genfs_vnops.c revision 1.40 1 /* $NetBSD: genfs_vnops.c,v 1.40 2001/11/10 13:33:41 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.40 2001/11/10 13:33:41 lukem Exp $");
39
40 #include "opt_nfsserver.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60
61 #ifdef NFSSERVER
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfs_var.h>
67 #endif
68
69 int
70 genfs_poll(v)
71 void *v;
72 {
73 struct vop_poll_args /* {
74 struct vnode *a_vp;
75 int a_events;
76 struct proc *a_p;
77 } */ *ap = v;
78
79 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
80 }
81
82 int
83 genfs_fsync(v)
84 void *v;
85 {
86 struct vop_fsync_args /* {
87 struct vnode *a_vp;
88 struct ucred *a_cred;
89 int a_flags;
90 off_t offlo;
91 off_t offhi;
92 struct proc *a_p;
93 } */ *ap = v;
94 struct vnode *vp = ap->a_vp;
95 int wait;
96
97 wait = (ap->a_flags & FSYNC_WAIT) != 0;
98 vflushbuf(vp, wait);
99 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
100 return (0);
101 else
102 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
103 }
104
105 int
106 genfs_seek(v)
107 void *v;
108 {
109 struct vop_seek_args /* {
110 struct vnode *a_vp;
111 off_t a_oldoff;
112 off_t a_newoff;
113 struct ucred *a_ucred;
114 } */ *ap = v;
115
116 if (ap->a_newoff < 0)
117 return (EINVAL);
118
119 return (0);
120 }
121
122 int
123 genfs_abortop(v)
124 void *v;
125 {
126 struct vop_abortop_args /* {
127 struct vnode *a_dvp;
128 struct componentname *a_cnp;
129 } */ *ap = v;
130
131 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
132 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
133 return (0);
134 }
135
136 int
137 genfs_fcntl(v)
138 void *v;
139 {
140 struct vop_fcntl_args /* {
141 struct vnode *a_vp;
142 u_int a_command;
143 caddr_t a_data;
144 int a_fflag;
145 struct ucred *a_cred;
146 struct proc *a_p;
147 } */ *ap = v;
148
149 if (ap->a_command == F_SETFL)
150 return (0);
151 else
152 return (EOPNOTSUPP);
153 }
154
155 /*ARGSUSED*/
156 int
157 genfs_badop(v)
158 void *v;
159 {
160
161 panic("genfs: bad op");
162 }
163
164 /*ARGSUSED*/
165 int
166 genfs_nullop(v)
167 void *v;
168 {
169
170 return (0);
171 }
172
173 /*ARGSUSED*/
174 int
175 genfs_einval(v)
176 void *v;
177 {
178
179 return (EINVAL);
180 }
181
182 /*ARGSUSED*/
183 int
184 genfs_eopnotsupp(v)
185 void *v;
186 {
187
188 return (EOPNOTSUPP);
189 }
190
191 /*
192 * Called when an fs doesn't support a particular vop but the vop needs to
193 * vrele, vput, or vunlock passed in vnodes.
194 */
195 int
196 genfs_eopnotsupp_rele(v)
197 void *v;
198 {
199 struct vop_generic_args /*
200 struct vnodeop_desc *a_desc;
201 / * other random data follows, presumably * /
202 } */ *ap = v;
203 struct vnodeop_desc *desc = ap->a_desc;
204 struct vnode *vp;
205 int flags, i, j, offset;
206
207 flags = desc->vdesc_flags;
208 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
209 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
210 break; /* stop at end of list */
211 if ((j = flags & VDESC_VP0_WILLPUT)) {
212 vp = *VOPARG_OFFSETTO(struct vnode**,offset,ap);
213 switch (j) {
214 case VDESC_VP0_WILLPUT:
215 vput(vp);
216 break;
217 case VDESC_VP0_WILLUNLOCK:
218 VOP_UNLOCK(vp, 0);
219 break;
220 case VDESC_VP0_WILLRELE:
221 vrele(vp);
222 break;
223 }
224 }
225 }
226
227 return (EOPNOTSUPP);
228 }
229
230 /*ARGSUSED*/
231 int
232 genfs_ebadf(v)
233 void *v;
234 {
235
236 return (EBADF);
237 }
238
239 /* ARGSUSED */
240 int
241 genfs_enoioctl(v)
242 void *v;
243 {
244
245 return (ENOTTY);
246 }
247
248
249 /*
250 * Eliminate all activity associated with the requested vnode
251 * and with all vnodes aliased to the requested vnode.
252 */
253 int
254 genfs_revoke(v)
255 void *v;
256 {
257 struct vop_revoke_args /* {
258 struct vnode *a_vp;
259 int a_flags;
260 } */ *ap = v;
261 struct vnode *vp, *vq;
262 struct proc *p = curproc; /* XXX */
263
264 #ifdef DIAGNOSTIC
265 if ((ap->a_flags & REVOKEALL) == 0)
266 panic("genfs_revoke: not revokeall");
267 #endif
268
269 vp = ap->a_vp;
270 simple_lock(&vp->v_interlock);
271
272 if (vp->v_flag & VALIASED) {
273 /*
274 * If a vgone (or vclean) is already in progress,
275 * wait until it is done and return.
