genfs_vnops.c revision 1.71 1 /* $NetBSD: genfs_vnops.c,v 1.71 2003/02/05 21:38:42 pk Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.71 2003/02/05 21:38:42 pk Exp $");
39
40 #include "opt_nfsserver.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 static void filt_genfsdetach(struct knote *);
72 static int filt_genfsread(struct knote *, long);
73 static int filt_genfsvnode(struct knote *, long);
74
75
76 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
78 int genfs_racount = 2; /* # of page chunks to readahead */
79 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
80
81 int
82 genfs_poll(void *v)
83 {
84 struct vop_poll_args /* {
85 struct vnode *a_vp;
86 int a_events;
87 struct proc *a_p;
88 } */ *ap = v;
89
90 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
91 }
92
93 int
94 genfs_fsync(void *v)
95 {
96 struct vop_fsync_args /* {
97 struct vnode *a_vp;
98 struct ucred *a_cred;
99 int a_flags;
100 off_t offlo;
101 off_t offhi;
102 struct proc *a_p;
103 } */ *ap = v;
104 struct vnode *vp = ap->a_vp;
105 int wait;
106
107 wait = (ap->a_flags & FSYNC_WAIT) != 0;
108 vflushbuf(vp, wait);
109 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
110 return (0);
111 else
112 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
113 }
114
115 int
116 genfs_seek(void *v)
117 {
118 struct vop_seek_args /* {
119 struct vnode *a_vp;
120 off_t a_oldoff;
121 off_t a_newoff;
122 struct ucred *a_ucred;
123 } */ *ap = v;
124
125 if (ap->a_newoff < 0)
126 return (EINVAL);
127
128 return (0);
129 }
130
131 int
132 genfs_abortop(void *v)
133 {
134 struct vop_abortop_args /* {
135 struct vnode *a_dvp;
136 struct componentname *a_cnp;
137 } */ *ap = v;
138
139 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
140 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
141 return (0);
142 }
143
144 int
145 genfs_fcntl(void *v)
146 {
147 struct vop_fcntl_args /* {
148 struct vnode *a_vp;
149 u_int a_command;
150 caddr_t a_data;
151 int a_fflag;
152 struct ucred *a_cred;
153 struct proc *a_p;
154 } */ *ap = v;
155
156 if (ap->a_command == F_SETFL)
157 return (0);
158 else
159 return (EOPNOTSUPP);
160 }
161
162 /*ARGSUSED*/
163 int
164 genfs_badop(void *v)
165 {
166
167 panic("genfs: bad op");
168 }
169
170 /*ARGSUSED*/
171 int
172 genfs_nullop(void *v)
173 {
174
175 return (0);
176 }
177
178 /*ARGSUSED*/
179 int
180 genfs_einval(void *v)
181 {
182
183 return (EINVAL);
184 }
185
186 /*ARGSUSED*/
187 int
188 genfs_eopnotsupp(void *v)
189 {
190
191 return (EOPNOTSUPP);
192 }
193
194 /*
195 * Called when an fs doesn't support a particular vop but the vop needs to
196 * vrele, vput, or vunlock passed in vnodes.
197 */
198 int
199 genfs_eopnotsupp_rele(void *v)
200 {
201 struct vop_generic_args /*
202 struct vnodeop_desc *a_desc;
203 / * other random data follows, presumably * /
204 } */ *ap = v;
205 struct vnodeop_desc *desc = ap->a_desc;
206 struct vnode *vp;
207 int flags, i, j, offset;
208
209 flags = desc->vdesc_flags;
210 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
211 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
212 break; /* stop at end of list */
213 if ((j = flags & VDESC_VP0_WILLPUT)) {
214 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
215 switch (j) {
216 case VDESC_VP0_WILLPUT:
217 vput(vp);
218 break;
219 case VDESC_VP0_WILLUNLOCK:
220 VOP_UNLOCK(vp, 0);
221 break;
222 case VDESC_VP0_WILLRELE:
223 vrele(vp);
224 break;
225 }
226 }
227 }
228
229 return (EOPNOTSUPP);
230 }
231
232 /*ARGSUSED*/
233 int
234 genfs_ebadf(void *v)
235 {
236
237 return (EBADF);
238 }
239
240 /* ARGSUSED */
241 int
242 genfs_enoioctl(void *v)
243 {
244
245 return (EPASSTHROUGH);
246 }
247
248
249 /*
250 * Eliminate all activity associated with the requested vnode
251 * and with all vnodes aliased to the requested vnode.
