
400 int
401 genfs_lease_check(v)
402 void *v;
403 {
404 #ifdef NFSSERVER
405 struct vop_lease_args /* {
406 struct vnode *a_vp;
407 struct proc *a_p;
408 struct ucred *a_cred;
409 int a_flag;
410 } */ *ap = v;
411 u_int32_t duration = 0;
412 int cache;
413 u_quad_t frev;
414
415 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
416 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
417 return (0);
418 #else
419 return (0);
420 #endif /* NFSSERVER */
421 }
422
423 int
424 genfs_mmap(v)
425 void *v;
426 {
427 return 0;
428 }
429
430 /*
431 * generic VM getpages routine.
432 * Return PG_BUSY pages for the given range,
433 * reading from backing store if necessary.
434 */
435
436 int
437 genfs_getpages(v)
438 void *v;
439 {
440 struct vop_getpages_args /* {
441 struct vnode *a_vp;
442 voff_t a_offset;
443 struct vm_page **a_m;
444 int *a_count;
445 int a_centeridx;
446 vm_prot_t a_access_type;
447 int a_advice;
448 int a_flags;
449 } */ *ap = v;
450
451 off_t newsize, diskeof, memeof;
452 off_t offset, origoffset, startoffset, endoffset, raoffset;
453 daddr_t lbn, blkno;
454 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
455 int fs_bshift, fs_bsize, dev_bshift;
456 int flags = ap->a_flags;
457 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
458 vaddr_t kva;
459 struct buf *bp, *mbp;
460 struct vnode *vp = ap->a_vp;
461 struct vnode *devvp;
462 struct genfs_node *gp = VTOG(vp);
463 struct uvm_object *uobj = &vp->v_uobj;
464 struct vm_page *pg, *pgs[16]; /* XXXUBC 16 */
465 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
466 boolean_t async = (flags & PGO_SYNCIO) == 0;
467 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
468 boolean_t sawhole = FALSE;
469 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
470 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
471
472 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
473 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
474
475 /* XXXUBC temp limit */
476 if (*ap->a_count > 16) {
477 panic("genfs_getpages: too many pages");
478 }
479
480 error = 0;
481 origoffset = ap->a_offset;
482 orignpages = *ap->a_count;
483 GOP_SIZE(vp, vp->v_size, &diskeof);
484 if (flags & PGO_PASTEOF) {
485 newsize = MAX(vp->v_size,
486 origoffset + (orignpages << PAGE_SHIFT));
487 GOP_SIZE(vp, newsize, &memeof);
488 } else {
489 memeof = diskeof;
490 }
491 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
492 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
493 KASSERT(orignpages > 0);
494
495 /*
496 * Bounds-check the request.
497 */
498
499 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
500 if ((flags & PGO_LOCKED) == 0) {
501 simple_unlock(&uobj->vmobjlock);
502 }
503 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
504 origoffset, *ap->a_count, memeof,0);
505 return EINVAL;
506 }
507
508 /*
509 * For PGO_LOCKED requests, just return whatever's in memory.
510 */
511
512 if (flags & PGO_LOCKED) {
513 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
514 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
515
516 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
517 }
518
519 /* vnode is VOP_LOCKed, uobj is locked */
520
521 if (write && (vp->v_flag & VONWORKLST) == 0) {
522 vn_syncer_add_to_worklist(vp, filedelay);
523 }
524
525 /*
526 * find the requested pages and make some simple checks.
527 * leave space in the page array for a whole block.
528 */
529
530 if (vp->v_type == VREG) {
531 fs_bshift = vp->v_mount->mnt_fs_bshift;
532 dev_bshift = vp->v_mount->mnt_dev_bshift;
533 } else {
534 fs_bshift = DEV_BSHIFT;
535 dev_bshift = DEV_BSHIFT;
536 }
537 fs_bsize = 1 << fs_bshift;
538
539 orignpages = MIN(orignpages,
540 round_page(memeof - origoffset) >> PAGE_SHIFT);
541 npages = orignpages;
542 startoffset = origoffset & ~(fs_bsize - 1);
543 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
544 + fs_bsize - 1) & ~(fs_bsize - 1));
545 endoffset = MIN(endoffset, round_page(memeof));
546 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
547
548 memset(pgs, 0, sizeof(pgs));
549 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
550
551 /*
552 * if the pages are already resident, just return them.
