Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.40
      1 /*	$NetBSD: genfs_vnops.c,v 1.40 2001/11/10 13:33:41 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.40 2001/11/10 13:33:41 lukem Exp $");
     39 
     40 #include "opt_nfsserver.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mount.h>
     47 #include <sys/namei.h>
     48 #include <sys/vnode.h>
     49 #include <sys/fcntl.h>
     50 #include <sys/malloc.h>
     51 #include <sys/poll.h>
     52 #include <sys/mman.h>
     53 
     54 #include <miscfs/genfs/genfs.h>
     55 #include <miscfs/genfs/genfs_node.h>
     56 #include <miscfs/specfs/specdev.h>
     57 
     58 #include <uvm/uvm.h>
     59 #include <uvm/uvm_pager.h>
     60 
     61 #ifdef NFSSERVER
     62 #include <nfs/rpcv2.h>
     63 #include <nfs/nfsproto.h>
     64 #include <nfs/nfs.h>
     65 #include <nfs/nqnfs.h>
     66 #include <nfs/nfs_var.h>
     67 #endif
     68 
     69 int
     70 genfs_poll(v)
     71 	void *v;
     72 {
     73 	struct vop_poll_args /* {
     74 		struct vnode *a_vp;
     75 		int a_events;
     76 		struct proc *a_p;
     77 	} */ *ap = v;
     78 
     79 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     80 }
     81 
     82 int
     83 genfs_fsync(v)
     84 	void *v;
     85 {
     86 	struct vop_fsync_args /* {
     87 		struct vnode *a_vp;
     88 		struct ucred *a_cred;
     89 		int a_flags;
     90 		off_t offlo;
     91 		off_t offhi;
     92 		struct proc *a_p;
     93 	} */ *ap = v;
     94 	struct vnode *vp = ap->a_vp;
     95 	int wait;
     96 
     97 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
     98 	vflushbuf(vp, wait);
     99 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
    100 		return (0);
    101 	else
    102 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
    103 }
    104 
    105 int
    106 genfs_seek(v)
    107 	void *v;
    108 {
    109 	struct vop_seek_args /* {
    110 		struct vnode *a_vp;
    111 		off_t a_oldoff;
    112 		off_t a_newoff;
    113 		struct ucred *a_ucred;
    114 	} */ *ap = v;
    115 
    116 	if (ap->a_newoff < 0)
    117 		return (EINVAL);
    118 
    119 	return (0);
    120 }
    121 
    122 int
    123 genfs_abortop(v)
    124 	void *v;
    125 {
    126 	struct vop_abortop_args /* {
    127 		struct vnode *a_dvp;
    128 		struct componentname *a_cnp;
    129 	} */ *ap = v;
    130 
    131 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    132 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    133 	return (0);
    134 }
    135 
    136 int
    137 genfs_fcntl(v)
    138 	void *v;
    139 {
    140 	struct vop_fcntl_args /* {
    141 		struct vnode *a_vp;
    142 		u_int a_command;
    143 		caddr_t a_data;
    144 		int a_fflag;
    145 		struct ucred *a_cred;
    146 		struct proc *a_p;
    147 	} */ *ap = v;
    148 
    149 	if (ap->a_command == F_SETFL)
    150 		return (0);
    151 	else
    152 		return (EOPNOTSUPP);
    153 }
    154 
    155 /*ARGSUSED*/
    156 int
    157 genfs_badop(v)
    158 	void *v;
    159 {
    160 
    161 	panic("genfs: bad op");
    162 }
    163 
    164 /*ARGSUSED*/
    165 int
    166 genfs_nullop(v)
    167 	void *v;
    168 {
    169 
    170 	return (0);
    171 }
    172 
    173 /*ARGSUSED*/
    174 int
    175 genfs_einval(v)
    176 	void *v;
    177 {
    178 
    179 	return (EINVAL);
    180 }
    181 
    182 /*ARGSUSED*/
    183 int
    184 genfs_eopnotsupp(v)
    185 	void *v;
    186 {
    187 
    188 	return (EOPNOTSUPP);
    189 }
    190 
    191 /*
    192  * Called when an fs doesn't support a particular vop but the vop needs to
    193  * vrele, vput, or vunlock passed in vnodes.
    194  */
    195 int
    196 genfs_eopnotsupp_rele(v)
    197 	void *v;
    198 {
    199 	struct vop_generic_args /*
    200 		struct vnodeop_desc *a_desc;
    201 		/ * other random data follows, presumably * /
    202 	} */ *ap = v;
    203 	struct vnodeop_desc *desc = ap->a_desc;
    204 	struct vnode *vp;
    205 	int flags, i, j, offset;
    206 
    207 	flags = desc->vdesc_flags;
    208 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    209 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    210 			break;	/* stop at end of list */
    211 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    212 			vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
    213 			switch (j) {
    214 			case VDESC_VP0_WILLPUT:
    215 				vput(vp);
    216 				break;
    217 			case VDESC_VP0_WILLUNLOCK:
    218 				VOP_UNLOCK(vp, 0);
    219 				break;
    220 			case VDESC_VP0_WILLRELE:
    221 				vrele(vp);
    222 				break;
    223 			}
    224 		}
    225 	}
    226 
    227 	return (EOPNOTSUPP);
    228 }
    229 
    230 /*ARGSUSED*/
    231 int
    232 genfs_ebadf(v)
    233 	void *v;
    234 {
    235 
    236 	return (EBADF);
    237 }
    238 
    239 /* ARGSUSED */
    240 int
    241 genfs_enoioctl(v)
    242 	void *v;
    243 {
    244 
    245 	return (ENOTTY);
    246 }
    247 
    248 
    249 /*
    250  * Eliminate all activity associated with the requested vnode
    251  * and with all vnodes aliased to the requested vnode.
