genfs_vnops.c revision 1.70 1 /* $NetBSD: genfs_vnops.c,v 1.70 2003/01/21 00:01:14 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.70 2003/01/21 00:01:14 christos Exp $");
39
40 #include "opt_nfsserver.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 static void filt_genfsdetach(struct knote *);
72 static int filt_genfsread(struct knote *, long);
73 static int filt_genfsvnode(struct knote *, long);
74
75
76 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
78 int genfs_racount = 2; /* # of page chunks to readahead */
79 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
80
81 int
82 genfs_poll(void *v)
83 {
84 struct vop_poll_args /* {
85 struct vnode *a_vp;
86 int a_events;
87 struct proc *a_p;
88 } */ *ap = v;
89
90 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
91 }
92
93 int
94 genfs_fsync(void *v)
95 {
96 struct vop_fsync_args /* {
97 struct vnode *a_vp;
98 struct ucred *a_cred;
99 int a_flags;
100 off_t offlo;
101 off_t offhi;
102 struct proc *a_p;
103 } */ *ap = v;
104 struct vnode *vp = ap->a_vp;
105 int wait;
106
107 wait = (ap->a_flags & FSYNC_WAIT) != 0;
108 vflushbuf(vp, wait);
109 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
110 return (0);
111 else
112 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
113 }
114
115 int
116 genfs_seek(void *v)
117 {
118 struct vop_seek_args /* {
119 struct vnode *a_vp;
120 off_t a_oldoff;
121 off_t a_newoff;
122 struct ucred *a_ucred;
123 } */ *ap = v;
124
125 if (ap->a_newoff < 0)
126 return (EINVAL);
127
128 return (0);
129 }
130
131 int
132 genfs_abortop(void *v)
133 {
134 struct vop_abortop_args /* {
135 struct vnode *a_dvp;
136 struct componentname *a_cnp;
137 } */ *ap = v;
138
139 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
140 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
141 return (0);
142 }
143
144 int
145 genfs_fcntl(void *v)
146 {
147 struct vop_fcntl_args /* {
148 struct vnode *a_vp;
149 u_int a_command;
150 caddr_t a_data;
151 int a_fflag;
152 struct ucred *a_cred;
153 struct proc *a_p;
154 } */ *ap = v;
155
156 if (ap->a_command == F_SETFL)
157 return (0);
158 else
159 return (EOPNOTSUPP);
160 }
161
162 /*ARGSUSED*/
163 int
164 genfs_badop(void *v)
165 {
166
167 panic("genfs: bad op");
168 }
169
170 /*ARGSUSED*/
171 int
172 genfs_nullop(void *v)
173 {
174
175 return (0);
176 }
177
178 /*ARGSUSED*/
179 int
180 genfs_einval(void *v)
181 {
182
183 return (EINVAL);
184 }
185
186 /*ARGSUSED*/
187 int
188 genfs_eopnotsupp(void *v)
189 {
190
191 return (EOPNOTSUPP);
192 }
193
194 /*
195 * Called when an fs doesn't support a particular vop but the vop needs to
196 * vrele, vput, or vunlock passed in vnodes.
197 */
198 int
199 genfs_eopnotsupp_rele(void *v)
200 {
201 struct vop_generic_args /*
202 struct vnodeop_desc *a_desc;
203 / * other random data follows, presumably * /
204 } */ *ap = v;
205 struct vnodeop_desc *desc = ap->a_desc;
206 struct vnode *vp;
207 int flags, i, j, offset;
208
209 flags = desc->vdesc_flags;
210 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
211 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
212 break; /* stop at end of list */
213 if ((j = flags & VDESC_VP0_WILLPUT)) {
214 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
215 switch (j) {
216 case VDESC_VP0_WILLPUT:
217 vput(vp);
218 break;
219 case VDESC_VP0_WILLUNLOCK:
220 VOP_UNLOCK(vp, 0);
221 break;
222 case VDESC_VP0_WILLRELE:
223 vrele(vp);
224 break;
225 }
226 }
227 }
228
229 return (EOPNOTSUPP);
230 }
231
232 /*ARGSUSED*/
233 int
234 genfs_ebadf(void *v)
235 {
236
237 return (EBADF);
238 }
239
240 /* ARGSUSED */
241 int
242 genfs_enoioctl(void *v)
243 {
244
245 return (EPASSTHROUGH);
246 }
247
248
249 /*
250 * Eliminate all activity associated with the requested vnode
251 * and with all vnodes aliased to the requested vnode.
252 */
253 int
254 genfs_revoke(void *v)
255 {
256 struct vop_revoke_args /* {
257 struct vnode *a_vp;
258 int a_flags;
259 } */ *ap = v;
260 struct vnode *vp, *vq;
261 struct proc *p = curproc; /* XXX */
262
263 #ifdef DIAGNOSTIC
264 if ((ap->a_flags & REVOKEALL) == 0)
265 panic("genfs_revoke: not revokeall");
266 #endif
267
268 vp = ap->a_vp;
269 simple_lock(&vp->v_interlock);
270
271 if (vp->v_flag & VALIASED) {
272 /*
273 * If a vgone (or vclean) is already in progress,
274 * wait until it is done and return.
275 */
276 if (vp->v_flag & VXLOCK) {
277 vp->v_flag |= VXWANT;
278 simple_unlock(&vp->v_interlock);
279 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
280 return (0);
281 }
282 /*
283 * Ensure that vp will not be vgone'd while we
284 * are eliminating its aliases.
285 */
286 vp->v_flag |= VXLOCK;
287 simple_unlock(&vp->v_interlock);
288 while (vp->v_flag & VALIASED) {
289 simple_lock(&spechash_slock);
290 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
291 if (vq->v_rdev != vp->v_rdev ||
292 vq->v_type != vp->v_type || vp == vq)
293 continue;
294 simple_unlock(&spechash_slock);
295 vgone(vq);
296 break;
297 }
298 if (vq == NULLVP)
299 simple_unlock(&spechash_slock);
300 }
301 /*
302 * Remove the lock so that vgone below will
303 * really eliminate the vnode after which time
304 * vgone will awaken any sleepers.