276 */
277 if (vp->v_flag & VXLOCK) {
278 vp->v_flag |= VXWANT;
279 simple_unlock(&vp->v_interlock);
280 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
281 return (0);
282 }
283 /*
284 * Ensure that vp will not be vgone'd while we
285 * are eliminating its aliases.
286 */
287 vp->v_flag |= VXLOCK;
288 simple_unlock(&vp->v_interlock);
289 while (vp->v_flag & VALIASED) {
290 simple_lock(&spechash_slock);
291 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
292 if (vq->v_rdev != vp->v_rdev ||
293 vq->v_type != vp->v_type || vp == vq)
294 continue;
295 simple_unlock(&spechash_slock);
296 vgone(vq);
297 break;
298 }
299 if (vq == NULLVP)
300 simple_unlock(&spechash_slock);
301 }
302 /*
303 * Remove the lock so that vgone below will
304 * really eliminate the vnode after which time
305 * vgone will awaken any sleepers.
306 */
307 simple_lock(&vp->v_interlock);
308 vp->v_flag &= ~VXLOCK;
309 }
310 vgonel(vp, p);
311 return (0);
312 }
313
314 /*
315 * Lock the node.
316 */
317 int
318 genfs_lock(v)
319 void *v;
320 {
321 struct vop_lock_args /* {
322 struct vnode *a_vp;
323 int a_flags;
324 } */ *ap = v;
325 struct vnode *vp = ap->a_vp;
326
327 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
328 }
329
330 /*
331 * Unlock the node.
332 */
333 int
334 genfs_unlock(v)
335 void *v;
336 {
337 struct vop_unlock_args /* {
338 struct vnode *a_vp;
339 int a_flags;
340 } */ *ap = v;
341 struct vnode *vp = ap->a_vp;
342
343 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
344 &vp->v_interlock));
345 }
346
347 /*
348 * Return whether or not the node is locked.
349 */
350 int
351 genfs_islocked(v)
352 void *v;
353 {
354 struct vop_islocked_args /* {
355 struct vnode *a_vp;
356 } */ *ap = v;
357 struct vnode *vp = ap->a_vp;
358
359 return (lockstatus(&vp->v_lock));
360 }
361
362 /*
363 * Stubs to use when there is no locking to be done on the underlying object.
364 */
365 int
366 genfs_nolock(v)
367 void *v;
368 {
369 struct vop_lock_args /* {
370 struct vnode *a_vp;
371 int a_flags;
372 struct proc *a_p;
373 } */ *ap = v;
374
375 /*
376 * Since we are not using the lock manager, we must clear
377 * the interlock here.
378 */
379 if (ap->a_flags & LK_INTERLOCK)
380 simple_unlock(&ap->a_vp->v_interlock);
381 return (0);
382 }
383
384 int
385 genfs_nounlock(v)
386 void *v;
387 {
388 return (0);
389 }
390
391 int
392 genfs_noislocked(v)
393 void *v;
394 {
395 return (0);
396 }
397
398 /*
399 * Local lease check for NFS servers. Just set up args and let
400 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
401 * this is a null operation.
402 */
403 int
404 genfs_lease_check(v)
405 void *v;
406 {
407 #ifdef NFSSERVER
408 struct vop_lease_args /* {
409 struct vnode *a_vp;
410 struct proc *a_p;
411 struct ucred *a_cred;
412 int a_flag;
413 } */ *ap = v;
414 u_int32_t duration = 0;
415 int cache;
416 u_quad_t frev;
417
418 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
419 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
420 return (0);
421 #else
422 return (0);
423 #endif /* NFSSERVER */
424 }
425
426 int
427 genfs_mmap(v)
428 void *v;
429 {
430 return 0;
431 }
432
433 /*
434 * generic VM getpages routine.
435 * Return PG_BUSY pages for the given range,
436 * reading from backing store if necessary.
437 */
438
439 int
440 genfs_getpages(v)
441 void *v;
442 {
443 struct vop_getpages_args /* {
444 struct vnode *a_vp;
445 voff_t a_offset;
446 struct vm_page **a_m;
447 int *a_count;
448 int a_centeridx;
449 vm_prot_t a_access_type;
450 int a_advice;
451 int a_flags;
452 } */ *ap = v;
453
454 off_t newsize, diskeof, memeof;
455 off_t offset, origoffset, startoffset, endoffset, raoffset;
456 daddr_t lbn, blkno;
457 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
458 int fs_bshift, fs_bsize, dev_bshift;
459 int flags = ap->a_flags;
460 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
461 vaddr_t kva;
462 struct buf *bp, *mbp;
463 struct vnode *vp = ap->a_vp;
464 struct vnode *devvp;
465 struct genfs_node *gp = VTOG(vp);
466 struct uvm_object *uobj = &vp->v_uobj;
467 struct vm_page *pg, *pgs[16]; /* XXXUBC 16 */
468 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
469 boolean_t async = (flags & PGO_SYNCIO) == 0;
470 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
471 boolean_t sawhole = FALSE;
472 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
473 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
474
475 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
476 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
477
478 /* XXXUBC temp limit */
479 if (*ap->a_count > 16) {
480 panic("genfs_getpages: too many pages");
481 }
482
483 error = 0;
484 origoffset = ap->a_offset;
485 orignpages = *ap->a_count;
486 GOP_SIZE(vp, vp->v_size, &diskeof);
487 if (flags & PGO_PASTEOF) {
488 newsize = MAX(vp->v_size,
489 origoffset + (orignpages << PAGE_SHIFT));
490 GOP_SIZE(vp, newsize, &memeof);
491 } else {
492 memeof = diskeof;
493 }
494 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
495 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
496 KASSERT(orignpages > 0);
497
498 /*
499 * Bounds-check the request.
