genfs_vnops.c revision 1.67 1 /* $NetBSD: genfs_vnops.c,v 1.67 2002/10/25 05:44:41 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.67 2002/10/25 05:44:41 yamt Exp $");
39
40 #include "opt_nfsserver.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71
72 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
73 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
74 int genfs_racount = 2; /* # of page chunks to readahead */
75 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
76
77 int
78 genfs_poll(void *v)
79 {
80 struct vop_poll_args /* {
81 struct vnode *a_vp;
82 int a_events;
83 struct proc *a_p;
84 } */ *ap = v;
85
86 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
87 }
88
89 int
90 genfs_fsync(void *v)
91 {
92 struct vop_fsync_args /* {
93 struct vnode *a_vp;
94 struct ucred *a_cred;
95 int a_flags;
96 off_t offlo;
97 off_t offhi;
98 struct proc *a_p;
99 } */ *ap = v;
100 struct vnode *vp = ap->a_vp;
101 int wait;
102
103 wait = (ap->a_flags & FSYNC_WAIT) != 0;
104 vflushbuf(vp, wait);
105 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
106 return (0);
107 else
108 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
109 }
110
111 int
112 genfs_seek(void *v)
113 {
114 struct vop_seek_args /* {
115 struct vnode *a_vp;
116 off_t a_oldoff;
117 off_t a_newoff;
118 struct ucred *a_ucred;
119 } */ *ap = v;
120
121 if (ap->a_newoff < 0)
122 return (EINVAL);
123
124 return (0);
125 }
126
127 int
128 genfs_abortop(void *v)
129 {
130 struct vop_abortop_args /* {
131 struct vnode *a_dvp;
132 struct componentname *a_cnp;
133 } */ *ap = v;
134
135 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
136 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
137 return (0);
138 }
139
140 int
141 genfs_fcntl(void *v)
142 {
143 struct vop_fcntl_args /* {
144 struct vnode *a_vp;
145 u_int a_command;
146 caddr_t a_data;
147 int a_fflag;
148 struct ucred *a_cred;
149 struct proc *a_p;
150 } */ *ap = v;
151
152 if (ap->a_command == F_SETFL)
153 return (0);
154 else
155 return (EOPNOTSUPP);
156 }
157
158 /*ARGSUSED*/
159 int
160 genfs_badop(void *v)
161 {
162
163 panic("genfs: bad op");
164 }
165
166 /*ARGSUSED*/
167 int
168 genfs_nullop(void *v)
169 {
170
171 return (0);
172 }
173
174 /*ARGSUSED*/
175 int
176 genfs_einval(void *v)
177 {
178
179 return (EINVAL);
180 }
181
182 /*ARGSUSED*/
183 int
184 genfs_eopnotsupp(void *v)
185 {
186
187 return (EOPNOTSUPP);
188 }
189
190 /*
191 * Called when an fs doesn't support a particular vop but the vop needs to
192 * vrele, vput, or vunlock passed in vnodes.
193 */
194 int
195 genfs_eopnotsupp_rele(void *v)
196 {
197 struct vop_generic_args /*
198 struct vnodeop_desc *a_desc;
199 / * other random data follows, presumably * /
200 } */ *ap = v;
201 struct vnodeop_desc *desc = ap->a_desc;
202 struct vnode *vp;
203 int flags, i, j, offset;
204
205 flags = desc->vdesc_flags;
206 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
207 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
208 break; /* stop at end of list */
209 if ((j = flags & VDESC_VP0_WILLPUT)) {
210 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
211 switch (j) {
212 case VDESC_VP0_WILLPUT:
213 vput(vp);
214 break;
215 case VDESC_VP0_WILLUNLOCK:
216 VOP_UNLOCK(vp, 0);
217 break;
218 case VDESC_VP0_WILLRELE:
219 vrele(vp);
220 break;
221 }
222 }
223 }
224
225 return (EOPNOTSUPP);
226 }
227
228 /*ARGSUSED*/
229 int
230 genfs_ebadf(void *v)
231 {
232
233 return (EBADF);
234 }
235
236 /* ARGSUSED */
237 int
238 genfs_enoioctl(void *v)
239 {
240
241 return (EPASSTHROUGH);
242 }
243
244
245 /*
246 * Eliminate all activity associated with the requested vnode
247 * and with all vnodes aliased to the requested vnode.
248 */
249 int
250 genfs_revoke(void *v)
251 {
252 struct vop_revoke_args /* {
253 struct vnode *a_vp;
254 int a_flags;
255 } */ *ap = v;
256 struct vnode *vp, *vq;
257 struct proc *p = curproc; /* XXX */
258
259 #ifdef DIAGNOSTIC
260 if ((ap->a_flags & REVOKEALL) == 0)
261 panic("genfs_revoke: not revokeall");
262 #endif
263
264 vp = ap->a_vp;
265 simple_lock(&vp->v_interlock);
266
267 if (vp->v_flag & VALIASED) {
268 /*
269 * If a vgone (or vclean) is already in progress,
270 * wait until it is done and return.
271 */
272 if (vp->v_flag & VXLOCK) {
273 vp->v_flag |= VXWANT;
274 simple_unlock(&vp->v_interlock);
275 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
276 return (0);
277 }
278 /*
279 * Ensure that vp will not be vgone'd while we
280 * are eliminating its aliases.
281 */
282 vp->v_flag |= VXLOCK;
283 simple_unlock(&vp->v_interlock);
284 while (vp->v_flag & VALIASED) {
285 simple_lock(&spechash_slock);
286 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
287 if (vq->v_rdev != vp->v_rdev ||
288 vq->v_type != vp->v_type || vp == vq)
289 continue;
290 simple_unlock(&spechash_slock);
291 vgone(vq);
292 break;
293 }
294 if (vq == NULLVP)
295 simple_unlock(&spechash_slock);
296 }
297 /*
298 * Remove the lock so that vgone below will
299 * really eliminate the vnode after which time
300 * vgone will awaken any sleepers.
301 */
302 simple_lock(&vp->v_interlock);
303 vp->v_flag &= ~VXLOCK;
304 }
305 vgonel(vp, p);
306 return (0);
307 }
308
309 /*
310 * Lock the node.