    252  */
    253 int
    254 genfs_revoke(v)
    255 	void *v;
    256 {
    257 	struct vop_revoke_args /* {
    258 		struct vnode *a_vp;
    259 		int a_flags;
    260 	} */ *ap = v;
    261 	struct vnode *vp, *vq;
    262 	struct proc *p = curproc;	/* XXX */
    263 
    264 #ifdef DIAGNOSTIC
    265 	if ((ap->a_flags & REVOKEALL) == 0)
    266 		panic("genfs_revoke: not revokeall");
    267 #endif
    268 
    269 	vp = ap->a_vp;
    270 	simple_lock(&vp->v_interlock);
    271 
    272 	if (vp->v_flag & VALIASED) {
    273 		/*
    274 		 * If a vgone (or vclean) is already in progress,
    275 		 * wait until it is done and return.
    276 		 */
    277 		if (vp->v_flag & VXLOCK) {
    278 			vp->v_flag |= VXWANT;
    279 			simple_unlock(&vp->v_interlock);
    280 			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
    281 			return (0);
    282 		}
    283 		/*
    284 		 * Ensure that vp will not be vgone'd while we
    285 		 * are eliminating its aliases.
    286 		 */
    287 		vp->v_flag |= VXLOCK;
    288 		simple_unlock(&vp->v_interlock);
    289 		while (vp->v_flag & VALIASED) {
    290 			simple_lock(&spechash_slock);
    291 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    292 				if (vq->v_rdev != vp->v_rdev ||
    293 				    vq->v_type != vp->v_type || vp == vq)
    294 					continue;
    295 				simple_unlock(&spechash_slock);
    296 				vgone(vq);
    297 				break;
    298 			}
    299 			if (vq == NULLVP)
    300 				simple_unlock(&spechash_slock);
    301 		}
    302 		/*
    303 		 * Remove the lock so that vgone below will
    304 		 * really eliminate the vnode after which time
    305 		 * vgone will awaken any sleepers.
    306 		 */
    307 		simple_lock(&vp->v_interlock);
    308 		vp->v_flag &= ~VXLOCK;
    309 	}
    310 	vgonel(vp, p);
    311 	return (0);
    312 }
    313 
    314 /*
    315  * Lock the node.
    316  */
    317 int
    318 genfs_lock(v)
    319 	void *v;
    320 {
    321 	struct vop_lock_args /* {
    322 		struct vnode *a_vp;
    323 		int a_flags;
    324 	} */ *ap = v;
    325 	struct vnode *vp = ap->a_vp;
    326 
    327 	return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
    328 }
    329 
    330 /*
    331  * Unlock the node.
    332  */
    333 int
    334 genfs_unlock(v)
    335 	void *v;
    336 {
    337 	struct vop_unlock_args /* {
    338 		struct vnode *a_vp;
    339 		int a_flags;
    340 	} */ *ap = v;
    341 	struct vnode *vp = ap->a_vp;
    342 
    343 	return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    344 		&vp->v_interlock));
    345 }
    346 
    347 /*
    348  * Return whether or not the node is locked.
    349  */
    350 int
    351 genfs_islocked(v)
    352 	void *v;
    353 {
    354 	struct vop_islocked_args /* {
    355 		struct vnode *a_vp;
    356 	} */ *ap = v;
    357 	struct vnode *vp = ap->a_vp;
    358 
    359 	return (lockstatus(&vp->v_lock));
    360 }
    361 
    362 /*
    363  * Stubs to use when there is no locking to be done on the underlying object.
    364  */
    365 int
    366 genfs_nolock(v)
    367 	void *v;
    368 {
    369 	struct vop_lock_args /* {
    370 		struct vnode *a_vp;
    371 		int a_flags;
    372 		struct proc *a_p;
    373 	} */ *ap = v;
    374 
    375 	/*
    376 	 * Since we are not using the lock manager, we must clear
    377 	 * the interlock here.
    378 	 */
    379 	if (ap->a_flags & LK_INTERLOCK)
    380 		simple_unlock(&ap->a_vp->v_interlock);
    381 	return (0);
    382 }
    383 
    384 int
    385 genfs_nounlock(v)
    386 	void *v;
    387 {
    388 	return (0);
    389 }
    390 
    391 int
    392 genfs_noislocked(v)
    393 	void *v;
    394 {
    395 	return (0);
    396 }
    397 
    398 /*
    399  * Local lease check for NFS servers.  Just set up args and let
    400  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    401  * this is a null operation.
    402  */
    403 int
    404 genfs_lease_check(v)
    405 	void *v;
    406 {
    407 #ifdef NFSSERVER
    408 	struct vop_lease_args /* {
    409 		struct vnode *a_vp;
    410 		struct proc *a_p;
    411 		struct ucred *a_cred;
    412 		int a_flag;
    413 	} */ *ap = v;
    414 	u_int32_t duration = 0;
    415 	int cache;
    416 	u_quad_t frev;
    417 
    418 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    419 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    420 	return (0);
    421 #else
    422 	return (0);
    423 #endif /* NFSSERVER */
    424 }
    425 
    426 int
    427 genfs_mmap(v)
    428 	void *v;
    429 {
    430 	return 0;
    431 }
    432 
    433 /*
    434  * generic VM getpages routine.
    435  * Return PG_BUSY pages for the given range,
    436  * reading from backing store if necessary.