553 */
554
555 for (i = 0; i < npages; i++) {
556 struct vm_page *pg = pgs[ridx + i];
557
558 if ((pg->flags & PG_FAKE) ||
559 (write && (pg->flags & PG_RDONLY))) {
560 break;
561 }
562 }
563 if (i == npages) {
564 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
565 raoffset = origoffset + (orignpages << PAGE_SHIFT);
566 npages += ridx;
567 goto raout;
568 }
569
570 /*
571 * if PGO_OVERWRITE is set, don't bother reading the pages.
572 */
573
574 if (flags & PGO_OVERWRITE) {
575 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
576
577 for (i = 0; i < npages; i++) {
578 struct vm_page *pg = pgs[ridx + i];
579
580 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
581 }
582 npages += ridx;
583 goto out;
584 }
585
586 /*
587 * the page wasn't resident and we're not overwriting,
588 * so we're going to have to do some i/o.
589 * find any additional pages needed to cover the expanded range.
590 */
591
592 npages = (endoffset - startoffset) >> PAGE_SHIFT;
593 if (startoffset != origoffset || npages != orignpages) {
594
595 /*
596 * we need to avoid deadlocks caused by locking
597 * additional pages at lower offsets than pages we
598 * already have locked. unlock them all and start over.
599 */
600
601 for (i = 0; i < orignpages; i++) {
602 struct vm_page *pg = pgs[ridx + i];
603
604 if (pg->flags & PG_FAKE) {
605 pg->flags |= PG_RELEASED;
606 }
607 }
608 uvm_page_unbusy(&pgs[ridx], orignpages);
609 memset(pgs, 0, sizeof(pgs));
610
611 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
612 startoffset, endoffset, 0,0);
613 npgs = npages;
614 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
615 }
616 simple_unlock(&uobj->vmobjlock);
617
618 /*
619 * read the desired page(s).
620 */
621
622 totalbytes = npages << PAGE_SHIFT;
623 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
624 tailbytes = totalbytes - bytes;
625 skipbytes = 0;
626
627 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
628 UVMPAGER_MAPIN_READ);
629
630 s = splbio();
631 mbp = pool_get(&bufpool, PR_WAITOK);
632 splx(s);
633 mbp->b_bufsize = totalbytes;
634 mbp->b_data = (void *)kva;
635 mbp->b_resid = mbp->b_bcount = bytes;
636 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
637 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
638 mbp->b_vp = vp;
639 LIST_INIT(&mbp->b_dep);
640
641 /*
642 * if EOF is in the middle of the range, zero the part past EOF.
643 * if the page including EOF is not PG_FAKE, skip over it since
644 * in that case it has valid data that we need to preserve.
645 */
646
647 if (tailbytes > 0) {
648 size_t tailstart = bytes;
649
650 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
651 tailstart = round_page(tailstart);
652 tailbytes -= tailstart - bytes;
653 }
654 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
655 kva, tailstart, tailbytes,0);
656 memset((void *)(kva + tailstart), 0, tailbytes);
657 }
658
659 /*
660 * now loop over the pages, reading as needed.
661 */
662
663 if (write) {
664 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
665 } else {
666 lockmgr(&gp->g_glock, LK_SHARED, NULL);
667 }
668
669 bp = NULL;
670 for (offset = startoffset;
671 bytes > 0;
672 offset += iobytes, bytes -= iobytes) {
673
674 /*
675 * skip pages which don't need to be read.
676 */
677
678 pidx = (offset - startoffset) >> PAGE_SHIFT;
679 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
680 size_t b;
681
682 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
683 b = MIN(PAGE_SIZE, bytes);
684 offset += b;
685 bytes -= b;
686 skipbytes += b;
687 pidx++;
688 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
689 offset, 0,0,0);
690 if (bytes == 0) {
691 goto loopdone;
692 }
693 }
694
695 /*
696 * bmap the file to find out the blkno to read from and
697 * how much we can read in one i/o. if bmap returns an error,
698 * skip the rest of the top-level i/o.