311 */
312 int
313 genfs_lock(void *v)
314 {
315 struct vop_lock_args /* {
316 struct vnode *a_vp;
317 int a_flags;
318 } */ *ap = v;
319 struct vnode *vp = ap->a_vp;
320
321 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
322 }
323
324 /*
325 * Unlock the node.
326 */
327 int
328 genfs_unlock(void *v)
329 {
330 struct vop_unlock_args /* {
331 struct vnode *a_vp;
332 int a_flags;
333 } */ *ap = v;
334 struct vnode *vp = ap->a_vp;
335
336 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
337 &vp->v_interlock));
338 }
339
340 /*
341 * Return whether or not the node is locked.
342 */
343 int
344 genfs_islocked(void *v)
345 {
346 struct vop_islocked_args /* {
347 struct vnode *a_vp;
348 } */ *ap = v;
349 struct vnode *vp = ap->a_vp;
350
351 return (lockstatus(&vp->v_lock));
352 }
353
354 /*
355 * Stubs to use when there is no locking to be done on the underlying object.
356 */
357 int
358 genfs_nolock(void *v)
359 {
360 struct vop_lock_args /* {
361 struct vnode *a_vp;
362 int a_flags;
363 struct proc *a_p;
364 } */ *ap = v;
365
366 /*
367 * Since we are not using the lock manager, we must clear
368 * the interlock here.
369 */
370 if (ap->a_flags & LK_INTERLOCK)
371 simple_unlock(&ap->a_vp->v_interlock);
372 return (0);
373 }
374
375 int
376 genfs_nounlock(void *v)
377 {
378
379 return (0);
380 }
381
382 int
383 genfs_noislocked(void *v)
384 {
385
386 return (0);
387 }
388
389 /*
390 * Local lease check for NFS servers. Just set up args and let
391 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
392 * this is a null operation.
393 */
394 int
395 genfs_lease_check(void *v)
396 {
397 #ifdef NFSSERVER
398 struct vop_lease_args /* {
399 struct vnode *a_vp;
400 struct proc *a_p;
401 struct ucred *a_cred;
402 int a_flag;
403 } */ *ap = v;
404 u_int32_t duration = 0;
405 int cache;
406 u_quad_t frev;
407
408 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
409 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
410 return (0);
411 #else
412 return (0);
413 #endif /* NFSSERVER */
414 }
415
416 int
417 genfs_mmap(void *v)
418 {
419
420 return (0);
421 }
422
423 static __inline void
424 genfs_rel_pages(struct vm_page **pgs, int npages)
425 {
426 int i;
427
428 for (i = 0; i < npages; i++) {
429 struct vm_page *pg = pgs[i];
430
431 if (pg == NULL)
432 continue;
433 if (pg->flags & PG_FAKE) {
434 pg->flags |= PG_RELEASED;
435 }
436 }
437 uvm_lock_pageq();
438 uvm_page_unbusy(pgs, npages);
439 uvm_unlock_pageq();
440 }
441
442 /*
443 * generic VM getpages routine.
444 * Return PG_BUSY pages for the given range,
445 * reading from backing store if necessary.
446 */
447
448 int
449 genfs_getpages(void *v)
450 {
451 struct vop_getpages_args /* {
452 struct vnode *a_vp;
453 voff_t a_offset;
454 struct vm_page **a_m;
455 int *a_count;
456 int a_centeridx;
457 vm_prot_t a_access_type;
458 int a_advice;
459 int a_flags;
460 } */ *ap = v;
461
462 off_t newsize, diskeof, memeof;
463 off_t offset, origoffset, startoffset, endoffset, raoffset;
464 daddr_t lbn, blkno;
465 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
466 int fs_bshift, fs_bsize, dev_bshift;
467 int flags = ap->a_flags;
468 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
469 vaddr_t kva;
470 struct buf *bp, *mbp;
471 struct vnode *vp = ap->a_vp;
472 struct vnode *devvp;
473 struct genfs_node *gp = VTOG(vp);
474 struct uvm_object *uobj = &vp->v_uobj;
475 struct vm_page *pg, *pgs[MAX_READ_AHEAD];
476 struct ucred *cred = curproc->p_ucred; /* XXXUBC curproc */
477 boolean_t async = (flags & PGO_SYNCIO) == 0;
478 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
479 boolean_t sawhole = FALSE;
480 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
481 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
482
483 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
484 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
485
486 /* XXXUBC temp limit */
487 if (*ap->a_count > MAX_READ_AHEAD) {
488 panic("genfs_getpages: too many pages");
489 }
490
491 error = 0;
492 origoffset = ap->a_offset;
493 orignpages = *ap->a_count;
494 GOP_SIZE(vp, vp->v_size, &diskeof);
495 if (flags & PGO_PASTEOF) {
496 newsize = MAX(vp->v_size,
497 origoffset + (orignpages << PAGE_SHIFT));
498 GOP_SIZE(vp, newsize, &memeof);
499 } else {
500 memeof = diskeof;
501 }
502 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
503 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
504 KASSERT(orignpages > 0);
505
506 /*
507 * Bounds-check the request.
508 */
509
510 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
511 if ((flags & PGO_LOCKED) == 0) {
512 simple_unlock(&uobj->vmobjlock);
513 }
514 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
515 origoffset, *ap->a_count, memeof,0);
516 return (EINVAL);
517 }
518
519 /*
520 * For PGO_LOCKED requests, just return whatever's in memory.
521 */
522
523 if (flags & PGO_LOCKED) {
524 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
525 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
526
527 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
528 }
529
530 /* vnode is VOP_LOCKed, uobj is locked */
531
532 if (write && (vp->v_flag & VONWORKLST) == 0) {
533 vn_syncer_add_to_worklist(vp, filedelay);
534 }
535
536 /*
537 * find the requested pages and make some simple checks.
538 * leave space in the page array for a whole block.