252 */
253 int
254 genfs_revoke(void *v)
255 {
256 struct vop_revoke_args /* {
257 struct vnode *a_vp;
258 int a_flags;
259 } */ *ap = v;
260 struct vnode *vp, *vq;
261 struct proc *p = curproc; /* XXX */
262
263 #ifdef DIAGNOSTIC
264 if ((ap->a_flags & REVOKEALL) == 0)
265 panic("genfs_revoke: not revokeall");
266 #endif
267
268 vp = ap->a_vp;
269 simple_lock(&vp->v_interlock);
270
271 if (vp->v_flag & VALIASED) {
272 /*
273 * If a vgone (or vclean) is already in progress,
274 * wait until it is done and return.
275 */
276 if (vp->v_flag & VXLOCK) {
277 vp->v_flag |= VXWANT;
278 simple_unlock(&vp->v_interlock);
279 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
280 return (0);
281 }
282 /*
283 * Ensure that vp will not be vgone'd while we
284 * are eliminating its aliases.
285 */
286 vp->v_flag |= VXLOCK;
287 simple_unlock(&vp->v_interlock);
288 while (vp->v_flag & VALIASED) {
289 simple_lock(&spechash_slock);
290 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
291 if (vq->v_rdev != vp->v_rdev ||
292 vq->v_type != vp->v_type || vp == vq)
293 continue;
294 simple_unlock(&spechash_slock);
295 vgone(vq);
296 break;
297 }
298 if (vq == NULLVP)
299 simple_unlock(&spechash_slock);
300 }
301 /*
302 * Remove the lock so that vgone below will
303 * really eliminate the vnode after which time
304 * vgone will awaken any sleepers.
305 */
306 simple_lock(&vp->v_interlock);
307 vp->v_flag &= ~VXLOCK;
308 }
309 vgonel(vp, p);
310 return (0);
311 }
312
313 /*
314 * Lock the node.
315 */
316 int
317 genfs_lock(void *v)
318 {
319 struct vop_lock_args /* {
320 struct vnode *a_vp;
321 int a_flags;
322 } */ *ap = v;
323 struct vnode *vp = ap->a_vp;
324
325 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
326 }
327
328 /*
329 * Unlock the node.
330 */
331 int
332 genfs_unlock(void *v)
333 {
334 struct vop_unlock_args /* {
335 struct vnode *a_vp;
336 int a_flags;
337 } */ *ap = v;
338 struct vnode *vp = ap->a_vp;
339
340 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
341 &vp->v_interlock));
342 }
343
344 /*
345 * Return whether or not the node is locked.
346 */
347 int
348 genfs_islocked(void *v)
349 {
350 struct vop_islocked_args /* {
351 struct vnode *a_vp;
352 } */ *ap = v;
353 struct vnode *vp = ap->a_vp;
354
355 return (lockstatus(&vp->v_lock));
356 }
357
358 /*
359 * Stubs to use when there is no locking to be done on the underlying object.
360 */
361 int
362 genfs_nolock(void *v)
363 {
364 struct vop_lock_args /* {
365 struct vnode *a_vp;
366 int a_flags;
367 struct proc *a_p;
368 } */ *ap = v;
369
370 /*
371 * Since we are not using the lock manager, we must clear
372 * the interlock here.
373 */
374 if (ap->a_flags & LK_INTERLOCK)
375 simple_unlock(&ap->a_vp->v_interlock);
376 return (0);
377 }
378
379 int
380 genfs_nounlock(void *v)
381 {
382
383 return (0);
384 }
385
386 int
387 genfs_noislocked(void *v)
388 {
389
390 return (0);
391 }
392
393 /*
394 * Local lease check for NFS servers. Just set up args and let
395 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
396 * this is a null operation.