699 */
700
701 lbn = offset >> fs_bshift;
702 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
703 if (error) {
704 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
705 lbn, error,0,0);
706 skipbytes += bytes;
707 goto loopdone;
708 }
709
710 /*
711 * see how many pages can be read with this i/o.
712 * reduce the i/o size if necessary to avoid
713 * overwriting pages with valid data.
714 */
715
716 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
717 bytes);
718 if (offset + iobytes > round_page(offset)) {
719 pcount = 1;
720 while (pidx + pcount < npages &&
721 pgs[pidx + pcount]->flags & PG_FAKE) {
722 pcount++;
723 }
724 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
725 (offset - trunc_page(offset)));
726 }
727
728 /*
729 * if this block isn't allocated, zero it instead of reading it.
730 * if this is a read access, mark the pages we zeroed PG_RDONLY.
731 */
732
733 if (blkno < 0) {
734 int holepages = (round_page(offset + iobytes) -
735 trunc_page(offset)) >> PAGE_SHIFT;
736 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
737
738 sawhole = TRUE;
739 memset((char *)kva + (offset - startoffset), 0,
740 iobytes);
741 skipbytes += iobytes;
742
743 for (i = 0; i < holepages; i++) {
744 if (write) {
745 pgs[pidx + i]->flags &= ~PG_CLEAN;
746 } else {
747 pgs[pidx + i]->flags |= PG_RDONLY;
748 }
749 }
750 continue;
751 }
752
753 /*
754 * allocate a sub-buf for this piece of the i/o
755 * (or just use mbp if there's only 1 piece),
756 * and start it going.
757 */
758
759 if (offset == startoffset && iobytes == bytes) {
760 bp = mbp;
761 } else {
762 s = splbio();
763 bp = pool_get(&bufpool, PR_WAITOK);
764 splx(s);
765 bp->b_data = (char *)kva + offset - startoffset;
766 bp->b_resid = bp->b_bcount = iobytes;
767 bp->b_flags = B_BUSY|B_READ|B_CALL;
768 bp->b_iodone = uvm_aio_biodone1;
769 bp->b_vp = vp;
770 bp->b_proc = NULL;
771 LIST_INIT(&bp->b_dep);
772 }
773 bp->b_lblkno = 0;
774 bp->b_private = mbp;
775 if (devvp->v_type == VBLK) {
776 bp->b_dev = devvp->v_rdev;
777 }
778
779 /* adjust physical blkno for partial blocks */
780 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
781 dev_bshift);
782
783 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
784 bp, offset, iobytes, bp->b_blkno);
785
786 VOP_STRATEGY(bp);
787 }
788
789 loopdone:
790 if (skipbytes) {
791 s = splbio();
792 if (error) {
793 mbp->b_flags |= B_ERROR;
794 mbp->b_error = error;
795 }
796 mbp->b_resid -= skipbytes;
797 if (mbp->b_resid == 0) {
798 biodone(mbp);
799 }
800 splx(s);
801 }
802
803 if (async) {
804 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
805 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
806 return 0;
807 }
808 if (bp != NULL) {
809 error = biowait(mbp);
810 }
811 s = splbio();
812 pool_put(&bufpool, mbp);
813 splx(s);
814 uvm_pagermapout(kva, npages);
815 raoffset = startoffset + totalbytes;
816
817 /*
818 * if this we encountered a hole then we have to do a little more work.
819 * for read faults, we marked the page PG_RDONLY so that future
820 * write accesses to the page will fault again.
821 * for write faults, we must make sure that the backing store for
822 * the page is completely allocated while the pages are locked.