539 */
540
541 if (vp->v_type == VREG) {
542 fs_bshift = vp->v_mount->mnt_fs_bshift;
543 dev_bshift = vp->v_mount->mnt_dev_bshift;
544 } else {
545 fs_bshift = DEV_BSHIFT;
546 dev_bshift = DEV_BSHIFT;
547 }
548 fs_bsize = 1 << fs_bshift;
549
550 orignpages = MIN(orignpages,
551 round_page(memeof - origoffset) >> PAGE_SHIFT);
552 npages = orignpages;
553 startoffset = origoffset & ~(fs_bsize - 1);
554 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
555 fs_bsize - 1) & ~(fs_bsize - 1));
556 endoffset = MIN(endoffset, round_page(memeof));
557 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
558
559 memset(pgs, 0, sizeof(pgs));
560 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
561 ridx, npages, startoffset, endoffset);
562 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
563 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
564 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
565 KASSERT(async != 0);
566 genfs_rel_pages(&pgs[ridx], orignpages);
567 simple_unlock(&uobj->vmobjlock);
568 return (EBUSY);
569 }
570
571 /*
572 * if the pages are already resident, just return them.
573 */
574
575 for (i = 0; i < npages; i++) {
576 struct vm_page *pg = pgs[ridx + i];
577
578 if ((pg->flags & PG_FAKE) ||
579 (write && (pg->flags & PG_RDONLY))) {
580 break;
581 }
582 }
583 if (i == npages) {
584 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
585 raoffset = origoffset + (orignpages << PAGE_SHIFT);
586 npages += ridx;
587 goto raout;
588 }
589
590 /*
591 * if PGO_OVERWRITE is set, don't bother reading the pages.
592 */
593
594 if (flags & PGO_OVERWRITE) {
595 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
596
597 for (i = 0; i < npages; i++) {
598 struct vm_page *pg = pgs[ridx + i];
599
600 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
601 }
602 npages += ridx;
603 goto out;
604 }
605
606 /*
607 * the page wasn't resident and we're not overwriting,
608 * so we're going to have to do some i/o.
609 * find any additional pages needed to cover the expanded range.
610 */
611
612 npages = (endoffset - startoffset) >> PAGE_SHIFT;
613 if (startoffset != origoffset || npages != orignpages) {
614
615 /*
616 * we need to avoid deadlocks caused by locking
617 * additional pages at lower offsets than pages we
618 * already have locked. unlock them all and start over.
619 */
620
621 genfs_rel_pages(&pgs[ridx], orignpages);
622 memset(pgs, 0, sizeof(pgs));
623
624 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
625 startoffset, endoffset, 0,0);
626 npgs = npages;
627 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
628 async ? UFP_NOWAIT : UFP_ALL) != npages) {
629 KASSERT(async != 0);
630 genfs_rel_pages(pgs, npages);
631 simple_unlock(&uobj->vmobjlock);
632 return (EBUSY);
633 }
634 }
635 simple_unlock(&uobj->vmobjlock);
636
637 /*
638 * read the desired page(s).
639 */
640
641 totalbytes = npages << PAGE_SHIFT;
642 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
643 tailbytes = totalbytes - bytes;
644 skipbytes = 0;
645
646 kva = uvm_pagermapin(pgs, npages,
647 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
648
649 s = splbio();
650 mbp = pool_get(&bufpool, PR_WAITOK);
651 splx(s);
652 mbp->b_bufsize = totalbytes;
653 mbp->b_data = (void *)kva;
654 mbp->b_resid = mbp->b_bcount = bytes;
655 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
656 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
657 mbp->b_vp = vp;
658 LIST_INIT(&mbp->b_dep);
659
660 /*
661 * if EOF is in the middle of the range, zero the part past EOF.
662 * if the page including EOF is not PG_FAKE, skip over it since
663 * in that case it has valid data that we need to preserve.
664 */
665
666 if (tailbytes > 0) {
667 size_t tailstart = bytes;
668
669 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
670 tailstart = round_page(tailstart);
671 tailbytes -= tailstart - bytes;
672 }
673 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
674 kva, tailstart, tailbytes,0);
675 memset((void *)(kva + tailstart), 0, tailbytes);
676 }
677
678 /*
679 * now loop over the pages, reading as needed.
680 */
681
682 if (write) {
683 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
684 } else {
685 lockmgr(&gp->g_glock, LK_SHARED, NULL);
686 }
687
688 bp = NULL;
689 for (offset = startoffset;
690 bytes > 0;
691 offset += iobytes, bytes -= iobytes) {
692
693 /*
694 * skip pages which don't need to be read.
695 */
696
697 pidx = (offset - startoffset) >> PAGE_SHIFT;
698 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
699 size_t b;
700
701 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
702 b = MIN(PAGE_SIZE, bytes);
703 offset += b;
704 bytes -= b;
705 skipbytes += b;
706 pidx++;
707 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
708 offset, 0,0,0);
709 if (bytes == 0) {
710 goto loopdone;
711 }
712 }
713
714 /*
715 * bmap the file to find out the blkno to read from and
716 * how much we can read in one i/o. if bmap returns an error,
717 * skip the rest of the top-level i/o.
718 */
719
720 lbn = offset >> fs_bshift;
721 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
722 if (error) {
723 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
724 lbn, error,0,0);
725 skipbytes += bytes;
726 goto loopdone;
727 }
728
729 /*
730 * see how many pages can be read with this i/o.
731 * reduce the i/o size if necessary to avoid
732 * overwriting pages with valid data.
733 */
734
735 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
736 bytes);
737 if (offset + iobytes > round_page(offset)) {
738 pcount = 1;
739 while (pidx + pcount < npages &&
740 pgs[pidx + pcount]->flags & PG_FAKE) {
741 pcount++;
742 }
743 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
744 (offset - trunc_page(offset)));
745 }
746
747 /*
748 * if this block isn't allocated, zero it instead of
749 * reading it. if this is a read access, mark the
750 * pages we zeroed PG_RDONLY.