305 */
306 simple_lock(&vp->v_interlock);
307 vp->v_flag &= ~VXLOCK;
308 }
309 vgonel(vp, p);
310 return (0);
311 }
312
313 /*
314 * Lock the node.
315 */
316 int
317 genfs_lock(void *v)
318 {
319 struct vop_lock_args /* {
320 struct vnode *a_vp;
321 int a_flags;
322 } */ *ap = v;
323 struct vnode *vp = ap->a_vp;
324
325 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
326 }
327
328 /*
329 * Unlock the node.
330 */
331 int
332 genfs_unlock(void *v)
333 {
334 struct vop_unlock_args /* {
335 struct vnode *a_vp;
336 int a_flags;
337 } */ *ap = v;
338 struct vnode *vp = ap->a_vp;
339
340 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
341 &vp->v_interlock));
342 }
343
344 /*
345 * Return whether or not the node is locked.
346 */
347 int
348 genfs_islocked(void *v)
349 {
350 struct vop_islocked_args /* {
351 struct vnode *a_vp;
352 } */ *ap = v;
353 struct vnode *vp = ap->a_vp;
354
355 return (lockstatus(&vp->v_lock));
356 }
357
358 /*
359 * Stubs to use when there is no locking to be done on the underlying object.
360 */
361 int
362 genfs_nolock(void *v)
363 {
364 struct vop_lock_args /* {
365 struct vnode *a_vp;
366 int a_flags;
367 struct proc *a_p;
368 } */ *ap = v;
369
370 /*
371 * Since we are not using the lock manager, we must clear
372 * the interlock here.
373 */
374 if (ap->a_flags & LK_INTERLOCK)
375 simple_unlock(&ap->a_vp->v_interlock);
376 return (0);
377 }
378
379 int
380 genfs_nounlock(void *v)
381 {
382
383 return (0);
384 }
385
386 int
387 genfs_noislocked(void *v)
388 {
389
390 return (0);
391 }
392
393 /*
394 * Local lease check for NFS servers. Just set up args and let
395 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
396 * this is a null operation.
397 */
398 int
399 genfs_lease_check(void *v)
400 {
401 #ifdef NFSSERVER
402 struct vop_lease_args /* {
403 struct vnode *a_vp;
404 struct proc *a_p;
405 struct ucred *a_cred;
406 int a_flag;
407 } */ *ap = v;
408 u_int32_t duration = 0;
409 int cache;
410 u_quad_t frev;
411
412 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
413 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
414 return (0);
415 #else
416 return (0);
417 #endif /* NFSSERVER */
418 }
419
420 int
421 genfs_mmap(void *v)
422 {
423
424 return (0);
425 }
426
427 static __inline void
428 genfs_rel_pages(struct vm_page **pgs, int npages)
429 {
430 int i;
431
432 for (i = 0; i < npages; i++) {
433 struct vm_page *pg = pgs[i];
434
435 if (pg == NULL)
436 continue;
437 if (pg->flags & PG_FAKE) {
438 pg->flags |= PG_RELEASED;
439 }
440 }
441 uvm_lock_pageq();
442 uvm_page_unbusy(pgs, npages);
443 uvm_unlock_pageq();
444 }
445
446 /*
447 * generic VM getpages routine.
448 * Return PG_BUSY pages for the given range,
449 * reading from backing store if necessary.
450 */
451
452 int
453 genfs_getpages(void *v)
454 {
455 struct vop_getpages_args /* {
456 struct vnode *a_vp;
457 voff_t a_offset;
458 struct vm_page **a_m;
459 int *a_count;
460 int a_centeridx;
461 vm_prot_t a_access_type;
462 int a_advice;
463 int a_flags;
464 } */ *ap = v;
465
466 off_t newsize, diskeof, memeof;
467 off_t offset, origoffset, startoffset, endoffset, raoffset;
468 daddr_t lbn, blkno;
469 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
470 int fs_bshift, fs_bsize, dev_bshift;
471 int flags = ap->a_flags;
472 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
473 vaddr_t kva;
474 struct buf *bp, *mbp;
475 struct vnode *vp = ap->a_vp;
476 struct vnode *devvp;
477 struct genfs_node *gp = VTOG(vp);
478 struct uvm_object *uobj = &vp->v_uobj;
479 struct vm_page *pg, *pgs[MAX_READ_AHEAD];
480 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
481 boolean_t async = (flags & PGO_SYNCIO) == 0;
482 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
483 boolean_t sawhole = FALSE;
484 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
485 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
486
487 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
488 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
489
490 /* XXXUBC temp limit */
491 if (*ap->a_count > MAX_READ_AHEAD) {
492 panic("genfs_getpages: too many pages");
493 }
494
495 error = 0;
496 origoffset = ap->a_offset;
497 orignpages = *ap->a_count;
498 GOP_SIZE(vp, vp->v_size, &diskeof);
499 if (flags & PGO_PASTEOF) {
500 newsize = MAX(vp->v_size,
501 origoffset + (orignpages << PAGE_SHIFT));
502 GOP_SIZE(vp, newsize, &memeof);
503 } else {
504 memeof = diskeof;
505 }
506 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
507 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
508 KASSERT(orignpages > 0);
509
510 /*
511 * Bounds-check the request.
512 */
513
514 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
515 if ((flags & PGO_LOCKED) == 0) {
516 simple_unlock(&uobj->vmobjlock);
517 }
518 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
519 origoffset, *ap->a_count, memeof,0);
520 return (EINVAL);
521 }
522
523 /*
524 * For PGO_LOCKED requests, just return whatever's in memory.
525 */
526
527 if (flags & PGO_LOCKED) {
528 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
529 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
530
531 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
532 }
533
534 /* vnode is VOP_LOCKed, uobj is locked */
535
536 if (write && (vp->v_flag & VONWORKLST) == 0) {
537 vn_syncer_add_to_worklist(vp, filedelay);
538 }
539
540 /*
541 * find the requested pages and make some simple checks.
542 * leave space in the page array for a whole block.