823 */
824
825 if (!error && sawhole && write) {
826 for (i = 0; i < npages; i++) {
827 if (pgs[i] == NULL) {
828 continue;
829 }
830 pgs[i]->flags &= ~PG_CLEAN;
831 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
832 }
833 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
834 cred);
835 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
836 startoffset, npages << PAGE_SHIFT, error,0);
837 }
838 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
839 simple_lock(&uobj->vmobjlock);
840
841 /*
842 * see if we want to start any readahead.
843 * XXXUBC for now, just read the next 128k on 64k boundaries.
844 * this is pretty nonsensical, but it is 50% faster than reading
845 * just the next 64k.
846 */
847
848 raout:
849 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
850 PAGE_SHIFT <= 16) {
851 int racount;
852
853 racount = 1 << (16 - PAGE_SHIFT);
854 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
855 VM_PROT_READ, 0, 0);
856 simple_lock(&uobj->vmobjlock);
857
858 racount = 1 << (16 - PAGE_SHIFT);
859 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
860 VM_PROT_READ, 0, 0);
861 simple_lock(&uobj->vmobjlock);
862 }
863
864 /*
865 * we're almost done! release the pages...
866 * for errors, we free the pages.
867 * otherwise we activate them and mark them as valid and clean.
868 * also, unbusy pages that were not actually requested.
869 */
870
871 if (error) {
872 for (i = 0; i < npages; i++) {
873 if (pgs[i] == NULL) {
874 continue;
875 }
876 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
877 pgs[i], pgs[i]->flags, 0,0);
878 if (pgs[i]->flags & PG_FAKE) {
879 pgs[i]->flags |= PG_RELEASED;
880 }
881 }
882 uvm_lock_pageq();
883 uvm_page_unbusy(pgs, npages);
884 uvm_unlock_pageq();
885 simple_unlock(&uobj->vmobjlock);
886 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
887 return error;
888 }
889
890 out:
891 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
892 uvm_lock_pageq();
893 for (i = 0; i < npages; i++) {
894 pg = pgs[i];
895 if (pg == NULL) {
896 continue;
897 }
898 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
899 pg, pg->flags, 0,0);
900 if (pg->flags & PG_FAKE && !overwrite) {
901 pg->flags &= ~(PG_FAKE);
902 pmap_clear_modify(pgs[i]);
903 }
904 if (write) {
905 pg->flags &= ~(PG_RDONLY);
906 }
907 if (i < ridx || i >= ridx + orignpages || async) {
908 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
909 pg, pg->offset,0,0);
910 if (pg->flags & PG_WANTED) {
911 wakeup(pg);
912 }
913 if (pg->flags & PG_FAKE) {
914 KASSERT(overwrite);
915 uvm_pagezero(pg);
916 }
917 if (pg->flags & PG_RELEASED) {
918 uvm_pagefree(pg);
919 continue;
920 }
921 uvm_pageactivate(pg);
922 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
923 UVM_PAGE_OWN(pg, NULL);
924 }
925 }
926 uvm_unlock_pageq();
927 simple_unlock(&uobj->vmobjlock);
928 if (ap->a_m != NULL) {
929 memcpy(ap->a_m, &pgs[ridx],
930 orignpages * sizeof(struct vm_page *));
931 }
932 return 0;
933 }
934
935 /*
936 * generic VM putpages routine.
937 * Write the given range of pages to backing store.
938 *
939 * => "offhi == 0" means flush all pages at or after "offlo".
940 * => object should be locked by caller. we may _unlock_ the object
941 * if (and only if) we need to clean a page (PGO_CLEANIT), or
942 * if PGO_SYNCIO is set and there are pages busy.
943 * we return with the object locked.
944 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
945 * thus, a caller might want to unlock higher level resources
946 * (e.g. vm_map) before calling flush.
947 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
948 * unlock the object nor block.
949 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
950 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
951 * that new pages are inserted on the tail end of the list. thus,
952 * we can make a complete pass through the object in one go by starting
953 * at the head and working towards the tail (new pages are put in
954 * front of us).
955 * => NOTE: we are allowed to lock the page queues, so the caller
956 * must not be holding the page queue lock.