751 */
752
753 if (blkno < 0) {
754 int holepages = (round_page(offset + iobytes) -
755 trunc_page(offset)) >> PAGE_SHIFT;
756 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
757
758 sawhole = TRUE;
759 memset((char *)kva + (offset - startoffset), 0,
760 iobytes);
761 skipbytes += iobytes;
762
763 for (i = 0; i < holepages; i++) {
764 if (write) {
765 pgs[pidx + i]->flags &= ~PG_CLEAN;
766 } else {
767 pgs[pidx + i]->flags |= PG_RDONLY;
768 }
769 }
770 continue;
771 }
772
773 /*
774 * allocate a sub-buf for this piece of the i/o
775 * (or just use mbp if there's only 1 piece),
776 * and start it going.
777 */
778
779 if (offset == startoffset && iobytes == bytes) {
780 bp = mbp;
781 } else {
782 s = splbio();
783 bp = pool_get(&bufpool, PR_WAITOK);
784 splx(s);
785 bp->b_data = (char *)kva + offset - startoffset;
786 bp->b_resid = bp->b_bcount = iobytes;
787 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
788 bp->b_iodone = uvm_aio_biodone1;
789 bp->b_vp = vp;
790 bp->b_proc = NULL;
791 LIST_INIT(&bp->b_dep);
792 }
793 bp->b_lblkno = 0;
794 bp->b_private = mbp;
795 if (devvp->v_type == VBLK) {
796 bp->b_dev = devvp->v_rdev;
797 }
798
799 /* adjust physical blkno for partial blocks */
800 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
801 dev_bshift);
802
803 UVMHIST_LOG(ubchist,
804 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
805 bp, offset, iobytes, bp->b_blkno);
806
807 VOP_STRATEGY(bp);
808 }
809
810 loopdone:
811 if (skipbytes) {
812 s = splbio();
813 if (error) {
814 mbp->b_flags |= B_ERROR;
815 mbp->b_error = error;
816 }
817 mbp->b_resid -= skipbytes;
818 if (mbp->b_resid == 0) {
819 biodone(mbp);
820 }
821 splx(s);
822 }
823
824 if (async) {
825 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
826 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
827 return (0);
828 }
829 if (bp != NULL) {
830 error = biowait(mbp);
831 }
832 s = splbio();
833 pool_put(&bufpool, mbp);
834 splx(s);
835 uvm_pagermapout(kva, npages);
836 raoffset = startoffset + totalbytes;
837
838 /*
839 * if this we encountered a hole then we have to do a little more work.
840 * for read faults, we marked the page PG_RDONLY so that future
841 * write accesses to the page will fault again.
842 * for write faults, we must make sure that the backing store for
843 * the page is completely allocated while the pages are locked.
844 */
845
846 if (!error && sawhole && write) {
847 for (i = 0; i < npages; i++) {
848 if (pgs[i] == NULL) {
849 continue;
850 }
851 pgs[i]->flags &= ~PG_CLEAN;
852 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
853 }
854 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
855 cred);
856 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
857 startoffset, npages << PAGE_SHIFT, error,0);
858 }
859 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
860 simple_lock(&uobj->vmobjlock);
861
862 /*
863 * see if we want to start any readahead.
864 * XXXUBC for now, just read the next 128k on 64k boundaries.
865 * this is pretty nonsensical, but it is 50% faster than reading
866 * just the next 64k.
867 */
868
869 raout:
870 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
871 PAGE_SHIFT <= 16) {
872 off_t rasize;
873 int rapages, err, i, skipped;
874
875 /* XXXUBC temp limit, from above */
876 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
877 genfs_rapages);
878 rasize = rapages << PAGE_SHIFT;
879 for (i = skipped = 0; i < genfs_racount; i++) {
880 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
881 VM_PROT_READ, 0, 0);
882 simple_lock(&uobj->vmobjlock);
883 if (err) {
884 if (err != EBUSY ||
885 skipped++ == genfs_raskip)
886 break;
887 }
888 raoffset += rasize;
889 rapages = rasize >> PAGE_SHIFT;
890 }
891 }
892
893 /*
894 * we're almost done! release the pages...
895 * for errors, we free the pages.
896 * otherwise we activate them and mark them as valid and clean.
897 * also, unbusy pages that were not actually requested.
898 */
899
900 if (error) {
901 for (i = 0; i < npages; i++) {
902 if (pgs[i] == NULL) {
903 continue;
904 }
905 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
906 pgs[i], pgs[i]->flags, 0,0);
907 if (pgs[i]->flags & PG_FAKE) {
908 pgs[i]->flags |= PG_RELEASED;
909 }
910 }
911 uvm_lock_pageq();
912 uvm_page_unbusy(pgs, npages);
913 uvm_unlock_pageq();
914 simple_unlock(&uobj->vmobjlock);
915 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
916 return (error);
917 }
918
919 out:
920 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
921 uvm_lock_pageq();
922 for (i = 0; i < npages; i++) {
923 pg = pgs[i];
924 if (pg == NULL) {
925 continue;
926 }
927 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
928 pg, pg->flags, 0,0);
929 if (pg->flags & PG_FAKE && !overwrite) {
930 pg->flags &= ~(PG_FAKE);
931 pmap_clear_modify(pgs[i]);
932 }
933 if (write) {
934 pg->flags &= ~(PG_RDONLY);
935 }
936 if (i < ridx || i >= ridx + orignpages || async) {
937 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
938 pg, pg->offset,0,0);
939 if (pg->flags & PG_WANTED) {
940 wakeup(pg);
941 }
942 if (pg->flags & PG_FAKE) {
943 KASSERT(overwrite);
944 uvm_pagezero(pg);
945 }
946 if (pg->flags & PG_RELEASED) {
947 uvm_pagefree(pg);
948 continue;
949 }
950 uvm_pageactivate(pg);
951 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
952 UVM_PAGE_OWN(pg, NULL);
953 }
954 }
955 uvm_unlock_pageq();
956 simple_unlock(&uobj->vmobjlock);
957 if (ap->a_m != NULL) {
958 memcpy(ap->a_m, &pgs[ridx],
959 orignpages * sizeof(struct vm_page *));
960 }
961 return (0);
962 }
963
964 /*
965 * generic VM putpages routine.
966 * Write the given range of pages to backing store.
967 *
968 * => "offhi == 0" means flush all pages at or after "offlo".