543 */
544
545 if (vp->v_type == VREG) {
546 fs_bshift = vp->v_mount->mnt_fs_bshift;
547 dev_bshift = vp->v_mount->mnt_dev_bshift;
548 } else {
549 fs_bshift = DEV_BSHIFT;
550 dev_bshift = DEV_BSHIFT;
551 }
552 fs_bsize = 1 << fs_bshift;
553
554 orignpages = MIN(orignpages,
555 round_page(memeof - origoffset) >> PAGE_SHIFT);
556 npages = orignpages;
557 startoffset = origoffset & ~(fs_bsize - 1);
558 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
559 fs_bsize - 1) & ~(fs_bsize - 1));
560 endoffset = MIN(endoffset, round_page(memeof));
561 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
562
563 memset(pgs, 0, sizeof(pgs));
564 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
565 ridx, npages, startoffset, endoffset);
566 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
567 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
568 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
569 KASSERT(async != 0);
570 genfs_rel_pages(&pgs[ridx], orignpages);
571 simple_unlock(&uobj->vmobjlock);
572 return (EBUSY);
573 }
574
575 /*
576 * if the pages are already resident, just return them.
577 */
578
579 for (i = 0; i < npages; i++) {
580 struct vm_page *pg = pgs[ridx + i];
581
582 if ((pg->flags & PG_FAKE) ||
583 (write && (pg->flags & PG_RDONLY))) {
584 break;
585 }
586 }
587 if (i == npages) {
588 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
589 raoffset = origoffset + (orignpages << PAGE_SHIFT);
590 npages += ridx;
591 goto raout;
592 }
593
594 /*
595 * if PGO_OVERWRITE is set, don't bother reading the pages.
596 */
597
598 if (flags & PGO_OVERWRITE) {
599 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
600
601 for (i = 0; i < npages; i++) {
602 struct vm_page *pg = pgs[ridx + i];
603
604 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
605 }
606 npages += ridx;
607 goto out;
608 }
609
610 /*
611 * the page wasn't resident and we're not overwriting,
612 * so we're going to have to do some i/o.
613 * find any additional pages needed to cover the expanded range.
614 */
615
616 npages = (endoffset - startoffset) >> PAGE_SHIFT;
617 if (startoffset != origoffset || npages != orignpages) {
618
619 /*
620 * we need to avoid deadlocks caused by locking
621 * additional pages at lower offsets than pages we
622 * already have locked. unlock them all and start over.
623 */
624
625 genfs_rel_pages(&pgs[ridx], orignpages);
626 memset(pgs, 0, sizeof(pgs));
627
628 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
629 startoffset, endoffset, 0,0);
630 npgs = npages;
631 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
632 async ? UFP_NOWAIT : UFP_ALL) != npages) {
633 KASSERT(async != 0);
634 genfs_rel_pages(pgs, npages);
635 simple_unlock(&uobj->vmobjlock);
636 return (EBUSY);
637 }
638 }
639 simple_unlock(&uobj->vmobjlock);
640
641 /*
642 * read the desired page(s).
643 */
644
645 totalbytes = npages << PAGE_SHIFT;
646 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
647 tailbytes = totalbytes - bytes;
648 skipbytes = 0;
649
650 kva = uvm_pagermapin(pgs, npages,
651 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
652
653 s = splbio();
654 mbp = pool_get(&bufpool, PR_WAITOK);
655 splx(s);
656 mbp->b_bufsize = totalbytes;
657 mbp->b_data = (void *)kva;
658 mbp->b_resid = mbp->b_bcount = bytes;
659 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
660 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
661 mbp->b_vp = vp;
662 LIST_INIT(&mbp->b_dep);
663
664 /*
665 * if EOF is in the middle of the range, zero the part past EOF.
666 * if the page including EOF is not PG_FAKE, skip over it since
667 * in that case it has valid data that we need to preserve.
668 */
669
670 if (tailbytes > 0) {
671 size_t tailstart = bytes;
672
673 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
674 tailstart = round_page(tailstart);
675 tailbytes -= tailstart - bytes;
676 }
677 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
678 kva, tailstart, tailbytes,0);
679 memset((void *)(kva + tailstart), 0, tailbytes);
680 }
681
682 /*
683 * now loop over the pages, reading as needed.
684 */
685
686 if (write) {
687 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
688 } else {
689 lockmgr(&gp->g_glock, LK_SHARED, NULL);
690 }
691
692 bp = NULL;
693 for (offset = startoffset;
694 bytes > 0;
695 offset += iobytes, bytes -= iobytes) {
696
697 /*
698 * skip pages which don't need to be read.
699 */
700
701 pidx = (offset - startoffset) >> PAGE_SHIFT;
702 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
703 size_t b;
704
705 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
706 b = MIN(PAGE_SIZE, bytes);
707 offset += b;
708 bytes -= b;
709 skipbytes += b;
710 pidx++;
711 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
712 offset, 0,0,0);
713 if (bytes == 0) {
714 goto loopdone;
715 }
716 }
717
718 /*
719 * bmap the file to find out the blkno to read from and
720 * how much we can read in one i/o. if bmap returns an error,
721 * skip the rest of the top-level i/o.
722 */
723
724 lbn = offset >> fs_bshift;
725 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
726 if (error) {
727 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
728 lbn, error,0,0);
729 skipbytes += bytes;
730 goto loopdone;
731 }
732
733 /*
734 * see how many pages can be read with this i/o.
735 * reduce the i/o size if necessary to avoid
736 * overwriting pages with valid data.
737 */
738
739 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
740 bytes);
741 if (offset + iobytes > round_page(offset)) {
742 pcount = 1;
743 while (pidx + pcount < npages &&
744 pgs[pidx + pcount]->flags & PG_FAKE) {
745 pcount++;
746 }
747 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
748 (offset - trunc_page(offset)));
749 }
750
751 /*
752 * if this block isn't allocated, zero it instead of
753 * reading it. if this is a read access, mark the
754 * pages we zeroed PG_RDONLY.