957 *
958 * note on "cleaning" object and PG_BUSY pages:
959 * this routine is holding the lock on the object. the only time
960 * that it can run into a PG_BUSY page that it does not own is if
961 * some other process has started I/O on the page (e.g. either
962 * a pagein, or a pageout). if the PG_BUSY page is being paged
963 * in, then it can not be dirty (!PG_CLEAN) because no one has
964 * had a chance to modify it yet. if the PG_BUSY page is being
965 * paged out then it means that someone else has already started
966 * cleaning the page for us (how nice!). in this case, if we
967 * have syncio specified, then after we make our pass through the
968 * object we need to wait for the other PG_BUSY pages to clear
969 * off (i.e. we need to do an iosync). also note that once a
970 * page is PG_BUSY it must stay in its object until it is un-busyed.
971 *
972 * note on page traversal:
973 * we can traverse the pages in an object either by going down the
974 * linked list in "uobj->memq", or we can go over the address range
975 * by page doing hash table lookups for each address. depending
976 * on how many pages are in the object it may be cheaper to do one
977 * or the other. we set "by_list" to true if we are using memq.
978 * if the cost of a hash lookup was equal to the cost of the list
979 * traversal we could compare the number of pages in the start->stop
980 * range to the total number of pages in the object. however, it
981 * seems that a hash table lookup is more expensive than the linked
982 * list traversal, so we multiply the number of pages in the
983 * range by an estimate of the relatively higher cost of the hash lookup.
984 */
985
986 int
987 genfs_putpages(v)
988 void *v;
989 {
990 struct vop_putpages_args /* {
991 struct vnode *a_vp;
992 voff_t a_offlo;
993 voff_t a_offhi;
994 int a_flags;
995 } */ *ap = v;
996 struct vnode *vp = ap->a_vp;
997 struct uvm_object *uobj = &vp->v_uobj;
998 off_t startoff = ap->a_offlo;
999 off_t endoff = ap->a_offhi;
1000 off_t off;
1001 int flags = ap->a_flags;
1002 int n = MAXBSIZE >> PAGE_SHIFT;
1003 int i, s, error, npages, nback;
1004 int freeflag;
1005 struct vm_page *pgs[n], *pg, *nextpg, *tpg, curmp, endmp;
1006 boolean_t wasclean, by_list, needs_clean;
1007 boolean_t async = (flags & PGO_SYNCIO) == 0;
1008 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1009
1010 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1011 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1012 KASSERT(startoff < endoff || endoff == 0);
1013
1014 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1015 vp, uobj->uo_npages, startoff, endoff - startoff);
1016 if (uobj->uo_npages == 0) {
1017 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1018 (vp->v_flag & VONWORKLST)) {
1019 vp->v_flag &= ~VONWORKLST;
1020 LIST_REMOVE(vp, v_synclist);
1021 }
1022 simple_unlock(&uobj->vmobjlock);
1023 return 0;
1024 }
1025
1026 /*
1027 * the vnode has pages, set up to process the request.
1028 */
1029
1030 error = 0;
1031 wasclean = TRUE;
1032 off = startoff;
1033 if (endoff == 0 || flags & PGO_ALLPAGES) {
1034 endoff = trunc_page(LLONG_MAX);
1035 }
1036 by_list = (uobj->uo_npages <=
1037 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1038
1039 /*
1040 * start the loop. when scanning by list, hold the last page
1041 * in the list before we start. pages allocated after we start
1042 * will be added to the end of the list, so we can stop at the
1043 * current last page.
1044 */
1045
1046 freeflag = (curproc == uvm.pagedaemon_proc) ? PG_PAGEOUT : PG_RELEASED;
1047 curmp.uobject = uobj;
1048 curmp.offset = (voff_t)-1;
1049 curmp.flags = PG_BUSY;
1050 endmp.uobject = uobj;
1051 endmp.offset = (voff_t)-1;
1052 endmp.flags = PG_BUSY;
1053 if (by_list) {
1054 pg = TAILQ_FIRST(&uobj->memq);
1055 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1056 PHOLD(curproc);
1057 } else {
1058 pg = uvm_pagelookup(uobj, off);
1059 }
1060 nextpg = NULL;
1061 while (by_list || off < endoff) {
1062
1063 /*
1064 * if the current page is not interesting, move on to the next.