    437  */
    438 
    439 int
    440 genfs_getpages(v)
    441 	void *v;
    442 {
    443 	struct vop_getpages_args /* {
    444 		struct vnode *a_vp;
    445 		voff_t a_offset;
    446 		struct vm_page **a_m;
    447 		int *a_count;
    448 		int a_centeridx;
    449 		vm_prot_t a_access_type;
    450 		int a_advice;
    451 		int a_flags;
    452 	} */ *ap = v;
    453 
    454 	off_t newsize, diskeof, memeof;
    455 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    456 	daddr_t lbn, blkno;
    457 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    458 	int fs_bshift, fs_bsize, dev_bshift;
    459 	int flags = ap->a_flags;
    460 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    461 	vaddr_t kva;
    462 	struct buf *bp, *mbp;
    463 	struct vnode *vp = ap->a_vp;
    464 	struct vnode *devvp;
    465 	struct genfs_node *gp = VTOG(vp);
    466 	struct uvm_object *uobj = &vp->v_uobj;
    467 	struct vm_page *pg, *pgs[16];			/* XXXUBC 16 */
    468 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curproc */
    469 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    470 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    471 	boolean_t sawhole = FALSE;
    472 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    473 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    474 
    475 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    476 		    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    477 
    478 	/* XXXUBC temp limit */
    479 	if (*ap->a_count > 16) {
    480 		panic("genfs_getpages: too many pages");
    481 	}
    482 
    483 	error = 0;
    484 	origoffset = ap->a_offset;
    485 	orignpages = *ap->a_count;
    486 	GOP_SIZE(vp, vp->v_size, &diskeof);
    487 	if (flags & PGO_PASTEOF) {
    488 		newsize = MAX(vp->v_size,
    489 			      origoffset + (orignpages << PAGE_SHIFT));
    490 		GOP_SIZE(vp, newsize, &memeof);
    491 	} else {
    492 		memeof = diskeof;
    493 	}
    494 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    495 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    496 	KASSERT(orignpages > 0);
    497 
    498 	/*
    499 	 * Bounds-check the request.
    500 	 */
    501 
    502 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    503 		if ((flags & PGO_LOCKED) == 0) {
    504 			simple_unlock(&uobj->vmobjlock);
    505 		}
    506 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    507 			    origoffset, *ap->a_count, memeof,0);
    508 		return EINVAL;
    509 	}
    510 
    511 	/*
    512 	 * For PGO_LOCKED requests, just return whatever's in memory.
    513 	 */
    514 
    515 	if (flags & PGO_LOCKED) {
    516 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    517 			      UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
    518 
    519 		return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
    520 	}
    521 
    522 	/* vnode is VOP_LOCKed, uobj is locked */
    523 
    524 	if (write && (vp->v_flag & VONWORKLST) == 0) {
    525 		vn_syncer_add_to_worklist(vp, filedelay);
    526 	}
    527 
    528 	/*
    529 	 * find the requested pages and make some simple checks.
    530 	 * leave space in the page array for a whole block.
    531 	 */
    532 
    533 	if (vp->v_type == VREG) {
    534 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    535 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    536 	} else {
    537 		fs_bshift = DEV_BSHIFT;
    538 		dev_bshift = DEV_BSHIFT;
    539 	}
    540 	fs_bsize = 1 << fs_bshift;
    541 
    542 	orignpages = MIN(orignpages,
    543 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    544 	npages = orignpages;
    545 	startoffset = origoffset & ~(fs_bsize - 1);
    546 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
    547 				+ fs_bsize - 1) & ~(fs_bsize - 1));
    548 	endoffset = MIN(endoffset, round_page(memeof));
    549 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    550 
    551 	memset(pgs, 0, sizeof(pgs));
    552 	uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
    553 
    554 	/*
    555 	 * if the pages are already resident, just return them.
    556 	 */
    557 
    558 	for (i = 0; i < npages; i++) {
    559 		struct vm_page *pg = pgs[ridx + i];
    560 
    561 		if ((pg->flags & PG_FAKE) ||
    562 		    (write && (pg->flags & PG_RDONLY))) {
    563 			break;
    564 		}
    565 	}
    566 	if (i == npages) {
    567 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    568 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    569 		npages += ridx;
    570 		goto raout;
    571 	}
    572 
    573 	/*
    574 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    575 	 */
    576 
    577 	if (flags & PGO_OVERWRITE) {
    578 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    579 
    580 		for (i = 0; i < npages; i++) {
    581 			struct vm_page *pg = pgs[ridx + i];
    582 
    583 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    584 		}
    585 		npages += ridx;
    586 		goto out;
    587 	}
    588 
    589 	/*
    590 	 * the page wasn't resident and we're not overwriting,
    591 	 * so we're going to have to do some i/o.
    592 	 * find any additional pages needed to cover the expanded range.
    593 	 */
    594 
    595 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    596 	if (startoffset != origoffset || npages != orignpages) {
    597 
    598 		/*
    599 		 * we need to avoid deadlocks caused by locking
    600 		 * additional pages at lower offsets than pages we
    601 		 * already have locked.  unlock them all and start over.
    602 		 */
    603 
    604 		for (i = 0; i < orignpages; i++) {
    605 			struct vm_page *pg = pgs[ridx + i];
    606 
    607 			if (pg->flags & PG_FAKE) {
    608 				pg->flags |= PG_RELEASED;
    609 			}
    610 		}
    611 		uvm_page_unbusy(&pgs[ridx], orignpages);
    612 		memset(pgs, 0, sizeof(pgs));
    613 
    614 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    615 			    startoffset, endoffset, 0,0);
    616 		npgs = npages;
    617 		uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
    618 	}
    619 	simple_unlock(&uobj->vmobjlock);
    620 
    621 	/*
    622 	 * read the desired page(s).