500 */
501
502 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
503 if ((flags & PGO_LOCKED) == 0) {
504 simple_unlock(&uobj->vmobjlock);
505 }
506 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
507 origoffset, *ap->a_count, memeof,0);
508 return EINVAL;
509 }
510
511 /*
512 * For PGO_LOCKED requests, just return whatever's in memory.
513 */
514
515 if (flags & PGO_LOCKED) {
516 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
517 UFP_NOWAIT|UFP_NOALLOC|UFP_NORDONLY);
518
519 return ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
520 }
521
522 /* vnode is VOP_LOCKed, uobj is locked */
523
524 if (write && (vp->v_flag & VONWORKLST) == 0) {
525 vn_syncer_add_to_worklist(vp, filedelay);
526 }
527
528 /*
529 * find the requested pages and make some simple checks.
530 * leave space in the page array for a whole block.
531 */
532
533 if (vp->v_type == VREG) {
534 fs_bshift = vp->v_mount->mnt_fs_bshift;
535 dev_bshift = vp->v_mount->mnt_dev_bshift;
536 } else {
537 fs_bshift = DEV_BSHIFT;
538 dev_bshift = DEV_BSHIFT;
539 }
540 fs_bsize = 1 << fs_bshift;
541
542 orignpages = MIN(orignpages,
543 round_page(memeof - origoffset) >> PAGE_SHIFT);
544 npages = orignpages;
545 startoffset = origoffset & ~(fs_bsize - 1);
546 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
547 + fs_bsize - 1) & ~(fs_bsize - 1));
548 endoffset = MIN(endoffset, round_page(memeof));
549 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
550
551 memset(pgs, 0, sizeof(pgs));
552 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
553
554 /*
555 * if the pages are already resident, just return them.
556 */
557
558 for (i = 0; i < npages; i++) {
559 struct vm_page *pg = pgs[ridx + i];
560
561 if ((pg->flags & PG_FAKE) ||
562 (write && (pg->flags & PG_RDONLY))) {
563 break;
564 }
565 }
566 if (i == npages) {
567 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
568 raoffset = origoffset + (orignpages << PAGE_SHIFT);
569 npages += ridx;
570 goto raout;
571 }
572
573 /*
574 * if PGO_OVERWRITE is set, don't bother reading the pages.
575 */
576
577 if (flags & PGO_OVERWRITE) {
578 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
579
580 for (i = 0; i < npages; i++) {
581 struct vm_page *pg = pgs[ridx + i];
582
583 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
584 }
585 npages += ridx;
586 goto out;
587 }
588
589 /*
590 * the page wasn't resident and we're not overwriting,
591 * so we're going to have to do some i/o.
592 * find any additional pages needed to cover the expanded range.
593 */
594
595 npages = (endoffset - startoffset) >> PAGE_SHIFT;
596 if (startoffset != origoffset || npages != orignpages) {
597
598 /*
599 * we need to avoid deadlocks caused by locking
600 * additional pages at lower offsets than pages we
601 * already have locked. unlock them all and start over.
602 */
603
604 for (i = 0; i < orignpages; i++) {
605 struct vm_page *pg = pgs[ridx + i];
606
607 if (pg->flags & PG_FAKE) {
608 pg->flags |= PG_RELEASED;
609 }
610 }
611 uvm_page_unbusy(&pgs[ridx], orignpages);
612 memset(pgs, 0, sizeof(pgs));
613
614 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
615 startoffset, endoffset, 0,0);
616 npgs = npages;
617 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
618 }
619 simple_unlock(&uobj->vmobjlock);
620
621 /*
622 * read the desired page(s).
623 */
624
625 totalbytes = npages << PAGE_SHIFT;
626 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
627 tailbytes = totalbytes - bytes;
628 skipbytes = 0;
629
630 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
631 UVMPAGER_MAPIN_READ);
632
633 s = splbio();
634 mbp = pool_get(&bufpool, PR_WAITOK);
635 splx(s);
636 mbp->b_bufsize = totalbytes;
637 mbp->b_data = (void *)kva;
638 mbp->b_resid = mbp->b_bcount = bytes;
639 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL : 0);
640 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
641 mbp->b_vp = vp;
642 LIST_INIT(&mbp->b_dep);
643
644 /*
645 * if EOF is in the middle of the range, zero the part past EOF.