1065 */
1066
1067 KASSERT(pg == NULL || pg->uobject == uobj);
1068 KASSERT(pg == NULL ||
1069 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1070 (pg->flags & PG_BUSY) != 0);
1071 if (by_list) {
1072 if (pg == &endmp) {
1073 break;
1074 }
1075 if (pg->offset < startoff || pg->offset >= endoff ||
1076 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1077 pg = TAILQ_NEXT(pg, listq);
1078 continue;
1079 }
1080 off = pg->offset;
1081 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1082 off += PAGE_SIZE;
1083 if (off < endoff) {
1084 pg = uvm_pagelookup(uobj, off);
1085 }
1086 continue;
1087 }
1088
1089 /*
1090 * if the current page needs to be cleaned and it's busy,
1091 * wait for it to become unbusy.
1092 */
1093
1094 if (flags & PGO_FREE) {
1095 pmap_page_protect(pg, VM_PROT_NONE);
1096 }
1097 if (flags & PGO_CLEANIT) {
1098 needs_clean = pmap_clear_modify(pg) ||
1099 (pg->flags & PG_CLEAN) == 0;
1100 pg->flags |= PG_CLEAN;
1101 } else {
1102 needs_clean = FALSE;
1103 }
1104 if (needs_clean && pg->flags & PG_BUSY) {
1105 KASSERT(curproc != uvm.pagedaemon_proc);
1106 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1107 if (by_list) {
1108 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1109 UVMHIST_LOG(ubchist, "curmp next %p",
1110 TAILQ_NEXT(&curmp, listq), 0,0,0);
1111 }
1112 pg->flags |= PG_WANTED;
1113 pg->flags &= ~PG_CLEAN;
1114 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
1115 "genput", 0);
1116 simple_lock(&uobj->vmobjlock);
1117 if (by_list) {
1118 UVMHIST_LOG(ubchist, "after next %p",
1119 TAILQ_NEXT(&curmp, listq), 0,0,0);
1120 pg = TAILQ_NEXT(&curmp, listq);
1121 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1122 } else {
1123 pg = uvm_pagelookup(uobj, off);
1124 }
1125 continue;
1126 }
1127
1128 /*
1129 * if we're cleaning, build a cluster.
1130 * the cluster will consist of pages which are currently dirty,
1131 * but they will be returned to us marked clean.
1132 * if not cleaning, just operate on the one page.
1133 */
1134
1135 if (needs_clean) {
1136 wasclean = FALSE;
1137 memset(pgs, 0, sizeof(pgs));
1138 pg->flags |= PG_BUSY;
1139 UVM_PAGE_OWN(pg, "genfs_putpages");
1140
1141 /*
1142 * first look backward.
1143 */
1144
1145 npages = MIN(n >> 1, off >> PAGE_SHIFT);
1146 nback = npages;
1147 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1148 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1149 if (nback) {
1150 memmove(&pgs[0], &pgs[npages - nback],
1151 nback * sizeof(pgs[0]));
1152 }
1153 n -= nback;
1154
1155 /*
1156 * then plug in our page of interest.
1157 */
1158
1159 pgs[nback] = pg;
1160
1161 /*
1162 * then look forward to fill in the remaining space in
1163 * the array of pages.
1164 */
1165
1166 npages = MIN(n, (endoff - off) >> PAGE_SHIFT) - 1;
1167 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1168 &pgs[nback + 1],
1169 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1170 npages += nback + 1;
1171 } else {
1172 pgs[0] = pg;
1173 npages = 1;
1174 }
1175
1176 /*
1177 * apply FREE or DEACTIVATE options if requested.