    623 	 */
    624 
    625 	totalbytes = npages << PAGE_SHIFT;
    626 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    627 	tailbytes = totalbytes - bytes;
    628 	skipbytes = 0;
    629 
    630 	kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
    631 			     UVMPAGER_MAPIN_READ);
    632 
    633 	s = splbio();
    634 	mbp = pool_get(&bufpool, PR_WAITOK);
    635 	splx(s);
    636 	mbp->b_bufsize = totalbytes;
    637 	mbp->b_data = (void *)kva;
    638 	mbp->b_resid = mbp->b_bcount = bytes;
    639 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
    640 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    641 	mbp->b_vp = vp;
    642 	LIST_INIT(&mbp->b_dep);
    643 
    644 	/*
    645 	 * if EOF is in the middle of the range, zero the part past EOF.
    646 	 * if the page including EOF is not PG_FAKE, skip over it since
    647 	 * in that case it has valid data that we need to preserve.
    648 	 */
    649 
    650 	if (tailbytes > 0) {
    651 		size_t tailstart = bytes;
    652 
    653 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    654 			tailstart = round_page(tailstart);
    655 			tailbytes -= tailstart - bytes;
    656 		}
    657 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    658 			    kva, tailstart, tailbytes,0);
    659 		memset((void *)(kva + tailstart), 0, tailbytes);
    660 	}
    661 
    662 	/*
    663 	 * now loop over the pages, reading as needed.
    664 	 */
    665 
    666 	if (write) {
    667 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    668 	} else {
    669 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    670 	}
    671 
    672 	bp = NULL;
    673 	for (offset = startoffset;
    674 	     bytes > 0;
    675 	     offset += iobytes, bytes -= iobytes) {
    676 
    677 		/*
    678 		 * skip pages which don't need to be read.
    679 		 */
    680 
    681 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    682 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
    683 			size_t b;
    684 
    685 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    686 			b = MIN(PAGE_SIZE, bytes);
    687 			offset += b;
    688 			bytes -= b;
    689 			skipbytes += b;
    690 			pidx++;
    691 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    692 				    offset, 0,0,0);
    693 			if (bytes == 0) {
    694 				goto loopdone;
    695 			}
    696 		}
    697 
    698 		/*
    699 		 * bmap the file to find out the blkno to read from and
    700 		 * how much we can read in one i/o.  if bmap returns an error,
    701 		 * skip the rest of the top-level i/o.
    702 		 */
    703 
    704 		lbn = offset >> fs_bshift;
    705 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    706 		if (error) {
    707 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    708 				    lbn, error,0,0);
    709 			skipbytes += bytes;
    710 			goto loopdone;
    711 		}
    712 
    713 		/*
    714 		 * see how many pages can be read with this i/o.
    715 		 * reduce the i/o size if necessary to avoid
    716 		 * overwriting pages with valid data.
    717 		 */
    718 
    719 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    720 		    bytes);
    721 		if (offset + iobytes > round_page(offset)) {
    722 			pcount = 1;
    723 			while (pidx + pcount < npages &&
    724 			       pgs[pidx + pcount]->flags & PG_FAKE) {
    725 				pcount++;
    726 			}
    727 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    728 				      (offset - trunc_page(offset)));
    729 		}
    730 
    731 		/*
    732 		 * if this block isn't allocated, zero it instead of reading it.
    733 		 * if this is a read access, mark the pages we zeroed PG_RDONLY.
    734 		 */
    735 
    736 		if (blkno < 0) {
    737 			int holepages = (round_page(offset + iobytes) -
    738 					 trunc_page(offset)) >> PAGE_SHIFT;
    739 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    740 
    741 			sawhole = TRUE;
    742 			memset((char *)kva + (offset - startoffset), 0,
    743 			       iobytes);
    744 			skipbytes += iobytes;
    745 
    746 			for (i = 0; i < holepages; i++) {
    747 				if (write) {
    748 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    749 				} else {
    750 					pgs[pidx + i]->flags |= PG_RDONLY;
    751 				}
    752 			}
    753 			continue;
    754 		}
    755 
    756 		/*
    757 		 * allocate a sub-buf for this piece of the i/o
    758 		 * (or just use mbp if there's only 1 piece),
    759 		 * and start it going.
    760 		 */
    761 
    762 		if (offset == startoffset && iobytes == bytes) {
    763 			bp = mbp;
    764 		} else {
    765 			s = splbio();
    766 			bp = pool_get(&bufpool, PR_WAITOK);
    767 			splx(s);
    768 			bp->b_data = (char *)kva + offset - startoffset;
    769 			bp->b_resid = bp->b_bcount = iobytes;
    770 			bp->b_flags = B_BUSY|B_READ|B_CALL;
    771 			bp->b_iodone = uvm_aio_biodone1;
    772 			bp->b_vp = vp;
    773 			bp->b_proc = NULL;
    774 			LIST_INIT(&bp->b_dep);
    775 		}
    776 		bp->b_lblkno = 0;
    777 		bp->b_private = mbp;
    778 		if (devvp->v_type == VBLK) {
    779 			bp->b_dev = devvp->v_rdev;
    780 		}
    781 
    782 		/* adjust physical blkno for partial blocks */
    783 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    784 				       dev_bshift);
    785 
    786 		UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    787 			    bp, offset, iobytes, bp->b_blkno);
    788 
    789 		VOP_STRATEGY(bp);
    790 	}
    791 
    792 loopdone:
    793 	if (skipbytes) {
    794 		s = splbio();
    795 		if (error) {
    796 			mbp->b_flags |= B_ERROR;
    797 			mbp->b_error = error;
    798 		}
    799 		mbp->b_resid -= skipbytes;
    800 		if (mbp->b_resid == 0) {
    801 			biodone(mbp);
    802 		}
    803 		splx(s);
    804 	}
    805 
    806 	if (async) {
    807 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    808 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    809 		return 0;
    810 	}
    811 	if (bp != NULL) {
    812 		error = biowait(mbp);
    813 	}
    814 	s = splbio();
    815 	pool_put(&bufpool, mbp);
    816 	splx(s);
    817 	uvm_pagermapout(kva, npages);
    818 	raoffset = startoffset + totalbytes;
    819 
    820 	/*
    821 	 * if this we encountered a hole then we have to do a little more work.