646 * if the page including EOF is not PG_FAKE, skip over it since
647 * in that case it has valid data that we need to preserve.
648 */
649
650 if (tailbytes > 0) {
651 size_t tailstart = bytes;
652
653 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
654 tailstart = round_page(tailstart);
655 tailbytes -= tailstart - bytes;
656 }
657 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
658 kva, tailstart, tailbytes,0);
659 memset((void *)(kva + tailstart), 0, tailbytes);
660 }
661
662 /*
663 * now loop over the pages, reading as needed.
664 */
665
666 if (write) {
667 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
668 } else {
669 lockmgr(&gp->g_glock, LK_SHARED, NULL);
670 }
671
672 bp = NULL;
673 for (offset = startoffset;
674 bytes > 0;
675 offset += iobytes, bytes -= iobytes) {
676
677 /*
678 * skip pages which don't need to be read.
679 */
680
681 pidx = (offset - startoffset) >> PAGE_SHIFT;
682 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
683 size_t b;
684
685 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
686 b = MIN(PAGE_SIZE, bytes);
687 offset += b;
688 bytes -= b;
689 skipbytes += b;
690 pidx++;
691 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
692 offset, 0,0,0);
693 if (bytes == 0) {
694 goto loopdone;
695 }
696 }
697
698 /*
699 * bmap the file to find out the blkno to read from and
700 * how much we can read in one i/o. if bmap returns an error,
701 * skip the rest of the top-level i/o.
702 */
703
704 lbn = offset >> fs_bshift;
705 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
706 if (error) {
707 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
708 lbn, error,0,0);
709 skipbytes += bytes;
710 goto loopdone;
711 }
712
713 /*
714 * see how many pages can be read with this i/o.
715 * reduce the i/o size if necessary to avoid
716 * overwriting pages with valid data.
717 */
718
719 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
720 bytes);
721 if (offset + iobytes > round_page(offset)) {
722 pcount = 1;
723 while (pidx + pcount < npages &&
724 pgs[pidx + pcount]->flags & PG_FAKE) {
725 pcount++;
726 }
727 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
728 (offset - trunc_page(offset)));
729 }
730
731 /*
732 * if this block isn't allocated, zero it instead of reading it.
733 * if this is a read access, mark the pages we zeroed PG_RDONLY.
734 */
735
736 if (blkno < 0) {
737 int holepages = (round_page(offset + iobytes) -
738 trunc_page(offset)) >> PAGE_SHIFT;
739 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
740
741 sawhole = TRUE;
742 memset((char *)kva + (offset - startoffset), 0,
743 iobytes);
744 skipbytes += iobytes;
745
746 for (i = 0; i < holepages; i++) {
747 if (write) {
748 pgs[pidx + i]->flags &= ~PG_CLEAN;
749 } else {
750 pgs[pidx + i]->flags |= PG_RDONLY;
751 }
752 }
753 continue;
754 }
755
756 /*
757 * allocate a sub-buf for this piece of the i/o
758 * (or just use mbp if there's only 1 piece),
759 * and start it going.
760 */
761
762 if (offset == startoffset && iobytes == bytes) {
763 bp = mbp;
764 } else {
765 s = splbio();
766 bp = pool_get(&bufpool, PR_WAITOK);
767 splx(s);
768 bp->b_data = (char *)kva + offset - startoffset;
769 bp->b_resid = bp->b_bcount = iobytes;
770 bp->b_flags = B_BUSY|B_READ|B_CALL;
771 bp->b_iodone = uvm_aio_biodone1;
772 bp->b_vp = vp;
773 bp->b_proc = NULL;
774 LIST_INIT(&bp->b_dep);
775 }
776 bp->b_lblkno = 0;
777 bp->b_private = mbp;
778 if (devvp->v_type == VBLK) {
779 bp->b_dev = devvp->v_rdev;
780 }
781
782 /* adjust physical blkno for partial blocks */
783 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
784 dev_bshift);
785
786 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
787 bp, offset, iobytes, bp->b_blkno);
788
789 VOP_STRATEGY(bp);
790 }
791
792 loopdone:
793 if (skipbytes) {
794 s = splbio();
795 if (error) {
796 mbp->b_flags |= B_ERROR;
797 mbp->b_error = error;
798 }
799 mbp->b_resid -= skipbytes;
800 if (mbp->b_resid == 0) {
801 biodone(mbp);
802 }
803 splx(s);
804 }
805
806 if (async) {
807 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
808 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
809 return 0;
810 }
811 if (bp != NULL) {
812 error = biowait(mbp);
813 }
814 s = splbio();
815 pool_put(&bufpool, mbp);
816 splx(s);
817 uvm_pagermapout(kva, npages);
818 raoffset = startoffset + totalbytes;
819
820 /*
821 * if this we encountered a hole then we have to do a little more work.
822 * for read faults, we marked the page PG_RDONLY so that future
823 * write accesses to the page will fault again.
824 * for write faults, we must make sure that the backing store for
825 * the page is completely allocated while the pages are locked.