397 */
398 int
399 genfs_lease_check(void *v)
400 {
401 #ifdef NFSSERVER
402 struct vop_lease_args /* {
403 struct vnode *a_vp;
404 struct proc *a_p;
405 struct ucred *a_cred;
406 int a_flag;
407 } */ *ap = v;
408 u_int32_t duration = 0;
409 int cache;
410 u_quad_t frev;
411
412 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
413 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
414 return (0);
415 #else
416 return (0);
417 #endif /* NFSSERVER */
418 }
419
420 int
421 genfs_mmap(void *v)
422 {
423
424 return (0);
425 }
426
427 static __inline void
428 genfs_rel_pages(struct vm_page **pgs, int npages)
429 {
430 int i;
431
432 for (i = 0; i < npages; i++) {
433 struct vm_page *pg = pgs[i];
434
435 if (pg == NULL)
436 continue;
437 if (pg->flags & PG_FAKE) {
438 pg->flags |= PG_RELEASED;
439 }
440 }
441 uvm_lock_pageq();
442 uvm_page_unbusy(pgs, npages);
443 uvm_unlock_pageq();
444 }
445
446 /*
447 * generic VM getpages routine.
448 * Return PG_BUSY pages for the given range,
449 * reading from backing store if necessary.
450 */
451
452 int
453 genfs_getpages(void *v)
454 {
455 struct vop_getpages_args /* {
456 struct vnode *a_vp;
457 voff_t a_offset;
458 struct vm_page **a_m;
459 int *a_count;
460 int a_centeridx;
461 vm_prot_t a_access_type;
462 int a_advice;
463 int a_flags;
464 } */ *ap = v;
465
466 off_t newsize, diskeof, memeof;
467 off_t offset, origoffset, startoffset, endoffset, raoffset;
468 daddr_t lbn, blkno;
469 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
470 int fs_bshift, fs_bsize, dev_bshift;
471 int flags = ap->a_flags;
472 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
473 vaddr_t kva;
474 struct buf *bp, *mbp;
475 struct vnode *vp = ap->a_vp;
476 struct vnode *devvp;
477 struct genfs_node *gp = VTOG(vp);
478 struct uvm_object *uobj = &vp->v_uobj;
479 struct vm_page *pg, *pgs[MAX_READ_AHEAD];
480 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
481 boolean_t async = (flags & PGO_SYNCIO) == 0;
482 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
483 boolean_t sawhole = FALSE;
484 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
485 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
486
487 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
488 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
489
490 /* XXXUBC temp limit */
491 if (*ap->a_count > MAX_READ_AHEAD) {
492 panic("genfs_getpages: too many pages");
493 }
494
495 error = 0;
496 origoffset = ap->a_offset;
497 orignpages = *ap->a_count;
498 GOP_SIZE(vp, vp->v_size, &diskeof);
499 if (flags & PGO_PASTEOF) {
500 newsize = MAX(vp->v_size,
501 origoffset + (orignpages << PAGE_SHIFT));
502 GOP_SIZE(vp, newsize, &memeof);
503 } else {
504 memeof = diskeof;
505 }
506 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
507 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
508 KASSERT(orignpages > 0);
509
510 /*
511 * Bounds-check the request.
512 */
513
514 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
515 if ((flags & PGO_LOCKED) == 0) {
516 simple_unlock(&uobj->vmobjlock);
517 }
518 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
519 origoffset, *ap->a_count, memeof,0);
520 return (EINVAL);
521 }
522
523 /*
524 * For PGO_LOCKED requests, just return whatever's in memory.
525 */
526
527 if (flags & PGO_LOCKED) {
528 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
529 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
530
531 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
532 }
533
534 /* vnode is VOP_LOCKed, uobj is locked */
535
536 if (write && (vp->v_flag & VONWORKLST) == 0) {
537 vn_syncer_add_to_worklist(vp, filedelay);
538 }
539
540 /*
541 * find the requested pages and make some simple checks.
542 * leave space in the page array for a whole block.