755 */
756
757 if (blkno < 0) {
758 int holepages = (round_page(offset + iobytes) -
759 trunc_page(offset)) >> PAGE_SHIFT;
760 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
761
762 sawhole = TRUE;
763 memset((char *)kva + (offset - startoffset), 0,
764 iobytes);
765 skipbytes += iobytes;
766
767 for (i = 0; i < holepages; i++) {
768 if (write) {
769 pgs[pidx + i]->flags &= ~PG_CLEAN;
770 } else {
771 pgs[pidx + i]->flags |= PG_RDONLY;
772 }
773 }
774 continue;
775 }
776
777 /*
778 * allocate a sub-buf for this piece of the i/o
779 * (or just use mbp if there's only 1 piece),
780 * and start it going.
781 */
782
783 if (offset == startoffset && iobytes == bytes) {
784 bp = mbp;
785 } else {
786 s = splbio();
787 bp = pool_get(&bufpool, PR_WAITOK);
788 splx(s);
789 bp->b_data = (char *)kva + offset - startoffset;
790 bp->b_resid = bp->b_bcount = iobytes;
791 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
792 bp->b_iodone = uvm_aio_biodone1;
793 bp->b_vp = vp;
794 bp->b_proc = NULL;
795 LIST_INIT(&bp->b_dep);
796 }
797 bp->b_lblkno = 0;
798 bp->b_private = mbp;
799 if (devvp->v_type == VBLK) {
800 bp->b_dev = devvp->v_rdev;
801 }
802
803 /* adjust physical blkno for partial blocks */
804 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
805 dev_bshift);
806
807 UVMHIST_LOG(ubchist,
808 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
809 bp, offset, iobytes, bp->b_blkno);
810
811 VOP_STRATEGY(bp);
812 }
813
814 loopdone:
815 if (skipbytes) {
816 s = splbio();
817 if (error) {
818 mbp->b_flags |= B_ERROR;
819 mbp->b_error = error;
820 }
821 mbp->b_resid -= skipbytes;
822 if (mbp->b_resid == 0) {
823 biodone(mbp);
824 }
825 splx(s);
826 }
827
828 if (async) {
829 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
830 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
831 return (0);
832 }
833 if (bp != NULL) {
834 error = biowait(mbp);
835 }
836 s = splbio();
837 pool_put(&bufpool, mbp);
838 splx(s);
839 uvm_pagermapout(kva, npages);
840 raoffset = startoffset + totalbytes;
841
842 /*
843 * if this we encountered a hole then we have to do a little more work.
844 * for read faults, we marked the page PG_RDONLY so that future
845 * write accesses to the page will fault again.
846 * for write faults, we must make sure that the backing store for
847 * the page is completely allocated while the pages are locked.
848 */
849
850 if (!error && sawhole && write) {
851 for (i = 0; i < npages; i++) {
852 if (pgs[i] == NULL) {
853 continue;
854 }
855 pgs[i]->flags &= ~PG_CLEAN;
856 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
857 }
858 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
859 cred);
860 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
861 startoffset, npages << PAGE_SHIFT, error,0);
862 }
863 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
864 simple_lock(&uobj->vmobjlock);
865
866 /*
867 * see if we want to start any readahead.
868 * XXXUBC for now, just read the next 128k on 64k boundaries.
869 * this is pretty nonsensical, but it is 50% faster than reading
870 * just the next 64k.
871 */
872
873 raout:
874 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
875 PAGE_SHIFT <= 16) {
876 off_t rasize;
877 int rapages, err, i, skipped;
878
879 /* XXXUBC temp limit, from above */
880 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
881 genfs_rapages);
882 rasize = rapages << PAGE_SHIFT;
883 for (i = skipped = 0; i < genfs_racount; i++) {
884 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
885 VM_PROT_READ, 0, 0);
886 simple_lock(&uobj->vmobjlock);
887 if (err) {
888 if (err != EBUSY ||
889 skipped++ == genfs_raskip)
890 break;
891 }
892 raoffset += rasize;
893 rapages = rasize >> PAGE_SHIFT;
894 }
895 }
896
897 /*
898 * we're almost done! release the pages...
899 * for errors, we free the pages.
900 * otherwise we activate them and mark them as valid and clean.
901 * also, unbusy pages that were not actually requested.
902 */
903
904 if (error) {
905 for (i = 0; i < npages; i++) {
906 if (pgs[i] == NULL) {
907 continue;
908 }
909 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
910 pgs[i], pgs[i]->flags, 0,0);
911 if (pgs[i]->flags & PG_FAKE) {
912 pgs[i]->flags |= PG_RELEASED;
913 }
914 }
915 uvm_lock_pageq();
916 uvm_page_unbusy(pgs, npages);
917 uvm_unlock_pageq();
918 simple_unlock(&uobj->vmobjlock);
919 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
920 return (error);
921 }
922
923 out:
924 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
925 uvm_lock_pageq();
926 for (i = 0; i < npages; i++) {
927 pg = pgs[i];
928 if (pg == NULL) {
929 continue;
930 }
931 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
932 pg, pg->flags, 0,0);
933 if (pg->flags & PG_FAKE && !overwrite) {
934 pg->flags &= ~(PG_FAKE);
935 pmap_clear_modify(pgs[i]);
936 }
937 if (write) {
938 pg->flags &= ~(PG_RDONLY);
939 }
940 if (i < ridx || i >= ridx + orignpages || async) {
941 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
942 pg, pg->offset,0,0);
943 if (pg->flags & PG_WANTED) {
944 wakeup(pg);
945 }
946 if (pg->flags & PG_FAKE) {
947 KASSERT(overwrite);
948 uvm_pagezero(pg);
949 }
950 if (pg->flags & PG_RELEASED) {
951 uvm_pagefree(pg);
952 continue;
953 }
954 uvm_pageactivate(pg);
955 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
956 UVM_PAGE_OWN(pg, NULL);
957 }
958 }
959 uvm_unlock_pageq();
960 simple_unlock(&uobj->vmobjlock);
961 if (ap->a_m != NULL) {
962 memcpy(ap->a_m, &pgs[ridx],
963 orignpages * sizeof(struct vm_page *));
964 }
965 return (0);
966 }
967
968 /*
969 * generic VM putpages routine.
970 * Write the given range of pages to backing store.
971 *
972 * => "offhi == 0" means flush all pages at or after "offlo".