826 */
827
828 if (!error && sawhole && write) {
829 for (i = 0; i < npages; i++) {
830 if (pgs[i] == NULL) {
831 continue;
832 }
833 pgs[i]->flags &= ~PG_CLEAN;
834 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
835 }
836 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
837 cred);
838 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
839 startoffset, npages << PAGE_SHIFT, error,0);
840 }
841 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
842 simple_lock(&uobj->vmobjlock);
843
844 /*
845 * see if we want to start any readahead.
846 * XXXUBC for now, just read the next 128k on 64k boundaries.
847 * this is pretty nonsensical, but it is 50% faster than reading
848 * just the next 64k.
849 */
850
851 raout:
852 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
853 PAGE_SHIFT <= 16) {
854 int racount;
855
856 racount = 1 << (16 - PAGE_SHIFT);
857 (void) VOP_GETPAGES(vp, raoffset, NULL, &racount, 0,
858 VM_PROT_READ, 0, 0);
859 simple_lock(&uobj->vmobjlock);
860
861 racount = 1 << (16 - PAGE_SHIFT);
862 (void) VOP_GETPAGES(vp, raoffset + 0x10000, NULL, &racount, 0,
863 VM_PROT_READ, 0, 0);
864 simple_lock(&uobj->vmobjlock);
865 }
866
867 /*
868 * we're almost done! release the pages...
869 * for errors, we free the pages.
870 * otherwise we activate them and mark them as valid and clean.
871 * also, unbusy pages that were not actually requested.
872 */
873
874 if (error) {
875 for (i = 0; i < npages; i++) {
876 if (pgs[i] == NULL) {
877 continue;
878 }
879 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
880 pgs[i], pgs[i]->flags, 0,0);
881 if (pgs[i]->flags & PG_FAKE) {
882 pgs[i]->flags |= PG_RELEASED;
883 }
884 }
885 uvm_lock_pageq();
886 uvm_page_unbusy(pgs, npages);
887 uvm_unlock_pageq();
888 simple_unlock(&uobj->vmobjlock);
889 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
890 return error;
891 }
892
893 out:
894 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
895 uvm_lock_pageq();
896 for (i = 0; i < npages; i++) {
897 pg = pgs[i];
898 if (pg == NULL) {
899 continue;
900 }
901 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
902 pg, pg->flags, 0,0);
903 if (pg->flags & PG_FAKE && !overwrite) {
904 pg->flags &= ~(PG_FAKE);
905 pmap_clear_modify(pgs[i]);
906 }
907 if (write) {
908 pg->flags &= ~(PG_RDONLY);
909 }
910 if (i < ridx || i >= ridx + orignpages || async) {
911 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
912 pg, pg->offset,0,0);
913 if (pg->flags & PG_WANTED) {
914 wakeup(pg);
915 }
916 if (pg->flags & PG_FAKE) {
917 KASSERT(overwrite);
918 uvm_pagezero(pg);
919 }
920 if (pg->flags & PG_RELEASED) {
921 uvm_pagefree(pg);
922 continue;
923 }
924 uvm_pageactivate(pg);
925 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
926 UVM_PAGE_OWN(pg, NULL);
927 }
928 }
929 uvm_unlock_pageq();
930 simple_unlock(&uobj->vmobjlock);
931 if (ap->a_m != NULL) {
932 memcpy(ap->a_m, &pgs[ridx],
933 orignpages * sizeof(struct vm_page *));
934 }
935 return 0;
936 }
937
938 /*
939 * generic VM putpages routine.
940 * Write the given range of pages to backing store.
941 *
942 * => "offhi == 0" means flush all pages at or after "offlo".
943 * => object should be locked by caller. we may _unlock_ the object
944 * if (and only if) we need to clean a page (PGO_CLEANIT), or
945 * if PGO_SYNCIO is set and there are pages busy.
946 * we return with the object locked.
947 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
948 * thus, a caller might want to unlock higher level resources
949 * (e.g. vm_map) before calling flush.
950 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
951 * unlock the object nor block.
952 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
953 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
954 * that new pages are inserted on the tail end of the list. thus,
955 * we can make a complete pass through the object in one go by starting
956 * at the head and working towards the tail (new pages are put in
957 * front of us).
958 * => NOTE: we are allowed to lock the page queues, so the caller
959 * must not be holding the page queue lock.
960 *
961 * note on "cleaning" object and PG_BUSY pages:
962 * this routine is holding the lock on the object. the only time
963 * that it can run into a PG_BUSY page that it does not own is if
964 * some other process has started I/O on the page (e.g. either
965 * a pagein, or a pageout). if the PG_BUSY page is being paged
966 * in, then it can not be dirty (!PG_CLEAN) because no one has
967 * had a chance to modify it yet. if the PG_BUSY page is being
968 * paged out then it means that someone else has already started
969 * cleaning the page for us (how nice!). in this case, if we
970 * have syncio specified, then after we make our pass through the
971 * object we need to wait for the other PG_BUSY pages to clear
972 * off (i.e. we need to do an iosync). also note that once a
973 * page is PG_BUSY it must stay in its object until it is un-busyed.