    822 	 * for read faults, we marked the page PG_RDONLY so that future
    823 	 * write accesses to the page will fault again.
    824 	 * for write faults, we must make sure that the backing store for
    825 	 * the page is completely allocated while the pages are locked.
    826 	 */
    827 
    828 	if (!error && sawhole && write) {
    829 		for (i = 0; i < npages; i++) {
    830 			if (pgs[i] == NULL) {
    831 				continue;
    832 			}
    833 			pgs[i]->flags &= ~PG_CLEAN;
    834 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
    835 		}
    836 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    837 				  cred);
    838 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    839 		    startoffset, npages << PAGE_SHIFT, error,0);
    840 	}
    841 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    842 	simple_lock(&uobj->vmobjlock);
    843 
    844 	/*
    845 	 * see if we want to start any readahead.
    846 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
    847 	 * this is pretty nonsensical, but it is 50% faster than reading
    848 	 * just the next 64k.
    849 	 */
    850 
    851 raout:
    852 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
    853 	    PAGE_SHIFT <= 16) {
    854 		int racount;
    855 
    856 		racount = 1 << (16 - PAGE_SHIFT);
    857 		(void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
    858 				    VM_PROT_READ, 0, 0);
    859 		simple_lock(&uobj->vmobjlock);
    860 
    861 		racount = 1 << (16 - PAGE_SHIFT);
    862 		(void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
    863 				    VM_PROT_READ, 0, 0);
    864 		simple_lock(&uobj->vmobjlock);
    865 	}
    866 
    867 	/*
    868 	 * we're almost done!  release the pages...
    869 	 * for errors, we free the pages.
    870 	 * otherwise we activate them and mark them as valid and clean.
    871 	 * also, unbusy pages that were not actually requested.
    872 	 */
    873 
    874 	if (error) {
    875 		for (i = 0; i < npages; i++) {
    876 			if (pgs[i] == NULL) {
    877 				continue;
    878 			}
    879 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    880 				    pgs[i], pgs[i]->flags, 0,0);
    881 			if (pgs[i]->flags & PG_FAKE) {
    882 				pgs[i]->flags |= PG_RELEASED;
    883 			}
    884 		}
    885 		uvm_lock_pageq();
    886 		uvm_page_unbusy(pgs, npages);
    887 		uvm_unlock_pageq();
    888 		simple_unlock(&uobj->vmobjlock);
    889 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    890 		return error;
    891 	}
    892 
    893 out:
    894 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    895 	uvm_lock_pageq();
    896 	for (i = 0; i < npages; i++) {
    897 		pg = pgs[i];
    898 		if (pg == NULL) {
    899 			continue;
    900 		}
    901 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    902 			    pg, pg->flags, 0,0);
    903 		if (pg->flags & PG_FAKE && !overwrite) {
    904 			pg->flags &= ~(PG_FAKE);
    905 			pmap_clear_modify(pgs[i]);
    906 		}
    907 		if (write) {
    908 			pg->flags &= ~(PG_RDONLY);
    909 		}
    910 		if (i < ridx || i >= ridx + orignpages || async) {
    911 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    912 				    pg, pg->offset,0,0);
    913 			if (pg->flags & PG_WANTED) {
    914 				wakeup(pg);
    915 			}
    916 			if (pg->flags & PG_FAKE) {
    917 				KASSERT(overwrite);
    918 				uvm_pagezero(pg);
    919 			}
    920 			if (pg->flags & PG_RELEASED) {
    921 				uvm_pagefree(pg);
    922 				continue;
    923 			}
    924 			uvm_pageactivate(pg);
    925 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    926 			UVM_PAGE_OWN(pg, NULL);
    927 		}
    928 	}
    929 	uvm_unlock_pageq();
    930 	simple_unlock(&uobj->vmobjlock);
    931 	if (ap->a_m != NULL) {
    932 		memcpy(ap->a_m, &pgs[ridx],
    933 		       orignpages * sizeof(struct vm_page *));
    934 	}
    935 	return 0;
    936 }
    937 
    938 /*
    939  * generic VM putpages routine.
    940  * Write the given range of pages to backing store.
    941  *
    942  * => "offhi == 0" means flush all pages at or after "offlo".
    943  * => object should be locked by caller.   we may _unlock_ the object
    944  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
    945  *	if PGO_SYNCIO is set and there are pages busy.
    946  *	we return with the object locked.
    947  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    948  *	thus, a caller might want to unlock higher level resources
    949  *	(e.g. vm_map) before calling flush.
    950  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
    951  *	unlock the object nor block.
    952  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    953  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    954  *	that new pages are inserted on the tail end of the list.   thus,
    955  *	we can make a complete pass through the object in one go by starting
    956  *	at the head and working towards the tail (new pages are put in
    957  *	front of us).
    958  * => NOTE: we are allowed to lock the page queues, so the caller
    959  *	must not be holding the page queue lock.