973 * => object should be locked by caller. we may _unlock_ the object
974 * if (and only if) we need to clean a page (PGO_CLEANIT), or
975 * if PGO_SYNCIO is set and there are pages busy.
976 * we return with the object locked.
977 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
978 * thus, a caller might want to unlock higher level resources
979 * (e.g. vm_map) before calling flush.
980 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
981 * unlock the object nor block.
982 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
983 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
984 * that new pages are inserted on the tail end of the list. thus,
985 * we can make a complete pass through the object in one go by starting
986 * at the head and working towards the tail (new pages are put in
987 * front of us).
988 * => NOTE: we are allowed to lock the page queues, so the caller
989 * must not be holding the page queue lock.
990 *
991 * note on "cleaning" object and PG_BUSY pages:
992 * this routine is holding the lock on the object. the only time
993 * that it can run into a PG_BUSY page that it does not own is if
994 * some other process has started I/O on the page (e.g. either
995 * a pagein, or a pageout). if the PG_BUSY page is being paged
996 * in, then it can not be dirty (!PG_CLEAN) because no one has
997 * had a chance to modify it yet. if the PG_BUSY page is being
998 * paged out then it means that someone else has already started
999 * cleaning the page for us (how nice!). in this case, if we
1000 * have syncio specified, then after we make our pass through the
1001 * object we need to wait for the other PG_BUSY pages to clear
1002 * off (i.e. we need to do an iosync). also note that once a
1003 * page is PG_BUSY it must stay in its object until it is un-busyed.
1004 *
1005 * note on page traversal:
1006 * we can traverse the pages in an object either by going down the
1007 * linked list in "uobj->memq", or we can go over the address range
1008 * by page doing hash table lookups for each address. depending
1009 * on how many pages are in the object it may be cheaper to do one
1010 * or the other. we set "by_list" to true if we are using memq.
1011 * if the cost of a hash lookup was equal to the cost of the list
1012 * traversal we could compare the number of pages in the start->stop
1013 * range to the total number of pages in the object. however, it
1014 * seems that a hash table lookup is more expensive than the linked
1015 * list traversal, so we multiply the number of pages in the
1016 * range by an estimate of the relatively higher cost of the hash lookup.
1017 */
1018
1019 int
1020 genfs_putpages(void *v)
1021 {
1022 struct vop_putpages_args /* {
1023 struct vnode *a_vp;
1024 voff_t a_offlo;
1025 voff_t a_offhi;
1026 int a_flags;
1027 } */ *ap = v;
1028 struct vnode *vp = ap->a_vp;
1029 struct uvm_object *uobj = &vp->v_uobj;
1030 struct simplelock *slock = &uobj->vmobjlock;
1031 off_t startoff = ap->a_offlo;
1032 off_t endoff = ap->a_offhi;
1033 off_t off;
1034 int flags = ap->a_flags;
1035 const int maxpages = MAXBSIZE >> PAGE_SHIFT;
1036 int i, s, error, npages, nback;
1037 int freeflag;
1038 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1039 boolean_t wasclean, by_list, needs_clean, yield;
1040 boolean_t async = (flags & PGO_SYNCIO) == 0;
1041 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1042 struct lwp *l = curlwp ? curlwp : &lwp0;
1043
1044 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1045
1046 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1047 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1048 KASSERT(startoff < endoff || endoff == 0);
1049
1050 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1051 vp, uobj->uo_npages, startoff, endoff - startoff);
1052 if (uobj->uo_npages == 0) {
1053 s = splbio();
1054 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1055 (vp->v_flag & VONWORKLST)) {
1056 vp->v_flag &= ~VONWORKLST;
1057 LIST_REMOVE(vp, v_synclist);
1058 }
1059 splx(s);
1060 simple_unlock(slock);
1061 return (0);
1062 }
1063
1064 /*
1065 * the vnode has pages, set up to process the request.
1066 */
1067
1068 error = 0;
1069 s = splbio();
1070 wasclean = (vp->v_numoutput == 0);
1071 splx(s);
1072 off = startoff;
1073 if (endoff == 0 || flags & PGO_ALLPAGES) {
1074 endoff = trunc_page(LLONG_MAX);
1075 }
1076 by_list = (uobj->uo_npages <=
1077 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1078
1079 /*
1080 * start the loop. when scanning by list, hold the last page
1081 * in the list before we start. pages allocated after we start
1082 * will be added to the end of the list, so we can stop at the
1083 * current last page.
1084 */
1085
1086 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1087 curmp.uobject = uobj;
1088 curmp.offset = (voff_t)-1;
1089 curmp.flags = PG_BUSY;
1090 endmp.uobject = uobj;
1091 endmp.offset = (voff_t)-1;
1092 endmp.flags = PG_BUSY;
1093 if (by_list) {
1094 pg = TAILQ_FIRST(&uobj->memq);
1095 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1096 PHOLD(l);
1097 } else {
1098 pg = uvm_pagelookup(uobj, off);
1099 }
1100 nextpg = NULL;
1101 while (by_list || off < endoff) {
1102
1103 /*
1104 * if the current page is not interesting, move on to the next.
1105 */
1106
1107 KASSERT(pg == NULL || pg->uobject == uobj);
1108 KASSERT(pg == NULL ||
1109 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1110 (pg->flags & PG_BUSY) != 0);
1111 if (by_list) {
1112 if (pg == &endmp) {
1113 break;
1114 }
1115 if (pg->offset < startoff || pg->offset >= endoff ||
1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1117 pg = TAILQ_NEXT(pg, listq);
1118 continue;
1119 }
1120 off = pg->offset;
1121 } else if (pg == NULL ||
1122 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1123 off += PAGE_SIZE;
1124 if (off < endoff) {
1125 pg = uvm_pagelookup(uobj, off);
1126 }
1127 continue;
1128 }
1129
1130 /*
1131 * if the current page needs to be cleaned and it's busy,
1132 * wait for it to become unbusy.