974 *
975 * note on page traversal:
976 * we can traverse the pages in an object either by going down the
977 * linked list in "uobj->memq", or we can go over the address range
978 * by page doing hash table lookups for each address. depending
979 * on how many pages are in the object it may be cheaper to do one
980 * or the other. we set "by_list" to true if we are using memq.
981 * if the cost of a hash lookup was equal to the cost of the list
982 * traversal we could compare the number of pages in the start->stop
983 * range to the total number of pages in the object. however, it
984 * seems that a hash table lookup is more expensive than the linked
985 * list traversal, so we multiply the number of pages in the
986 * range by an estimate of the relatively higher cost of the hash lookup.
987 */
988
989 int
990 genfs_putpages(v)
991 void *v;
992 {
993 struct vop_putpages_args /* {
994 struct vnode *a_vp;
995 voff_t a_offlo;
996 voff_t a_offhi;
997 int a_flags;
998 } */ *ap = v;
999 struct vnode *vp = ap->a_vp;
1000 struct uvm_object *uobj = &vp->v_uobj;
1001 off_t startoff = ap->a_offlo;
1002 off_t endoff = ap->a_offhi;
1003 off_t off;
1004 int flags = ap->a_flags;
1005 int n = MAXBSIZE >> PAGE_SHIFT;
1006 int i, s, error, npages, nback;
1007 int freeflag;
1008 struct vm_page *pgs[n], *pg, *nextpg, *tpg, curmp, endmp;
1009 boolean_t wasclean, by_list, needs_clean;
1010 boolean_t async = (flags & PGO_SYNCIO) == 0;
1011 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1012
1013 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1014 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1015 KASSERT(startoff < endoff || endoff == 0);
1016
1017 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1018 vp, uobj->uo_npages, startoff, endoff - startoff);
1019 if (uobj->uo_npages == 0) {
1020 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1021 (vp->v_flag & VONWORKLST)) {
1022 vp->v_flag &= ~VONWORKLST;
1023 LIST_REMOVE(vp, v_synclist);
1024 }
1025 simple_unlock(&uobj->vmobjlock);
1026 return 0;
1027 }
1028
1029 /*
1030 * the vnode has pages, set up to process the request.
1031 */
1032
1033 error = 0;
1034 wasclean = TRUE;
1035 off = startoff;
1036 if (endoff == 0 || flags & PGO_ALLPAGES) {
1037 endoff = trunc_page(LLONG_MAX);
1038 }
1039 by_list = (uobj->uo_npages <=
1040 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1041
1042 /*
1043 * start the loop. when scanning by list, hold the last page
1044 * in the list before we start. pages allocated after we start
1045 * will be added to the end of the list, so we can stop at the
1046 * current last page.
1047 */
1048
1049 freeflag = (curproc == uvm.pagedaemon_proc) ? PG_PAGEOUT : PG_RELEASED;
1050 curmp.uobject = uobj;
1051 curmp.offset = (voff_t)-1;
1052 curmp.flags = PG_BUSY;
1053 endmp.uobject = uobj;
1054 endmp.offset = (voff_t)-1;
1055 endmp.flags = PG_BUSY;
1056 if (by_list) {
1057 pg = TAILQ_FIRST(&uobj->memq);
1058 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1059 PHOLD(curproc);
1060 } else {
1061 pg = uvm_pagelookup(uobj, off);
1062 }
1063 nextpg = NULL;
1064 while (by_list || off < endoff) {
1065
1066 /*
1067 * if the current page is not interesting, move on to the next.
1068 */
1069
1070 KASSERT(pg == NULL || pg->uobject == uobj);
1071 KASSERT(pg == NULL ||
1072 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1073 (pg->flags & PG_BUSY) != 0);
1074 if (by_list) {
1075 if (pg == &endmp) {
1076 break;
1077 }
1078 if (pg->offset < startoff || pg->offset >= endoff ||
1079 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1080 pg = TAILQ_NEXT(pg, listq);
1081 continue;
1082 }
1083 off = pg->offset;
1084 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1085 off += PAGE_SIZE;
1086 if (off < endoff) {
1087 pg = uvm_pagelookup(uobj, off);
1088 }
1089 continue;
1090 }
1091
1092 /*
1093 * if the current page needs to be cleaned and it's busy,
1094 * wait for it to become unbusy.
1095 */
1096
1097 if (flags & PGO_FREE) {
1098 pmap_page_protect(pg, VM_PROT_NONE);
1099 }
1100 if (flags & PGO_CLEANIT) {
1101 needs_clean = pmap_clear_modify(pg) ||
1102 (pg->flags & PG_CLEAN) == 0;
1103 pg->flags |= PG_CLEAN;
1104 } else {
1105 needs_clean = FALSE;
1106 }
1107 if (needs_clean && pg->flags & PG_BUSY) {
1108 KASSERT(curproc != uvm.pagedaemon_proc);
1109 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1110 if (by_list) {
1111 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1112 UVMHIST_LOG(ubchist, "curmp next %p",
1113 TAILQ_NEXT(&curmp, listq), 0,0,0);
1114 }
1115 pg->flags |= PG_WANTED;
1116 pg->flags &= ~PG_CLEAN;
1117 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
1118 "genput", 0);
1119 simple_lock(&uobj->vmobjlock);
1120 if (by_list) {
1121 UVMHIST_LOG(ubchist, "after next %p",
1122 TAILQ_NEXT(&curmp, listq), 0,0,0);
1123 pg = TAILQ_NEXT(&curmp, listq);
1124 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1125 } else {
1126 pg = uvm_pagelookup(uobj, off);
1127 }
1128 continue;
1129 }
1130
1131 /*
1132 * if we're cleaning, build a cluster.