969 * => object should be locked by caller. we may _unlock_ the object
970 * if (and only if) we need to clean a page (PGO_CLEANIT), or
971 * if PGO_SYNCIO is set and there are pages busy.
972 * we return with the object locked.
973 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
974 * thus, a caller might want to unlock higher level resources
975 * (e.g. vm_map) before calling flush.
976 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
977 * unlock the object nor block.
978 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
979 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
980 * that new pages are inserted on the tail end of the list. thus,
981 * we can make a complete pass through the object in one go by starting
982 * at the head and working towards the tail (new pages are put in
983 * front of us).
984 * => NOTE: we are allowed to lock the page queues, so the caller
985 * must not be holding the page queue lock.
986 *
987 * note on "cleaning" object and PG_BUSY pages:
988 * this routine is holding the lock on the object. the only time
989 * that it can run into a PG_BUSY page that it does not own is if
990 * some other process has started I/O on the page (e.g. either
991 * a pagein, or a pageout). if the PG_BUSY page is being paged
992 * in, then it can not be dirty (!PG_CLEAN) because no one has
993 * had a chance to modify it yet. if the PG_BUSY page is being
994 * paged out then it means that someone else has already started
995 * cleaning the page for us (how nice!). in this case, if we
996 * have syncio specified, then after we make our pass through the
997 * object we need to wait for the other PG_BUSY pages to clear
998 * off (i.e. we need to do an iosync). also note that once a
999 * page is PG_BUSY it must stay in its object until it is un-busyed.
1000 *
1001 * note on page traversal:
1002 * we can traverse the pages in an object either by going down the
1003 * linked list in "uobj->memq", or we can go over the address range
1004 * by page doing hash table lookups for each address. depending
1005 * on how many pages are in the object it may be cheaper to do one
1006 * or the other. we set "by_list" to true if we are using memq.
1007 * if the cost of a hash lookup was equal to the cost of the list
1008 * traversal we could compare the number of pages in the start->stop
1009 * range to the total number of pages in the object. however, it
1010 * seems that a hash table lookup is more expensive than the linked
1011 * list traversal, so we multiply the number of pages in the
1012 * range by an estimate of the relatively higher cost of the hash lookup.
1013 */
1014
1015 int
1016 genfs_putpages(void *v)
1017 {
1018 struct vop_putpages_args /* {
1019 struct vnode *a_vp;
1020 voff_t a_offlo;
1021 voff_t a_offhi;
1022 int a_flags;
1023 } */ *ap = v;
1024 struct vnode *vp = ap->a_vp;
1025 struct uvm_object *uobj = &vp->v_uobj;
1026 struct simplelock *slock = &uobj->vmobjlock;
1027 off_t startoff = ap->a_offlo;
1028 off_t endoff = ap->a_offhi;
1029 off_t off;
1030 int flags = ap->a_flags;
1031 const int maxpages = MAXBSIZE >> PAGE_SHIFT;
1032 int i, s, error, npages, nback;
1033 int freeflag;
1034 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1035 boolean_t wasclean, by_list, needs_clean, yield;
1036 boolean_t async = (flags & PGO_SYNCIO) == 0;
1037 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1038 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1039
1040 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1041 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1042 KASSERT(startoff < endoff || endoff == 0);
1043
1044 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1045 vp, uobj->uo_npages, startoff, endoff - startoff);
1046 if (uobj->uo_npages == 0) {
1047 s = splbio();
1048 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1049 (vp->v_flag & VONWORKLST)) {
1050 vp->v_flag &= ~VONWORKLST;
1051 LIST_REMOVE(vp, v_synclist);
1052 }
1053 splx(s);
1054 simple_unlock(slock);
1055 return (0);
1056 }
1057
1058 /*
1059 * the vnode has pages, set up to process the request.
1060 */
1061
1062 error = 0;
1063 s = splbio();
1064 wasclean = (vp->v_numoutput == 0);
1065 splx(s);
1066 off = startoff;
1067 if (endoff == 0 || flags & PGO_ALLPAGES) {
1068 endoff = trunc_page(LLONG_MAX);
1069 }
1070 by_list = (uobj->uo_npages <=
1071 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1072
1073 /*
1074 * start the loop. when scanning by list, hold the last page
1075 * in the list before we start. pages allocated after we start
1076 * will be added to the end of the list, so we can stop at the
1077 * current last page.
1078 */
1079
1080 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1081 curmp.uobject = uobj;
1082 curmp.offset = (voff_t)-1;
1083 curmp.flags = PG_BUSY;
1084 endmp.uobject = uobj;
1085 endmp.offset = (voff_t)-1;
1086 endmp.flags = PG_BUSY;
1087 if (by_list) {
1088 pg = TAILQ_FIRST(&uobj->memq);
1089 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1090 PHOLD(curproc);
1091 } else {
1092 pg = uvm_pagelookup(uobj, off);
1093 }
1094 nextpg = NULL;
1095 while (by_list || off < endoff) {
1096
1097 /*
1098 * if the current page is not interesting, move on to the next.
1099 */
1100
1101 KASSERT(pg == NULL || pg->uobject == uobj);
1102 KASSERT(pg == NULL ||
1103 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1104 (pg->flags & PG_BUSY) != 0);
1105 if (by_list) {
1106 if (pg == &endmp) {
1107 break;
1108 }
1109 if (pg->offset < startoff || pg->offset >= endoff ||
1110 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1111 pg = TAILQ_NEXT(pg, listq);
1112 continue;
1113 }
1114 off = pg->offset;
1115 } else if (pg == NULL ||
1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1117 off += PAGE_SIZE;
1118 if (off < endoff) {
1119 pg = uvm_pagelookup(uobj, off);
1120 }
1121 continue;
1122 }
1123
1124 /*
1125 * if the current page needs to be cleaned and it's busy,
1126 * wait for it to become unbusy.