1178 */
1179
1180 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1181 uvm_lock_pageq();
1182 }
1183 for (i = 0; i < npages; i++) {
1184 tpg = pgs[i];
1185 KASSERT(tpg->uobject == uobj);
1186 if (flags & PGO_DEACTIVATE &&
1187 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1188 tpg->wire_count == 0) {
1189 (void) pmap_clear_reference(tpg);
1190 uvm_pagedeactivate(tpg);
1191 } else if (flags & PGO_FREE) {
1192 pmap_page_protect(tpg, VM_PROT_NONE);
1193 if (tpg->flags & PG_BUSY) {
1194 tpg->flags |= freeflag;
1195 if (freeflag == PG_PAGEOUT) {
1196 uvmexp.paging++;
1197 uvm_pagedequeue(tpg);
1198 }
1199 } else {
1200 nextpg = TAILQ_NEXT(tpg, listq);
1201 uvm_pagefree(tpg);
1202 }
1203 }
1204 }
1205 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1206 uvm_unlock_pageq();
1207 }
1208 if (needs_clean) {
1209
1210 /*
1211 * start the i/o. if we're traversing by list,
1212 * keep our place in the list with a marker page.
1213 */
1214
1215 if (by_list) {
1216 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1217 listq);
1218 }
1219 simple_unlock(&uobj->vmobjlock);
1220 error = GOP_WRITE(vp, pgs, npages, flags);
1221 simple_lock(&uobj->vmobjlock);
1222 if (by_list) {
1223 pg = TAILQ_NEXT(&curmp, listq);
1224 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1225 }
1226 if (error == ENOMEM) {
1227 for (i = 0; i < npages; i++) {
1228 tpg = pgs[i];
1229 if (tpg->flags & PG_PAGEOUT) {
1230 tpg->flags &= ~PG_PAGEOUT;
1231 uvmexp.paging--;
1232 }
1233 tpg->flags &= ~PG_CLEAN;
1234 uvm_pageactivate(tpg);
1235 }
1236 uvm_page_unbusy(pgs, npages);
1237 }
1238 if (error) {
1239 break;
1240 }
1241 if (by_list) {
1242 continue;
1243 }
1244 }
1245
1246 /*
1247 * find the next page and continue if there was no error.
1248 */
1249
1250 if (by_list) {
1251 if (nextpg) {
1252 pg = nextpg;
1253 nextpg = NULL;
1254 } else {
1255 pg = TAILQ_NEXT(pg, listq);
1256 }
1257 } else {
1258 off += PAGE_SIZE;
1259 if (off < endoff) {
1260 pg = uvm_pagelookup(uobj, off);
1261 }
1262 }
1263 }
1264 if (by_list) {
1265 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1266 PRELE(curproc);
1267 }
1268
1269 /*
1270 * if we're cleaning and there was nothing to clean,
1271 * take us off the syncer list. if we started any i/o
1272 * and we're doing sync i/o, wait for all writes to finish.
1273 */
1274
1275 if ((flags & PGO_CLEANIT) && wasclean &&
1276 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1277 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1278 (vp->v_flag & VONWORKLST)) {
1279 vp->v_flag &= ~VONWORKLST;
1280 LIST_REMOVE(vp, v_synclist);
1281 }
1282 if (!wasclean && !async) {
1283 s = splbio();
1284 while (vp->v_numoutput != 0) {
1285 vp->v_flag |= VBWAIT;
1286 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, &uobj->vmobjlock,
1287 FALSE, "genput2",0);
1288 simple_lock(&uobj->vmobjlock);
1289 }
1290 splx(s);
1291 }
1292 simple_unlock(&uobj->vmobjlock);
1293 return error;
1294 }
1295
1296 int
1297 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1298 {
1299 int s, error, run;
1300 int fs_bshift, dev_bshift;
1301 vaddr_t kva;
1302 off_t eof, offset, startoffset;
1303 size_t bytes, iobytes, skipbytes;
1304 daddr_t lbn, blkno;
1305 struct vm_page *pg;
1306 struct buf *mbp, *bp;
1307 struct vnode *devvp;
1308 boolean_t async = (flags & PGO_SYNCIO) == 0;
1309 UVMHIST_FUNC("genfs_do_putpages"); UVMHIST_CALLED(ubchist);
1310
1311 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1312 vp, pgs, npages, flags);