1133 * the cluster will consist of pages which are currently dirty,
1134 * but they will be returned to us marked clean.
1135 * if not cleaning, just operate on the one page.
1136 */
1137
1138 if (needs_clean) {
1139 wasclean = FALSE;
1140 memset(pgs, 0, sizeof(pgs));
1141 pg->flags |= PG_BUSY;
1142 UVM_PAGE_OWN(pg, "genfs_putpages");
1143
1144 /*
1145 * first look backward.
1146 */
1147
1148 npages = MIN(n >> 1, off >> PAGE_SHIFT);
1149 nback = npages;
1150 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1151 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1152 if (nback) {
1153 memmove(&pgs[0], &pgs[npages - nback],
1154 nback * sizeof(pgs[0]));
1155 }
1156 n -= nback;
1157
1158 /*
1159 * then plug in our page of interest.
1160 */
1161
1162 pgs[nback] = pg;
1163
1164 /*
1165 * then look forward to fill in the remaining space in
1166 * the array of pages.
1167 */
1168
1169 npages = MIN(n, (endoff - off) >> PAGE_SHIFT) - 1;
1170 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1171 &pgs[nback + 1],
1172 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1173 npages += nback + 1;
1174 } else {
1175 pgs[0] = pg;
1176 npages = 1;
1177 }
1178
1179 /*
1180 * apply FREE or DEACTIVATE options if requested.
1181 */
1182
1183 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1184 uvm_lock_pageq();
1185 }
1186 for (i = 0; i < npages; i++) {
1187 tpg = pgs[i];
1188 KASSERT(tpg->uobject == uobj);
1189 if (flags & PGO_DEACTIVATE &&
1190 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1191 tpg->wire_count == 0) {
1192 (void) pmap_clear_reference(tpg);
1193 uvm_pagedeactivate(tpg);
1194 } else if (flags & PGO_FREE) {
1195 pmap_page_protect(tpg, VM_PROT_NONE);
1196 if (tpg->flags & PG_BUSY) {
1197 tpg->flags |= freeflag;
1198 if (freeflag == PG_PAGEOUT) {
1199 uvmexp.paging++;
1200 uvm_pagedequeue(tpg);
1201 }
1202 } else {
1203 nextpg = TAILQ_NEXT(tpg, listq);
1204 uvm_pagefree(tpg);
1205 }
1206 }
1207 }
1208 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1209 uvm_unlock_pageq();
1210 }
1211 if (needs_clean) {
1212
1213 /*
1214 * start the i/o. if we're traversing by list,
1215 * keep our place in the list with a marker page.
1216 */
1217
1218 if (by_list) {
1219 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1220 listq);
1221 }
1222 simple_unlock(&uobj->vmobjlock);
1223 error = GOP_WRITE(vp, pgs, npages, flags);
1224 simple_lock(&uobj->vmobjlock);
1225 if (by_list) {
1226 pg = TAILQ_NEXT(&curmp, listq);
1227 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1228 }
1229 if (error == ENOMEM) {
1230 for (i = 0; i < npages; i++) {
1231 tpg = pgs[i];
1232 if (tpg->flags & PG_PAGEOUT) {
1233 tpg->flags &= ~PG_PAGEOUT;
1234 uvmexp.paging--;
1235 }
1236 tpg->flags &= ~PG_CLEAN;
1237 uvm_pageactivate(tpg);
1238 }
1239 uvm_page_unbusy(pgs, npages);
1240 }
1241 if (error) {
1242 break;
1243 }
1244 if (by_list) {
1245 continue;
1246 }
1247 }
1248
1249 /*
1250 * find the next page and continue if there was no error.
1251 */
1252
1253 if (by_list) {
1254 if (nextpg) {
1255 pg = nextpg;
1256 nextpg = NULL;
1257 } else {
1258 pg = TAILQ_NEXT(pg, listq);
1259 }
1260 } else {
1261 off += PAGE_SIZE;
1262 if (off < endoff) {
1263 pg = uvm_pagelookup(uobj, off);
1264 }
1265 }
1266 }
1267 if (by_list) {
1268 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1269 PRELE(curproc);
1270 }
1271
1272 /*
1273 * if we're cleaning and there was nothing to clean,
1274 * take us off the syncer list. if we started any i/o
1275 * and we're doing sync i/o, wait for all writes to finish.