1127 */
1128
1129 yield = (curproc->p_cpu->ci_schedstate.spc_flags &
1130 SPCF_SHOULDYIELD) && !pagedaemon;
1131 if (pg->flags & PG_BUSY || yield) {
1132 KASSERT(!pagedaemon);
1133 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1134 if (by_list) {
1135 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1136 UVMHIST_LOG(ubchist, "curmp next %p",
1137 TAILQ_NEXT(&curmp, listq), 0,0,0);
1138 }
1139 if (yield) {
1140 simple_unlock(slock);
1141 preempt(NULL);
1142 simple_lock(slock);
1143 } else {
1144 pg->flags |= PG_WANTED;
1145 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1146 simple_lock(slock);
1147 }
1148 if (by_list) {
1149 UVMHIST_LOG(ubchist, "after next %p",
1150 TAILQ_NEXT(&curmp, listq), 0,0,0);
1151 pg = TAILQ_NEXT(&curmp, listq);
1152 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1153 } else {
1154 pg = uvm_pagelookup(uobj, off);
1155 }
1156 continue;
1157 }
1158
1159 /*
1160 * if we're freeing, remove all mappings of the page now.
1161 * if we're cleaning, check if the page is needs to be cleaned.
1162 */
1163
1164 if (flags & PGO_FREE) {
1165 pmap_page_protect(pg, VM_PROT_NONE);
1166 }
1167 if (flags & PGO_CLEANIT) {
1168 needs_clean = pmap_clear_modify(pg) ||
1169 (pg->flags & PG_CLEAN) == 0;
1170 pg->flags |= PG_CLEAN;
1171 } else {
1172 needs_clean = FALSE;
1173 }
1174
1175 /*
1176 * if we're cleaning, build a cluster.
1177 * the cluster will consist of pages which are currently dirty,
1178 * but they will be returned to us marked clean.
1179 * if not cleaning, just operate on the one page.
1180 */
1181
1182 if (needs_clean) {
1183 wasclean = FALSE;
1184 memset(pgs, 0, sizeof(pgs));
1185 pg->flags |= PG_BUSY;
1186 UVM_PAGE_OWN(pg, "genfs_putpages");
1187
1188 /*
1189 * first look backward.
1190 */
1191
1192 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1193 nback = npages;
1194 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1195 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1196 if (nback) {
1197 memmove(&pgs[0], &pgs[npages - nback],
1198 nback * sizeof(pgs[0]));
1199 if (npages - nback < nback)
1200 memset(&pgs[nback], 0,
1201 (npages - nback) * sizeof(pgs[0]));
1202 else
1203 memset(&pgs[npages - nback], 0,
1204 nback * sizeof(pgs[0]));
1205 }
1206
1207 /*
1208 * then plug in our page of interest.
1209 */
1210
1211 pgs[nback] = pg;
1212
1213 /*
1214 * then look forward to fill in the remaining space in
1215 * the array of pages.
1216 */
1217
1218 npages = maxpages - nback - 1;
1219 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1220 &pgs[nback + 1],
1221 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1222 npages += nback + 1;
1223 } else {
1224 pgs[0] = pg;
1225 npages = 1;
1226 nback = 0;
1227 }
1228
1229 /*
1230 * apply FREE or DEACTIVATE options if requested.
1231 */
1232
1233 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1234 uvm_lock_pageq();
1235 }
1236 for (i = 0; i < npages; i++) {
1237 tpg = pgs[i];
1238 KASSERT(tpg->uobject == uobj);
1239 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1240 pg = tpg;
1241 if (tpg->offset < startoff || tpg->offset >= endoff)
1242 continue;
1243 if (flags & PGO_DEACTIVATE &&
1244 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1245 tpg->wire_count == 0) {
1246 (void) pmap_clear_reference(tpg);
1247 uvm_pagedeactivate(tpg);
1248 } else if (flags & PGO_FREE) {
1249 pmap_page_protect(tpg, VM_PROT_NONE);
1250 if (tpg->flags & PG_BUSY) {
1251 tpg->flags |= freeflag;
1252 if (pagedaemon) {
1253 uvmexp.paging++;
1254 uvm_pagedequeue(tpg);
1255 }
1256 } else {
1257
1258 /*
1259 * ``page is not busy''
1260 * implies that npages is 1
1261 * and needs_clean is false.
1262 */
1263
1264 nextpg = TAILQ_NEXT(tpg, listq);
1265 uvm_pagefree(tpg);
1266 }
1267 }
1268 }
1269 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1270 uvm_unlock_pageq();
1271 }
1272 if (needs_clean) {
1273
1274 /*
1275 * start the i/o. if we're traversing by list,
1276 * keep our place in the list with a marker page.
1277 */
1278
1279 if (by_list) {
1280 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1281 listq);
1282 }
1283 simple_unlock(slock);
1284 error = GOP_WRITE(vp, pgs, npages, flags);
1285 simple_lock(slock);
1286 if (by_list) {
1287 pg = TAILQ_NEXT(&curmp, listq);
1288 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1289 }
1290 if (error) {
1291 break;
1292 }
1293 if (by_list) {
1294 continue;
1295 }
1296 }
1297
1298 /*
1299 * find the next page and continue if there was no error.
1300 */
1301
1302 if (by_list) {
1303 if (nextpg) {
1304 pg = nextpg;
1305 nextpg = NULL;
1306 } else {
1307 pg = TAILQ_NEXT(pg, listq);
1308 }
1309 } else {
1310 off += (npages - nback) << PAGE_SHIFT;
1311 if (off < endoff) {
1312 pg = uvm_pagelookup(uobj, off);
1313 }
1314 }
1315 }
1316 if (by_list) {
1317 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1318 PRELE(curproc);
1319 }
1320
1321 /*
1322 * if we're cleaning and there was nothing to clean,
1323 * take us off the syncer list. if we started any i/o
1324 * and we're doing sync i/o, wait for all writes to finish.