1133 */
1134
1135 yield = (l->l_cpu->ci_schedstate.spc_flags &
1136 SPCF_SHOULDYIELD) && !pagedaemon;
1137 if (pg->flags & PG_BUSY || yield) {
1138 KASSERT(!pagedaemon);
1139 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1140 if (by_list) {
1141 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1142 UVMHIST_LOG(ubchist, "curmp next %p",
1143 TAILQ_NEXT(&curmp, listq), 0,0,0);
1144 }
1145 if (yield) {
1146 simple_unlock(slock);
1147 preempt(1);
1148 simple_lock(slock);
1149 } else {
1150 pg->flags |= PG_WANTED;
1151 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1152 simple_lock(slock);
1153 }
1154 if (by_list) {
1155 UVMHIST_LOG(ubchist, "after next %p",
1156 TAILQ_NEXT(&curmp, listq), 0,0,0);
1157 pg = TAILQ_NEXT(&curmp, listq);
1158 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1159 } else {
1160 pg = uvm_pagelookup(uobj, off);
1161 }
1162 continue;
1163 }
1164
1165 /*
1166 * if we're freeing, remove all mappings of the page now.
1167 * if we're cleaning, check if the page is needs to be cleaned.
1168 */
1169
1170 if (flags & PGO_FREE) {
1171 pmap_page_protect(pg, VM_PROT_NONE);
1172 }
1173 if (flags & PGO_CLEANIT) {
1174 needs_clean = pmap_clear_modify(pg) ||
1175 (pg->flags & PG_CLEAN) == 0;
1176 pg->flags |= PG_CLEAN;
1177 } else {
1178 needs_clean = FALSE;
1179 }
1180
1181 /*
1182 * if we're cleaning, build a cluster.
1183 * the cluster will consist of pages which are currently dirty,
1184 * but they will be returned to us marked clean.
1185 * if not cleaning, just operate on the one page.
1186 */
1187
1188 if (needs_clean) {
1189 wasclean = FALSE;
1190 memset(pgs, 0, sizeof(pgs));
1191 pg->flags |= PG_BUSY;
1192 UVM_PAGE_OWN(pg, "genfs_putpages");
1193
1194 /*
1195 * first look backward.
1196 */
1197
1198 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1199 nback = npages;
1200 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1201 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1202 if (nback) {
1203 memmove(&pgs[0], &pgs[npages - nback],
1204 nback * sizeof(pgs[0]));
1205 if (npages - nback < nback)
1206 memset(&pgs[nback], 0,
1207 (npages - nback) * sizeof(pgs[0]));
1208 else
1209 memset(&pgs[npages - nback], 0,
1210 nback * sizeof(pgs[0]));
1211 }
1212
1213 /*
1214 * then plug in our page of interest.
1215 */
1216
1217 pgs[nback] = pg;
1218
1219 /*
1220 * then look forward to fill in the remaining space in
1221 * the array of pages.
1222 */
1223
1224 npages = maxpages - nback - 1;
1225 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1226 &pgs[nback + 1],
1227 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1228 npages += nback + 1;
1229 } else {
1230 pgs[0] = pg;
1231 npages = 1;
1232 nback = 0;
1233 }
1234
1235 /*
1236 * apply FREE or DEACTIVATE options if requested.
1237 */
1238
1239 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1240 uvm_lock_pageq();
1241 }
1242 for (i = 0; i < npages; i++) {
1243 tpg = pgs[i];
1244 KASSERT(tpg->uobject == uobj);
1245 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1246 pg = tpg;
1247 if (tpg->offset < startoff || tpg->offset >= endoff)
1248 continue;
1249 if (flags & PGO_DEACTIVATE &&
1250 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1251 tpg->wire_count == 0) {
1252 (void) pmap_clear_reference(tpg);
1253 uvm_pagedeactivate(tpg);
1254 } else if (flags & PGO_FREE) {
1255 pmap_page_protect(tpg, VM_PROT_NONE);
1256 if (tpg->flags & PG_BUSY) {
1257 tpg->flags |= freeflag;
1258 if (pagedaemon) {
1259 uvmexp.paging++;
1260 uvm_pagedequeue(tpg);
1261 }
1262 } else {
1263
1264 /*
1265 * ``page is not busy''
1266 * implies that npages is 1
1267 * and needs_clean is false.
1268 */
1269
1270 nextpg = TAILQ_NEXT(tpg, listq);
1271 uvm_pagefree(tpg);
1272 }
1273 }
1274 }
1275 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1276 uvm_unlock_pageq();
1277 }
1278 if (needs_clean) {
1279
1280 /*
1281 * start the i/o. if we're traversing by list,
1282 * keep our place in the list with a marker page.
1283 */
1284
1285 if (by_list) {
1286 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1287 listq);
1288 }
1289 simple_unlock(slock);
1290 error = GOP_WRITE(vp, pgs, npages, flags);
1291 simple_lock(slock);
1292 if (by_list) {
1293 pg = TAILQ_NEXT(&curmp, listq);
1294 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1295 }
1296 if (error) {
1297 break;
1298 }
1299 if (by_list) {
1300 continue;
1301 }
1302 }
1303
1304 /*
1305 * find the next page and continue if there was no error.
1306 */
1307
1308 if (by_list) {
1309 if (nextpg) {
1310 pg = nextpg;
1311 nextpg = NULL;
1312 } else {
1313 pg = TAILQ_NEXT(pg, listq);
1314 }
1315 } else {
1316 off += (npages - nback) << PAGE_SHIFT;
1317 if (off < endoff) {
1318 pg = uvm_pagelookup(uobj, off);
1319 }
1320 }
1321 }
1322 if (by_list) {
1323 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1324 PRELE(l);
1325 }
1326
1327 /*
1328 * if we're cleaning and there was nothing to clean,
1329 * take us off the syncer list. if we started any i/o
1330 * and we're doing sync i/o, wait for all writes to finish.