1313
1314 GOP_SIZE(vp, vp->v_size, &eof);
1315 if (vp->v_type == VREG) {
1316 fs_bshift = vp->v_mount->mnt_fs_bshift;
1317 dev_bshift = vp->v_mount->mnt_dev_bshift;
1318 } else {
1319 fs_bshift = DEV_BSHIFT;
1320 dev_bshift = DEV_BSHIFT;
1321 }
1322 error = 0;
1323 pg = pgs[0];
1324 startoffset = pg->offset;
1325 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1326 skipbytes = 0;
1327 KASSERT(bytes != 0);
1328
1329 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1330 UVMPAGER_MAPIN_WAITOK);
1331
1332 s = splbio();
1333 vp->v_numoutput += 2;
1334 mbp = pool_get(&bufpool, PR_WAITOK);
1335 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1336 vp, mbp, vp->v_numoutput, bytes);
1337 splx(s);
1338 mbp->b_bufsize = npages << PAGE_SHIFT;
1339 mbp->b_data = (void *)kva;
1340 mbp->b_resid = mbp->b_bcount = bytes;
1341 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? B_CALL : 0);
1342 mbp->b_iodone = uvm_aio_biodone;
1343 mbp->b_vp = vp;
1344 LIST_INIT(&mbp->b_dep);
1345
1346 bp = NULL;
1347 for (offset = startoffset;
1348 bytes > 0;
1349 offset += iobytes, bytes -= iobytes) {
1350 lbn = offset >> fs_bshift;
1351 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1352 if (error) {
1353 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1354 skipbytes += bytes;
1355 bytes = 0;
1356 break;
1357 }
1358
1359 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1360 bytes);
1361 if (blkno == (daddr_t)-1) {
1362 skipbytes += iobytes;
1363 continue;
1364 }
1365
1366 /* if it's really one i/o, don't make a second buf */
1367 if (offset == startoffset && iobytes == bytes) {
1368 bp = mbp;
1369 } else {
1370 s = splbio();
1371 vp->v_numoutput++;
1372 bp = pool_get(&bufpool, PR_WAITOK);
1373 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1374 vp, bp, vp->v_numoutput, 0);
1375 splx(s);
1376 bp->b_data = (char *)kva +
1377 (vaddr_t)(offset - pg->offset);
1378 bp->b_resid = bp->b_bcount = iobytes;
1379 bp->b_flags = B_BUSY|B_WRITE|B_CALL;
1380 bp->b_iodone = uvm_aio_biodone1;
1381 bp->b_vp = vp;
1382 LIST_INIT(&bp->b_dep);
1383 }
1384 bp->b_lblkno = 0;
1385 bp->b_private = mbp;
1386 if (devvp->v_type == VBLK) {
1387 bp->b_dev = devvp->v_rdev;
1388 }
1389
1390 /* adjust physical blkno for partial blocks */
1391 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1392 dev_bshift);
1393 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1394 vp, offset, bp->b_bcount, bp->b_blkno);
1395 VOP_STRATEGY(bp);
1396 }
1397 if (skipbytes) {
1398 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1399 s = splbio();
1400 if (error) {
1401 mbp->b_flags |= B_ERROR;
1402 mbp->b_error = error;
1403 }
1404 mbp->b_resid -= skipbytes;
1405 if (mbp->b_resid == 0) {
1406 biodone(mbp);
1407 }
1408 splx(s);
1409 }
1410 if (async) {
1411 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1412 return 0;
1413 }
1414 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1415 error = biowait(mbp);
1416 uvm_aio_aiodone(mbp);
1417 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1418 return error;
1419 }
1420
1421 void
1422 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1423 {
1424 struct genfs_node *gp = VTOG(vp);
1425
1426 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1427 gp->g_op = ops;
1428 }
1429
1430 void
1431 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1432 {
1433 int bsize;
1434
1435 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1436 *eobp = (size + bsize - 1) & ~(bsize - 1);
1437 }
1438