    960  *
    961  * note on "cleaning" object and PG_BUSY pages:
    962  *	this routine is holding the lock on the object.   the only time
    963  *	that it can run into a PG_BUSY page that it does not own is if
    964  *	some other process has started I/O on the page (e.g. either
    965  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    966  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    967  *	had a chance to modify it yet.    if the PG_BUSY page is being
    968  *	paged out then it means that someone else has already started
    969  *	cleaning the page for us (how nice!).    in this case, if we
    970  *	have syncio specified, then after we make our pass through the
    971  *	object we need to wait for the other PG_BUSY pages to clear
    972  *	off (i.e. we need to do an iosync).   also note that once a
    973  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    974  *
    975  * note on page traversal:
    976  *	we can traverse the pages in an object either by going down the
    977  *	linked list in "uobj->memq", or we can go over the address range
    978  *	by page doing hash table lookups for each address.    depending
    979  *	on how many pages are in the object it may be cheaper to do one
    980  *	or the other.   we set "by_list" to true if we are using memq.
    981  *	if the cost of a hash lookup was equal to the cost of the list
    982  *	traversal we could compare the number of pages in the start->stop
    983  *	range to the total number of pages in the object.   however, it
    984  *	seems that a hash table lookup is more expensive than the linked
    985  *	list traversal, so we multiply the number of pages in the
    986  *	range by an estimate of the relatively higher cost of the hash lookup.
    987  */
    988 
    989 int
    990 genfs_putpages(v)
    991 	void *v;
    992 {
    993 	struct vop_putpages_args /* {
    994 		struct vnode *a_vp;
    995 		voff_t a_offlo;
    996 		voff_t a_offhi;
    997 		int a_flags;
    998 	} */ *ap = v;
    999 	struct vnode *vp = ap->a_vp;
   1000 	struct uvm_object *uobj = &vp->v_uobj;
   1001 	off_t startoff = ap->a_offlo;
   1002 	off_t endoff = ap->a_offhi;
   1003 	off_t off;
   1004 	int flags = ap->a_flags;
   1005 	int n = MAXBSIZE >> PAGE_SHIFT;
   1006 	int i, s, error, npages, nback;
   1007 	int freeflag;
   1008 	struct vm_page *pgs[n], *pg, *nextpg, *tpg, curmp, endmp;
   1009 	boolean_t wasclean, by_list, needs_clean;
   1010 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1011 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1012 
   1013 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1014 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1015 	KASSERT(startoff < endoff || endoff == 0);
   1016 
   1017 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1018 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1019 	if (uobj->uo_npages == 0) {
   1020 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1021 		    (vp->v_flag & VONWORKLST)) {
   1022 			vp->v_flag &= ~VONWORKLST;
   1023 			LIST_REMOVE(vp, v_synclist);
   1024 		}
   1025 		simple_unlock(&uobj->vmobjlock);
   1026 		return 0;
   1027 	}
   1028 
   1029 	/*
   1030 	 * the vnode has pages, set up to process the request.
   1031 	 */
   1032 
   1033 	error = 0;
   1034 	wasclean = TRUE;
   1035 	off = startoff;
   1036 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1037 		endoff = trunc_page(LLONG_MAX);
   1038 	}
   1039 	by_list = (uobj->uo_npages <=
   1040 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1041 
   1042 	/*
   1043 	 * start the loop.  when scanning by list, hold the last page
   1044 	 * in the list before we start.  pages allocated after we start
   1045 	 * will be added to the end of the list, so we can stop at the
   1046 	 * current last page.
   1047 	 */
   1048 
   1049 	freeflag = (curproc == uvm.pagedaemon_proc) ? PG_PAGEOUT : PG_RELEASED;
   1050 	curmp.uobject = uobj;
   1051 	curmp.offset = (voff_t)-1;
   1052 	curmp.flags = PG_BUSY;
   1053 	endmp.uobject = uobj;
   1054 	endmp.offset = (voff_t)-1;
   1055 	endmp.flags = PG_BUSY;
   1056 	if (by_list) {
   1057 		pg = TAILQ_FIRST(&uobj->memq);
   1058 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1059 		PHOLD(curproc);
   1060 	} else {
   1061 		pg = uvm_pagelookup(uobj, off);
   1062 	}
   1063 	nextpg = NULL;
   1064 	while (by_list || off < endoff) {
   1065 
   1066 		/*
   1067 		 * if the current page is not interesting, move on to the next.
   1068 		 */
   1069 
   1070 		KASSERT(pg == NULL || pg->uobject == uobj);
   1071 		KASSERT(pg == NULL ||
   1072 			(pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1073 			(pg->flags & PG_BUSY) != 0);
   1074 		if (by_list) {
   1075 			if (pg == &endmp) {
   1076 				break;
   1077 			}
   1078 			if (pg->offset < startoff || pg->offset >= endoff ||
   1079 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1080 				pg = TAILQ_NEXT(pg, listq);
   1081 				continue;
   1082 			}
   1083 			off = pg->offset;
   1084 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1085 			off += PAGE_SIZE;
   1086 			if (off < endoff) {
   1087 				pg = uvm_pagelookup(uobj, off);
   1088 			}
   1089 			continue;
   1090 		}
   1091 
   1092 		/*
   1093 		 * if the current page needs to be cleaned and it's busy,
   1094 		 * wait for it to become unbusy.