543 */
544
545 if (vp->v_type == VREG) {
546 fs_bshift = vp->v_mount->mnt_fs_bshift;
547 dev_bshift = vp->v_mount->mnt_dev_bshift;
548 } else {
549 fs_bshift = DEV_BSHIFT;
550 dev_bshift = DEV_BSHIFT;
551 }
552 fs_bsize = 1 << fs_bshift;
553
554 orignpages = MIN(orignpages,
555 round_page(memeof - origoffset) >> PAGE_SHIFT);
556 npages = orignpages;
557 startoffset = origoffset & ~(fs_bsize - 1);
558 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
559 fs_bsize - 1) & ~(fs_bsize - 1));
560 endoffset = MIN(endoffset, round_page(memeof));
561 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
562
563 memset(pgs, 0, sizeof(pgs));
564 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
565 ridx, npages, startoffset, endoffset);
566 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
567 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
568 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
569 KASSERT(async != 0);
570 genfs_rel_pages(&pgs[ridx], orignpages);
571 simple_unlock(&uobj->vmobjlock);
572 return (EBUSY);
573 }
574
575 /*
576 * if the pages are already resident, just return them.
577 */
578
579 for (i = 0; i < npages; i++) {
580 struct vm_page *pg = pgs[ridx + i];
581
582 if ((pg->flags & PG_FAKE) ||
583 (write && (pg->flags & PG_RDONLY))) {
584 break;
585 }
586 }
587 if (i == npages) {
588 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
589 raoffset = origoffset + (orignpages << PAGE_SHIFT);
590 npages += ridx;
591 goto raout;
592 }
593
594 /*
595 * if PGO_OVERWRITE is set, don't bother reading the pages.
596 */
597
598 if (flags & PGO_OVERWRITE) {
599 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
600
601 for (i = 0; i < npages; i++) {
602 struct vm_page *pg = pgs[ridx + i];
603
604 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
605 }
606 npages += ridx;
607 goto out;
608 }
609
610 /*
611 * the page wasn't resident and we're not overwriting,
612 * so we're going to have to do some i/o.
613 * find any additional pages needed to cover the expanded range.
614 */
615
616 npages = (endoffset - startoffset) >> PAGE_SHIFT;
617 if (startoffset != origoffset || npages != orignpages) {
618
619 /*
620 * we need to avoid deadlocks caused by locking
621 * additional pages at lower offsets than pages we
622 * already have locked. unlock them all and start over.
623 */
624
625 genfs_rel_pages(&pgs[ridx], orignpages);
626 memset(pgs, 0, sizeof(pgs));
627
628 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
629 startoffset, endoffset, 0,0);
630 npgs = npages;
631 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
632 async ? UFP_NOWAIT : UFP_ALL) != npages) {
633 KASSERT(async != 0);
634 genfs_rel_pages(pgs, npages);
635 simple_unlock(&uobj->vmobjlock);
636 return (EBUSY);
637 }
638 }
639 simple_unlock(&uobj->vmobjlock);
640
641 /*
642 * read the desired page(s).
643 */
644
645 totalbytes = npages << PAGE_SHIFT;
646 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
647 tailbytes = totalbytes - bytes;
648 skipbytes = 0;
649
650 kva = uvm_pagermapin(pgs, npages,
651 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
652
653 s = splbio();
654 mbp = pool_get(&bufpool, PR_WAITOK);
655 splx(s);
656 simple_lock_init(&mbp->b_interlock);
657 mbp->b_bufsize = totalbytes;
658 mbp->b_data = (void *)kva;
659 mbp->b_resid = mbp->b_bcount = bytes;
660 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
661 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
662 mbp->b_vp = vp;
663 LIST_INIT(&mbp->b_dep);
664
665 /*
666 * if EOF is in the middle of the range, zero the part past EOF.
667 * if the page including EOF is not PG_FAKE, skip over it since
668 * in that case it has valid data that we need to preserve.
669 */
670
671 if (tailbytes > 0) {
672 size_t tailstart = bytes;
673
674 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
675 tailstart = round_page(tailstart);
676 tailbytes -= tailstart - bytes;
677 }
678 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
679 kva, tailstart, tailbytes,0);
680 memset((void *)(kva + tailstart), 0, tailbytes);
681 }
682
683 /*
684 * now loop over the pages, reading as needed.