1325 */
1326
1327 s = splbio();
1328 if ((flags & PGO_CLEANIT) && wasclean &&
1329 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1330 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1331 (vp->v_flag & VONWORKLST)) {
1332 vp->v_flag &= ~VONWORKLST;
1333 LIST_REMOVE(vp, v_synclist);
1334 }
1335 splx(s);
1336 if (!wasclean && !async) {
1337 s = splbio();
1338 while (vp->v_numoutput != 0) {
1339 vp->v_flag |= VBWAIT;
1340 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1341 "genput2", 0);
1342 simple_lock(slock);
1343 }
1344 splx(s);
1345 }
1346 simple_unlock(&uobj->vmobjlock);
1347 return (error);
1348 }
1349
1350 int
1351 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1352 {
1353 int s, error, run;
1354 int fs_bshift, dev_bshift;
1355 vaddr_t kva;
1356 off_t eof, offset, startoffset;
1357 size_t bytes, iobytes, skipbytes;
1358 daddr_t lbn, blkno;
1359 struct vm_page *pg;
1360 struct buf *mbp, *bp;
1361 struct vnode *devvp;
1362 boolean_t async = (flags & PGO_SYNCIO) == 0;
1363 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1364
1365 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1366 vp, pgs, npages, flags);
1367
1368 GOP_SIZE(vp, vp->v_size, &eof);
1369 if (vp->v_type == VREG) {
1370 fs_bshift = vp->v_mount->mnt_fs_bshift;
1371 dev_bshift = vp->v_mount->mnt_dev_bshift;
1372 } else {
1373 fs_bshift = DEV_BSHIFT;
1374 dev_bshift = DEV_BSHIFT;
1375 }
1376 error = 0;
1377 pg = pgs[0];
1378 startoffset = pg->offset;
1379 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1380 skipbytes = 0;
1381 KASSERT(bytes != 0);
1382
1383 kva = uvm_pagermapin(pgs, npages,
1384 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1385
1386 s = splbio();
1387 vp->v_numoutput += 2;
1388 mbp = pool_get(&bufpool, PR_WAITOK);
1389 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1390 vp, mbp, vp->v_numoutput, bytes);
1391 splx(s);
1392 mbp->b_bufsize = npages << PAGE_SHIFT;
1393 mbp->b_data = (void *)kva;
1394 mbp->b_resid = mbp->b_bcount = bytes;
1395 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1396 mbp->b_iodone = uvm_aio_biodone;
1397 mbp->b_vp = vp;
1398 LIST_INIT(&mbp->b_dep);
1399
1400 bp = NULL;
1401 for (offset = startoffset;
1402 bytes > 0;
1403 offset += iobytes, bytes -= iobytes) {
1404 lbn = offset >> fs_bshift;
1405 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1406 if (error) {
1407 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1408 skipbytes += bytes;
1409 bytes = 0;
1410 break;
1411 }
1412
1413 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1414 bytes);
1415 if (blkno == (daddr_t)-1) {
1416 skipbytes += iobytes;
1417 continue;
1418 }
1419
1420 /* if it's really one i/o, don't make a second buf */
1421 if (offset == startoffset && iobytes == bytes) {
1422 bp = mbp;
1423 } else {
1424 s = splbio();
1425 vp->v_numoutput++;
1426 bp = pool_get(&bufpool, PR_WAITOK);
1427 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1428 vp, bp, vp->v_numoutput, 0);
1429 splx(s);
1430 bp->b_data = (char *)kva +
1431 (vaddr_t)(offset - pg->offset);
1432 bp->b_resid = bp->b_bcount = iobytes;
1433 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1434 bp->b_iodone = uvm_aio_biodone1;
1435 bp->b_vp = vp;
1436 LIST_INIT(&bp->b_dep);
1437 }
1438 bp->b_lblkno = 0;
1439 bp->b_private = mbp;
1440 if (devvp->v_type == VBLK) {
1441 bp->b_dev = devvp->v_rdev;
1442 }
1443
1444 /* adjust physical blkno for partial blocks */
1445 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1446 dev_bshift);
1447 UVMHIST_LOG(ubchist,
1448 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1449 vp, offset, bp->b_bcount, bp->b_blkno);
1450 VOP_STRATEGY(bp);
1451 }
1452 if (skipbytes) {
1453 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1454 s = splbio();
1455 if (error) {
1456 mbp->b_flags |= B_ERROR;
1457 mbp->b_error = error;
1458 }
1459 mbp->b_resid -= skipbytes;
1460 if (mbp->b_resid == 0) {
1461 biodone(mbp);
1462 }
1463 splx(s);
1464 }
1465 if (async) {
1466 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1467 return (0);
1468 }
1469 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1470 error = biowait(mbp);
1471 uvm_aio_aiodone(mbp);
1472 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1473 return (error);
1474 }
1475
1476 /*
1477 * VOP_PUTPAGES() for vnodes which never have pages.