   1095 		 */
   1096 
   1097 		if (flags & PGO_FREE) {
   1098 			pmap_page_protect(pg, VM_PROT_NONE);
   1099 		}
   1100 		if (flags & PGO_CLEANIT) {
   1101 			needs_clean = pmap_clear_modify(pg) ||
   1102 				(pg->flags & PG_CLEAN) == 0;
   1103 			pg->flags |= PG_CLEAN;
   1104 		} else {
   1105 			needs_clean = FALSE;
   1106 		}
   1107 		if (needs_clean && pg->flags & PG_BUSY) {
   1108 			KASSERT(curproc != uvm.pagedaemon_proc);
   1109 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1110 			if (by_list) {
   1111 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1112 				UVMHIST_LOG(ubchist, "curmp next %p",
   1113 					    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1114 			}
   1115 			pg->flags |= PG_WANTED;
   1116 			pg->flags &= ~PG_CLEAN;
   1117 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
   1118 			    "genput", 0);
   1119 			simple_lock(&uobj->vmobjlock);
   1120 			if (by_list) {
   1121 				UVMHIST_LOG(ubchist, "after next %p",
   1122 					    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1123 				pg = TAILQ_NEXT(&curmp, listq);
   1124 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1125 			} else {
   1126 				pg = uvm_pagelookup(uobj, off);
   1127 			}
   1128 			continue;
   1129 		}
   1130 
   1131 		/*
   1132 		 * if we're cleaning, build a cluster.
   1133 		 * the cluster will consist of pages which are currently dirty,
   1134 		 * but they will be returned to us marked clean.
   1135 		 * if not cleaning, just operate on the one page.
   1136 		 */
   1137 
   1138 		if (needs_clean) {
   1139 			wasclean = FALSE;
   1140 			memset(pgs, 0, sizeof(pgs));
   1141 			pg->flags |= PG_BUSY;
   1142 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1143 
   1144 			/*
   1145 			 * first look backward.
   1146 			 */
   1147 
   1148 			npages = MIN(n >> 1, off >> PAGE_SHIFT);
   1149 			nback = npages;
   1150 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1151 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1152 			if (nback) {
   1153 				memmove(&pgs[0], &pgs[npages - nback],
   1154 				    nback * sizeof(pgs[0]));
   1155 			}
   1156 			n -= nback;
   1157 
   1158 			/*
   1159 			 * then plug in our page of interest.
   1160 			 */
   1161 
   1162 			pgs[nback] = pg;
   1163 
   1164 			/*
   1165 			 * then look forward to fill in the remaining space in
   1166 			 * the array of pages.
   1167 			 */
   1168 
   1169 			npages = MIN(n, (endoff - off) >> PAGE_SHIFT) - 1;
   1170 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1171 			    &pgs[nback + 1],
   1172 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1173 			npages += nback + 1;
   1174 		} else {
   1175 			pgs[0] = pg;
   1176 			npages = 1;
   1177 		}
   1178 
   1179 		/*
   1180 		 * apply FREE or DEACTIVATE options if requested.
   1181 		 */
   1182 
   1183 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1184 			uvm_lock_pageq();
   1185 		}
   1186 		for (i = 0; i < npages; i++) {
   1187 			tpg = pgs[i];
   1188 			KASSERT(tpg->uobject == uobj);
   1189 			if (flags & PGO_DEACTIVATE &&
   1190 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1191 			    tpg->wire_count == 0) {
   1192 				(void) pmap_clear_reference(tpg);
   1193 				uvm_pagedeactivate(tpg);
   1194 			} else if (flags & PGO_FREE) {
   1195 				pmap_page_protect(tpg, VM_PROT_NONE);
   1196 				if (tpg->flags & PG_BUSY) {
   1197 					tpg->flags |= freeflag;
   1198 					if (freeflag == PG_PAGEOUT) {
   1199 						uvmexp.paging++;
   1200 						uvm_pagedequeue(tpg);
   1201 					}
   1202 				} else {
   1203 					nextpg = TAILQ_NEXT(tpg, listq);
   1204 					uvm_pagefree(tpg);
   1205 				}
   1206 			}
   1207 		}
   1208 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1209 			uvm_unlock_pageq();
   1210 		}
   1211 		if (needs_clean) {
   1212 
   1213 			/*
   1214 			 * start the i/o.  if we're traversing by list,
   1215 			 * keep our place in the list with a marker page.
   1216 			 */
   1217 
   1218 			if (by_list) {
   1219 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1220 				    listq);
   1221 			}
   1222 			simple_unlock(&uobj->vmobjlock);
   1223 			error = GOP_WRITE(vp, pgs, npages, flags);
   1224 			simple_lock(&uobj->vmobjlock);
   1225 			if (by_list) {
   1226 				pg = TAILQ_NEXT(&curmp, listq);
   1227 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1228 			}
   1229 			if (error == ENOMEM) {
   1230 				for (i = 0; i < npages; i++) {
   1231 					tpg = pgs[i];
   1232 					if (tpg->flags & PG_PAGEOUT) {
   1233 						tpg->flags &= ~PG_PAGEOUT;
   1234 						uvmexp.paging--;
   1235 					}
   1236 					tpg->flags &= ~PG_CLEAN;
   1237 					uvm_pageactivate(tpg);
   1238 				}
   1239 				uvm_page_unbusy(pgs, npages);
   1240 			}
   1241 			if (error) {
   1242 				break;
   1243 			}
   1244 			if (by_list) {
   1245 				continue;
   1246 			}
   1247 		}
   1248 
   1249 		/*
   1250 		 * find the next page and continue if there was no error.
   1251 		 */
   1252 
   1253 		if (by_list) {
   1254 			if (nextpg) {
   1255 				pg = nextpg;
   1256 				nextpg = NULL;
   1257 			} else {
   1258 				pg = TAILQ_NEXT(pg, listq);
   1259 			}
   1260 		} else {
   1261 			off += PAGE_SIZE;
   1262 			if (off < endoff) {
   1263 				pg = uvm_pagelookup(uobj, off);
   1264 			}
   1265 		}
   1266 	}
   1267 	if (by_list) {
   1268 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1269 		PRELE(curproc);
   1270 	}
   1271 
   1272 	/*
   1273 	 * if we're cleaning and there was nothing to clean,
   1274 	 * take us off the syncer list.  if we started any i/o
   1275 	 * and we're doing sync i/o, wait for all writes to finish.