1331 */
1332
1333 s = splbio();
1334 if ((flags & PGO_CLEANIT) && wasclean &&
1335 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1336 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1337 (vp->v_flag & VONWORKLST)) {
1338 vp->v_flag &= ~VONWORKLST;
1339 LIST_REMOVE(vp, v_synclist);
1340 }
1341 splx(s);
1342 if (!wasclean && !async) {
1343 s = splbio();
1344 while (vp->v_numoutput != 0) {
1345 vp->v_flag |= VBWAIT;
1346 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1347 "genput2", 0);
1348 simple_lock(slock);
1349 }
1350 splx(s);
1351 }
1352 simple_unlock(&uobj->vmobjlock);
1353 return (error);
1354 }
1355
1356 int
1357 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1358 {
1359 int s, error, run;
1360 int fs_bshift, dev_bshift;
1361 vaddr_t kva;
1362 off_t eof, offset, startoffset;
1363 size_t bytes, iobytes, skipbytes;
1364 daddr_t lbn, blkno;
1365 struct vm_page *pg;
1366 struct buf *mbp, *bp;
1367 struct vnode *devvp;
1368 boolean_t async = (flags & PGO_SYNCIO) == 0;
1369 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1370
1371 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1372 vp, pgs, npages, flags);
1373
1374 GOP_SIZE(vp, vp->v_size, &eof);
1375 if (vp->v_type == VREG) {
1376 fs_bshift = vp->v_mount->mnt_fs_bshift;
1377 dev_bshift = vp->v_mount->mnt_dev_bshift;
1378 } else {
1379 fs_bshift = DEV_BSHIFT;
1380 dev_bshift = DEV_BSHIFT;
1381 }
1382 error = 0;
1383 pg = pgs[0];
1384 startoffset = pg->offset;
1385 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1386 skipbytes = 0;
1387 KASSERT(bytes != 0);
1388
1389 kva = uvm_pagermapin(pgs, npages,
1390 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1391
1392 s = splbio();
1393 vp->v_numoutput += 2;
1394 mbp = pool_get(&bufpool, PR_WAITOK);
1395 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1396 vp, mbp, vp->v_numoutput, bytes);
1397 splx(s);
1398 mbp->b_bufsize = npages << PAGE_SHIFT;
1399 mbp->b_data = (void *)kva;
1400 mbp->b_resid = mbp->b_bcount = bytes;
1401 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1402 mbp->b_iodone = uvm_aio_biodone;
1403 mbp->b_vp = vp;
1404 LIST_INIT(&mbp->b_dep);
1405
1406 bp = NULL;
1407 for (offset = startoffset;
1408 bytes > 0;
1409 offset += iobytes, bytes -= iobytes) {
1410 lbn = offset >> fs_bshift;
1411 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1412 if (error) {
1413 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1414 skipbytes += bytes;
1415 bytes = 0;
1416 break;
1417 }
1418
1419 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1420 bytes);
1421 if (blkno == (daddr_t)-1) {
1422 skipbytes += iobytes;
1423 continue;
1424 }
1425
1426 /* if it's really one i/o, don't make a second buf */
1427 if (offset == startoffset && iobytes == bytes) {
1428 bp = mbp;
1429 } else {
1430 s = splbio();
1431 vp->v_numoutput++;
1432 bp = pool_get(&bufpool, PR_WAITOK);
1433 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1434 vp, bp, vp->v_numoutput, 0);
1435 splx(s);
1436 bp->b_data = (char *)kva +
1437 (vaddr_t)(offset - pg->offset);
1438 bp->b_resid = bp->b_bcount = iobytes;
1439 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1440 bp->b_iodone = uvm_aio_biodone1;
1441 bp->b_vp = vp;
1442 LIST_INIT(&bp->b_dep);
1443 }
1444 bp->b_lblkno = 0;
1445 bp->b_private = mbp;
1446 if (devvp->v_type == VBLK) {
1447 bp->b_dev = devvp->v_rdev;
1448 }
1449
1450 /* adjust physical blkno for partial blocks */
1451 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1452 dev_bshift);
1453 UVMHIST_LOG(ubchist,
1454 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1455 vp, offset, bp->b_bcount, bp->b_blkno);
1456 VOP_STRATEGY(bp);
1457 }
1458 if (skipbytes) {
1459 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1460 s = splbio();
1461 if (error) {
1462 mbp->b_flags |= B_ERROR;
1463 mbp->b_error = error;
1464 }
1465 mbp->b_resid -= skipbytes;
1466 if (mbp->b_resid == 0) {
1467 biodone(mbp);
1468 }
1469 splx(s);
1470 }
1471 if (async) {
1472 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1473 return (0);
1474 }
1475 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1476 error = biowait(mbp);
1477 uvm_aio_aiodone(mbp);
1478 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1479 return (error);
1480 }
1481
1482 /*
1483 * VOP_PUTPAGES() for vnodes which never have pages.