1478 */
1479
1480 int
1481 genfs_null_putpages(void *v)
1482 {
1483 struct vop_putpages_args /* {
1484 struct vnode *a_vp;
1485 voff_t a_offlo;
1486 voff_t a_offhi;
1487 int a_flags;
1488 } */ *ap = v;
1489 struct vnode *vp = ap->a_vp;
1490
1491 KASSERT(vp->v_uobj.uo_npages == 0);
1492 simple_unlock(&vp->v_interlock);
1493 return (0);
1494 }
1495
1496 void
1497 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1498 {
1499 struct genfs_node *gp = VTOG(vp);
1500
1501 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1502 gp->g_op = ops;
1503 }
1504
1505 void
1506 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1507 {
1508 int bsize;
1509
1510 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1511 *eobp = (size + bsize - 1) & ~(bsize - 1);
1512 }
1513
1514 int
1515 genfs_compat_getpages(void *v)
1516 {
1517 struct vop_getpages_args /* {
1518 struct vnode *a_vp;
1519 voff_t a_offset;
1520 struct vm_page **a_m;
1521 int *a_count;
1522 int a_centeridx;
1523 vm_prot_t a_access_type;
1524 int a_advice;
1525 int a_flags;
1526 } */ *ap = v;
1527
1528 off_t origoffset;
1529 struct vnode *vp = ap->a_vp;
1530 struct uvm_object *uobj = &vp->v_uobj;
1531 struct vm_page *pg, **pgs;
1532 vaddr_t kva;
1533 int i, error, orignpages, npages;
1534 struct iovec iov;
1535 struct uio uio;
1536 struct ucred *cred = curproc->p_ucred;
1537 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1538
1539 error = 0;
1540 origoffset = ap->a_offset;
1541 orignpages = *ap->a_count;
1542 pgs = ap->a_m;
1543
1544 if (write && (vp->v_flag & VONWORKLST) == 0) {
1545 vn_syncer_add_to_worklist(vp, filedelay);
1546 }
1547 if (ap->a_flags & PGO_LOCKED) {
1548 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1549 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1550
1551 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1552 }
1553 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1554 simple_unlock(&uobj->vmobjlock);
1555 return (EINVAL);
1556 }
1557 npages = orignpages;
1558 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1559 simple_unlock(&uobj->vmobjlock);
1560 kva = uvm_pagermapin(pgs, npages,
1561 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1562 for (i = 0; i < npages; i++) {
1563 pg = pgs[i];
1564 if ((pg->flags & PG_FAKE) == 0) {
1565 continue;
1566 }
1567 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1568 iov.iov_len = PAGE_SIZE;
1569 uio.uio_iov = &iov;
1570 uio.uio_iovcnt = 1;
1571 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1572 uio.uio_segflg = UIO_SYSSPACE;
1573 uio.uio_rw = UIO_READ;
1574 uio.uio_resid = PAGE_SIZE;
1575 uio.uio_procp = curproc;
1576 error = VOP_READ(vp, &uio, 0, cred);
1577 if (error) {
1578 break;
1579 }
1580 if (uio.uio_resid) {
1581 memset(iov.iov_base, 0, uio.uio_resid);
1582 }
1583 }
1584 uvm_pagermapout(kva, npages);
1585 simple_lock(&uobj->vmobjlock);
1586 uvm_lock_pageq();
1587 for (i = 0; i < npages; i++) {
1588 pg = pgs[i];
1589 if (error && (pg->flags & PG_FAKE) != 0) {
1590 pg->flags |= PG_RELEASED;
1591 } else {
1592 pmap_clear_modify(pg);
1593 uvm_pageactivate(pg);
1594 }
1595 }
1596 if (error) {
1597 uvm_page_unbusy(pgs, npages);
1598 }
1599 uvm_unlock_pageq();
1600 simple_unlock(&uobj->vmobjlock);
1601 return (error);
1602 }
1603
1604 int
1605 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1606 int flags)
1607 {
1608 off_t offset;
1609 struct iovec iov;
1610 struct uio uio;
1611 struct ucred *cred = curproc->p_ucred;
1612 struct buf *bp;
1613 vaddr_t kva;
1614 int s, error;
1615
1616 offset = pgs[0]->offset;
1617 kva = uvm_pagermapin(pgs, npages,
1618 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1619
1620 iov.iov_base = (void *)kva;
1621 iov.iov_len = npages << PAGE_SHIFT;
1622 uio.uio_iov = &iov;
1623 uio.uio_iovcnt = npages;
1624 uio.uio_offset = offset;
1625 uio.uio_segflg = UIO_SYSSPACE;
1626 uio.uio_rw = UIO_WRITE;
1627 uio.uio_resid = npages << PAGE_SHIFT;
1628 uio.uio_procp = curproc;
1629 error = VOP_WRITE(vp, &uio, 0, cred);
1630
1631 s = splbio();
1632 vp->v_numoutput++;
1633 bp = pool_get(&bufpool, PR_WAITOK);
1634 splx(s);
1635
1636 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1637 bp->b_vp = vp;
1638 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1639 bp->b_data = (char *)kva;
1640 bp->b_bcount = npages << PAGE_SHIFT;
1641 bp->b_bufsize = npages << PAGE_SHIFT;
1642 bp->b_resid = 0;
1643 LIST_INIT(&bp->b_dep);
1644 if (error) {
1645 bp->b_flags |= B_ERROR;
1646 bp->b_error = error;
1647 }
1648 uvm_aio_aiodone(bp);
1649 return (error);
1650 }
1651
1652 static void
1653 filt_genfsdetach(struct knote *kn)
1654 {
1655 struct vnode *vp = (struct vnode *)kn->kn_hook;
1656
1657 /* XXXLUKEM lock the struct? */
1658 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1659 }
1660
1661 static int
1662 filt_genfsread(struct knote *kn, long hint)
1663 {
1664 struct vnode *vp = (struct vnode *)kn->kn_hook;
1665
1666 /*
1667 * filesystem is gone, so set the EOF flag and schedule
1668 * the knote for deletion.
1669 */
1670 if (hint == NOTE_REVOKE) {
1671 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1672 return (1);
1673 }
1674
1675 /* XXXLUKEM lock the struct? */
1676 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1677 return (kn->kn_data != 0);
1678 }
1679
1680 static int
1681 filt_genfsvnode(struct knote *kn, long hint)
1682 {
1683
1684 if (kn->kn_sfflags & hint)
1685 kn->kn_fflags |= hint;
1686 if (hint == NOTE_REVOKE) {
1687 kn->kn_flags |= EV_EOF;
1688 return (1);
1689 }
1690 return (kn->kn_fflags != 0);
1691 }
1692
1693 static const struct filterops genfsread_filtops =
1694 { 1, NULL, filt_genfsdetach, filt_genfsread };
1695 static const struct filterops genfsvnode_filtops =
1696 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1697
1698 int
1699 genfs_kqfilter(void *v)
1700 {
1701 struct vop_kqfilter_args /* {
1702 struct vnode *a_vp;
1703 struct knote *a_kn;
1704 } */ *ap = v;
1705 struct vnode *vp;
1706 struct knote *kn;
1707
1708 vp = ap->a_vp;
1709 kn = ap->a_kn;
1710 switch (kn->kn_filter) {
1711 case EVFILT_READ:
1712 kn->kn_fop = &genfsread_filtops;
1713 break;
1714 case EVFILT_VNODE:
1715 kn->kn_fop = &genfsvnode_filtops;
1716 break;
1717 default:
1718 return (1);
1719 }
1720
1721 kn->kn_hook = vp;
1722
1723 /* XXXLUKEM lock the struct? */
1724 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1725
1726 return (0);
1727 }
1728