1276 */
1277
1278 if ((flags & PGO_CLEANIT) && wasclean &&
1279 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1280 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1281 (vp->v_flag & VONWORKLST)) {
1282 vp->v_flag &= ~VONWORKLST;
1283 LIST_REMOVE(vp, v_synclist);
1284 }
1285 if (!wasclean && !async) {
1286 s = splbio();
1287 while (vp->v_numoutput != 0) {
1288 vp->v_flag |= VBWAIT;
1289 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, &uobj->vmobjlock,
1290 FALSE, "genput2",0);
1291 simple_lock(&uobj->vmobjlock);
1292 }
1293 splx(s);
1294 }
1295 simple_unlock(&uobj->vmobjlock);
1296 return error;
1297 }
1298
1299 int
1300 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1301 {
1302 int s, error, run;
1303 int fs_bshift, dev_bshift;
1304 vaddr_t kva;
1305 off_t eof, offset, startoffset;
1306 size_t bytes, iobytes, skipbytes;
1307 daddr_t lbn, blkno;
1308 struct vm_page *pg;
1309 struct buf *mbp, *bp;
1310 struct vnode *devvp;
1311 boolean_t async = (flags & PGO_SYNCIO) == 0;
1312 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1313
1314 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1315 vp, pgs, npages, flags);
1316
1317 GOP_SIZE(vp, vp->v_size, &eof);
1318 if (vp->v_type == VREG) {
1319 fs_bshift = vp->v_mount->mnt_fs_bshift;
1320 dev_bshift = vp->v_mount->mnt_dev_bshift;
1321 } else {
1322 fs_bshift = DEV_BSHIFT;
1323 dev_bshift = DEV_BSHIFT;
1324 }
1325 error = 0;
1326 pg = pgs[0];
1327 startoffset = pg->offset;
1328 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1329 skipbytes = 0;
1330 KASSERT(bytes != 0);
1331
1332 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1333 UVMPAGER_MAPIN_WAITOK);
1334
1335 s = splbio();
1336 vp->v_numoutput += 2;
1337 mbp = pool_get(&bufpool, PR_WAITOK);
1338 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1339 vp, mbp, vp->v_numoutput, bytes);
1340 splx(s);
1341 mbp->b_bufsize = npages << PAGE_SHIFT;
1342 mbp->b_data = (void *)kva;
1343 mbp->b_resid = mbp->b_bcount = bytes;
1344 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? B_CALL : 0);
1345 mbp->b_iodone = uvm_aio_biodone;
1346 mbp->b_vp = vp;
1347 LIST_INIT(&mbp->b_dep);
1348
1349 bp = NULL;
1350 for (offset = startoffset;
1351 bytes > 0;
1352 offset += iobytes, bytes -= iobytes) {
1353 lbn = offset >> fs_bshift;
1354 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1355 if (error) {
1356 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1357 skipbytes += bytes;
1358 bytes = 0;
1359 break;
1360 }
1361
1362 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1363 bytes);
1364 if (blkno == (daddr_t)-1) {
1365 skipbytes += iobytes;
1366 continue;
1367 }
1368
1369 /* if it's really one i/o, don't make a second buf */
1370 if (offset == startoffset && iobytes == bytes) {
1371 bp = mbp;
1372 } else {
1373 s = splbio();
1374 vp->v_numoutput++;
1375 bp = pool_get(&bufpool, PR_WAITOK);
1376 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1377 vp, bp, vp->v_numoutput, 0);
1378 splx(s);
1379 bp->b_data = (char *)kva +
1380 (vaddr_t)(offset - pg->offset);
1381 bp->b_resid = bp->b_bcount = iobytes;
1382 bp->b_flags = B_BUSY|B_WRITE|B_CALL;
1383 bp->b_iodone = uvm_aio_biodone1;
1384 bp->b_vp = vp;
1385 LIST_INIT(&bp->b_dep);
1386 }
1387 bp->b_lblkno = 0;
1388 bp->b_private = mbp;
1389 if (devvp->v_type == VBLK) {
1390 bp->b_dev = devvp->v_rdev;
1391 }
1392
1393 /* adjust physical blkno for partial blocks */
1394 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1395 dev_bshift);
1396 UVMHIST_LOG(ubchist, "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1397 vp, offset, bp->b_bcount, bp->b_blkno);
1398 VOP_STRATEGY(bp);
1399 }
1400 if (skipbytes) {
1401 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1402 s = splbio();
1403 if (error) {
1404 mbp->b_flags |= B_ERROR;
1405 mbp->b_error = error;
1406 }
1407 mbp->b_resid -= skipbytes;
1408 if (mbp->b_resid == 0) {
1409 biodone(mbp);
1410 }
1411 splx(s);
1412 }
1413 if (async) {
1414 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1415 return 0;
1416 }
1417 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1418 error = biowait(mbp);
1419 uvm_aio_aiodone(mbp);
1420 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1421 return error;
1422 }
1423
1424 void
1425 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1426 {
1427 struct genfs_node *gp = VTOG(vp);
1428
1429 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1430 gp->g_op = ops;
1431 }
1432
1433 void
1434 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1435 {
1436 int bsize;
1437
1438 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1439 *eobp = (size + bsize - 1) & ~(bsize - 1);
1440 }
1441