1484 */
1485
1486 int
1487 genfs_null_putpages(void *v)
1488 {
1489 struct vop_putpages_args /* {
1490 struct vnode *a_vp;
1491 voff_t a_offlo;
1492 voff_t a_offhi;
1493 int a_flags;
1494 } */ *ap = v;
1495 struct vnode *vp = ap->a_vp;
1496
1497 KASSERT(vp->v_uobj.uo_npages == 0);
1498 simple_unlock(&vp->v_interlock);
1499 return (0);
1500 }
1501
1502 void
1503 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1504 {
1505 struct genfs_node *gp = VTOG(vp);
1506
1507 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1508 gp->g_op = ops;
1509 }
1510
1511 void
1512 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1513 {
1514 int bsize;
1515
1516 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1517 *eobp = (size + bsize - 1) & ~(bsize - 1);
1518 }
1519
1520 int
1521 genfs_compat_getpages(void *v)
1522 {
1523 struct vop_getpages_args /* {
1524 struct vnode *a_vp;
1525 voff_t a_offset;
1526 struct vm_page **a_m;
1527 int *a_count;
1528 int a_centeridx;
1529 vm_prot_t a_access_type;
1530 int a_advice;
1531 int a_flags;
1532 } */ *ap = v;
1533
1534 off_t origoffset;
1535 struct vnode *vp = ap->a_vp;
1536 struct uvm_object *uobj = &vp->v_uobj;
1537 struct vm_page *pg, **pgs;
1538 vaddr_t kva;
1539 int i, error, orignpages, npages;
1540 struct iovec iov;
1541 struct uio uio;
1542 struct ucred *cred = curproc->p_ucred;
1543 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1544
1545 error = 0;
1546 origoffset = ap->a_offset;
1547 orignpages = *ap->a_count;
1548 pgs = ap->a_m;
1549
1550 if (write && (vp->v_flag & VONWORKLST) == 0) {
1551 vn_syncer_add_to_worklist(vp, filedelay);
1552 }
1553 if (ap->a_flags & PGO_LOCKED) {
1554 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1555 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1556
1557 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1558 }
1559 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1560 simple_unlock(&uobj->vmobjlock);
1561 return (EINVAL);
1562 }
1563 npages = orignpages;
1564 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1565 simple_unlock(&uobj->vmobjlock);
1566 kva = uvm_pagermapin(pgs, npages,
1567 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1568 for (i = 0; i < npages; i++) {
1569 pg = pgs[i];
1570 if ((pg->flags & PG_FAKE) == 0) {
1571 continue;
1572 }
1573 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1574 iov.iov_len = PAGE_SIZE;
1575 uio.uio_iov = &iov;
1576 uio.uio_iovcnt = 1;
1577 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1578 uio.uio_segflg = UIO_SYSSPACE;
1579 uio.uio_rw = UIO_READ;
1580 uio.uio_resid = PAGE_SIZE;
1581 uio.uio_procp = curproc;
1582 error = VOP_READ(vp, &uio, 0, cred);
1583 if (error) {
1584 break;
1585 }
1586 if (uio.uio_resid) {
1587 memset(iov.iov_base, 0, uio.uio_resid);
1588 }
1589 }
1590 uvm_pagermapout(kva, npages);
1591 simple_lock(&uobj->vmobjlock);
1592 uvm_lock_pageq();
1593 for (i = 0; i < npages; i++) {
1594 pg = pgs[i];
1595 if (error && (pg->flags & PG_FAKE) != 0) {
1596 pg->flags |= PG_RELEASED;
1597 } else {
1598 pmap_clear_modify(pg);
1599 uvm_pageactivate(pg);
1600 }
1601 }
1602 if (error) {
1603 uvm_page_unbusy(pgs, npages);
1604 }
1605 uvm_unlock_pageq();
1606 simple_unlock(&uobj->vmobjlock);
1607 return (error);
1608 }
1609
1610 int
1611 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1612 int flags)
1613 {
1614 off_t offset;
1615 struct iovec iov;
1616 struct uio uio;
1617 struct ucred *cred = curproc->p_ucred;
1618 struct buf *bp;
1619 vaddr_t kva;
1620 int s, error;
1621
1622 offset = pgs[0]->offset;
1623 kva = uvm_pagermapin(pgs, npages,
1624 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1625
1626 iov.iov_base = (void *)kva;
1627 iov.iov_len = npages << PAGE_SHIFT;
1628 uio.uio_iov = &iov;
1629 uio.uio_iovcnt = 1;
1630 uio.uio_offset = offset;
1631 uio.uio_segflg = UIO_SYSSPACE;
1632 uio.uio_rw = UIO_WRITE;
1633 uio.uio_resid = npages << PAGE_SHIFT;
1634 uio.uio_procp = curproc;
1635 error = VOP_WRITE(vp, &uio, 0, cred);
1636
1637 s = splbio();
1638 vp->v_numoutput++;
1639 bp = pool_get(&bufpool, PR_WAITOK);
1640 splx(s);
1641
1642 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1643 bp->b_vp = vp;
1644 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1645 bp->b_data = (char *)kva;
1646 bp->b_bcount = npages << PAGE_SHIFT;
1647 bp->b_bufsize = npages << PAGE_SHIFT;
1648 bp->b_resid = 0;
1649 LIST_INIT(&bp->b_dep);
1650 if (error) {
1651 bp->b_flags |= B_ERROR;
1652 bp->b_error = error;
1653 }
1654 uvm_aio_aiodone(bp);
1655 return (error);
1656 }
1657
1658 static void
1659 filt_genfsdetach(struct knote *kn)
1660 {
1661 struct vnode *vp = (struct vnode *)kn->kn_hook;
1662
1663 /* XXXLUKEM lock the struct? */
1664 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1665 }
1666
1667 static int
1668 filt_genfsread(struct knote *kn, long hint)
1669 {
1670 struct vnode *vp = (struct vnode *)kn->kn_hook;
1671
1672 /*
1673 * filesystem is gone, so set the EOF flag and schedule
1674 * the knote for deletion.
1675 */
1676 if (hint == NOTE_REVOKE) {
1677 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1678 return (1);
1679 }
1680
1681 /* XXXLUKEM lock the struct? */
1682 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1683 return (kn->kn_data != 0);
1684 }
1685
1686 static int
1687 filt_genfsvnode(struct knote *kn, long hint)
1688 {
1689
1690 if (kn->kn_sfflags & hint)
1691 kn->kn_fflags |= hint;
1692 if (hint == NOTE_REVOKE) {
1693 kn->kn_flags |= EV_EOF;
1694 return (1);
1695 }
1696 return (kn->kn_fflags != 0);
1697 }
1698
1699 static const struct filterops genfsread_filtops =
1700 { 1, NULL, filt_genfsdetach, filt_genfsread };
1701 static const struct filterops genfsvnode_filtops =
1702 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1703
1704 int
1705 genfs_kqfilter(void *v)
1706 {
1707 struct vop_kqfilter_args /* {
1708 struct vnode *a_vp;
1709 struct knote *a_kn;
1710 } */ *ap = v;
1711 struct vnode *vp;
1712 struct knote *kn;
1713
1714 vp = ap->a_vp;
1715 kn = ap->a_kn;
1716 switch (kn->kn_filter) {
1717 case EVFILT_READ:
1718 kn->kn_fop = &genfsread_filtops;
1719 break;
1720 case EVFILT_VNODE:
1721 kn->kn_fop = &genfsvnode_filtops;
1722 break;
1723 default:
1724 return (1);
1725 }
1726
1727 kn->kn_hook = vp;
1728
1729 /* XXXLUKEM lock the struct? */
1730 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1731
1732 return (0);
1733 }
1734