   1276 	 */
   1277 
   1278 	if ((flags & PGO_CLEANIT) && wasclean &&
   1279 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1280 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1281 	    (vp->v_flag & VONWORKLST)) {
   1282 		vp->v_flag &= ~VONWORKLST;
   1283 		LIST_REMOVE(vp, v_synclist);
   1284 	}
   1285 	if (!wasclean && !async) {
   1286 		s = splbio();
   1287 		while (vp->v_numoutput != 0) {
   1288 			vp->v_flag |= VBWAIT;
   1289 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, &uobj->vmobjlock,
   1290 					    FALSE, "genput2",0);
   1291 			simple_lock(&uobj->vmobjlock);
   1292 		}
   1293 		splx(s);
   1294 	}
   1295 	simple_unlock(&uobj->vmobjlock);
   1296 	return error;
   1297 }
   1298 
   1299 int
   1300 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1301 {
   1302 	int s, error, run;
   1303 	int fs_bshift, dev_bshift;
   1304 	vaddr_t kva;
   1305 	off_t eof, offset, startoffset;
   1306 	size_t bytes, iobytes, skipbytes;
   1307 	daddr_t lbn, blkno;
   1308 	struct vm_page *pg;
   1309 	struct buf *mbp, *bp;
   1310 	struct vnode *devvp;
   1311 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1312 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1313 
   1314 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1315 	    vp, pgs, npages, flags);
   1316 
   1317 	GOP_SIZE(vp, vp->v_size, &eof);
   1318 	if (vp->v_type == VREG) {
   1319 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1320 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1321 	} else {
   1322 		fs_bshift = DEV_BSHIFT;
   1323 		dev_bshift = DEV_BSHIFT;
   1324 	}
   1325 	error = 0;
   1326 	pg = pgs[0];
   1327 	startoffset = pg->offset;
   1328 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1329 	skipbytes = 0;
   1330 	KASSERT(bytes != 0);
   1331 
   1332 	kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1333 			     UVMPAGER_MAPIN_WAITOK);
   1334 
   1335 	s = splbio();
   1336 	vp->v_numoutput += 2;
   1337 	mbp = pool_get(&bufpool, PR_WAITOK);
   1338 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1339 		    vp, mbp, vp->v_numoutput, bytes);
   1340 	splx(s);
   1341 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1342 	mbp->b_data = (void *)kva;
   1343 	mbp->b_resid = mbp->b_bcount = bytes;
   1344 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? B_CALL : 0);
   1345 	mbp->b_iodone = uvm_aio_biodone;
   1346 	mbp->b_vp = vp;
   1347 	LIST_INIT(&mbp->b_dep);
   1348 
   1349 	bp = NULL;
   1350 	for (offset = startoffset;
   1351 	     bytes > 0;
   1352 	     offset += iobytes, bytes -= iobytes) {
   1353 		lbn = offset >> fs_bshift;
   1354 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1355 		if (error) {
   1356 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1357 			skipbytes += bytes;
   1358 			bytes = 0;
   1359 			break;
   1360 		}
   1361 
   1362 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1363 		    bytes);
   1364 		if (blkno == (daddr_t)-1) {
   1365 			skipbytes += iobytes;
   1366 			continue;
   1367 		}
   1368 
   1369 		/* if it's really one i/o, don't make a second buf */
   1370 		if (offset == startoffset && iobytes == bytes) {
   1371 			bp = mbp;
   1372 		} else {
   1373 			s = splbio();
   1374 			vp->v_numoutput++;
   1375 			bp = pool_get(&bufpool, PR_WAITOK);
   1376 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1377 				    vp, bp, vp->v_numoutput, 0);
   1378 			splx(s);
   1379 			bp->b_data = (char *)kva +
   1380 				(vaddr_t)(offset - pg->offset);
   1381 			bp->b_resid = bp->b_bcount = iobytes;
   1382 			bp->b_flags = B_BUSY|B_WRITE|B_CALL;
   1383 			bp->b_iodone = uvm_aio_biodone1;
   1384 			bp->b_vp = vp;
   1385 			LIST_INIT(&bp->b_dep);
   1386 		}
   1387 		bp->b_lblkno = 0;
   1388 		bp->b_private = mbp;
   1389 		if (devvp->v_type == VBLK) {
   1390 			bp->b_dev = devvp->v_rdev;
   1391 		}
   1392 
   1393 		/* adjust physical blkno for partial blocks */
   1394 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1395 				       dev_bshift);
   1396 		UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1397 			    vp, offset, bp->b_bcount, bp->b_blkno);
   1398 		VOP_STRATEGY(bp);
   1399 	}
   1400 	if (skipbytes) {
   1401 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1402 		s = splbio();
   1403 		if (error) {
   1404 			mbp->b_flags |= B_ERROR;
   1405 			mbp->b_error = error;
   1406 		}
   1407 		mbp->b_resid -= skipbytes;
   1408 		if (mbp->b_resid == 0) {
   1409 			biodone(mbp);
   1410 		}
   1411 		splx(s);
   1412 	}
   1413 	if (async) {
   1414 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1415 		return 0;
   1416 	}
   1417 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1418 	error = biowait(mbp);
   1419 	uvm_aio_aiodone(mbp);
   1420 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1421 	return error;
   1422 }
   1423 
   1424 void
   1425 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
   1426 {
   1427 	struct genfs_node *gp = VTOG(vp);
   1428 
   1429 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1430 	gp->g_op = ops;
   1431 }
   1432 
   1433 void
   1434 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
   1435 {
   1436 	int bsize;
   1437 
   1438 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1439 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1440 }
   1441