685 */
686
687 if (write) {
688 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
689 } else {
690 lockmgr(&gp->g_glock, LK_SHARED, NULL);
691 }
692
693 bp = NULL;
694 for (offset = startoffset;
695 bytes > 0;
696 offset += iobytes, bytes -= iobytes) {
697
698 /*
699 * skip pages which don't need to be read.
700 */
701
702 pidx = (offset - startoffset) >> PAGE_SHIFT;
703 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
704 size_t b;
705
706 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
707 b = MIN(PAGE_SIZE, bytes);
708 offset += b;
709 bytes -= b;
710 skipbytes += b;
711 pidx++;
712 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
713 offset, 0,0,0);
714 if (bytes == 0) {
715 goto loopdone;
716 }
717 }
718
719 /*
720 * bmap the file to find out the blkno to read from and
721 * how much we can read in one i/o. if bmap returns an error,
722 * skip the rest of the top-level i/o.
723 */
724
725 lbn = offset >> fs_bshift;
726 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
727 if (error) {
728 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
729 lbn, error,0,0);
730 skipbytes += bytes;
731 goto loopdone;
732 }
733
734 /*
735 * see how many pages can be read with this i/o.
736 * reduce the i/o size if necessary to avoid
737 * overwriting pages with valid data.
738 */
739
740 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
741 bytes);
742 if (offset + iobytes > round_page(offset)) {
743 pcount = 1;
744 while (pidx + pcount < npages &&
745 pgs[pidx + pcount]->flags & PG_FAKE) {
746 pcount++;
747 }
748 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
749 (offset - trunc_page(offset)));
750 }
751
752 /*
753 * if this block isn't allocated, zero it instead of
754 * reading it. if this is a read access, mark the
755 * pages we zeroed PG_RDONLY.
756 */
757
758 if (blkno < 0) {
759 int holepages = (round_page(offset + iobytes) -
760 trunc_page(offset)) >> PAGE_SHIFT;
761 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
762
763 sawhole = TRUE;
764 memset((char *)kva + (offset - startoffset), 0,
765 iobytes);
766 skipbytes += iobytes;
767
768 for (i = 0; i < holepages; i++) {
769 if (write) {
770 pgs[pidx + i]->flags &= ~PG_CLEAN;
771 } else {
772 pgs[pidx + i]->flags |= PG_RDONLY;
773 }
774 }
775 continue;
776 }
777
778 /*
779 * allocate a sub-buf for this piece of the i/o
780 * (or just use mbp if there's only 1 piece),
781 * and start it going.
782 */
783
784 if (offset == startoffset && iobytes == bytes) {
785 bp = mbp;
786 } else {
787 s = splbio();
788 bp = pool_get(&bufpool, PR_WAITOK);
789 splx(s);
790 simple_lock_init(&bp->b_interlock);
791 bp->b_data = (char *)kva + offset - startoffset;
792 bp->b_resid = bp->b_bcount = iobytes;
793 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
794 bp->b_iodone = uvm_aio_biodone1;
795 bp->b_vp = vp;
796 bp->b_proc = NULL;
797 LIST_INIT(&bp->b_dep);
798 }
799 bp->b_lblkno = 0;
800 bp->b_private = mbp;
801 if (devvp->v_type == VBLK) {
802 bp->b_dev = devvp->v_rdev;
803 }
804
805 /* adjust physical blkno for partial blocks */
806 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
807 dev_bshift);
808
809 UVMHIST_LOG(ubchist,
810 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
811 bp, offset, iobytes, bp->b_blkno);
812
813 VOP_STRATEGY(bp);
814 }
815
816 loopdone:
817 if (skipbytes) {
818 s = splbio();
819 if (error) {
820 mbp->b_flags |= B_ERROR;
821 mbp->b_error = error;
822 }
823 mbp->b_resid -= skipbytes;
824 if (mbp->b_resid == 0) {
825 biodone(mbp);
826 }
827 splx(s);
828 }
829
830 if (async) {
831 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
832 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
833 return (0);
834 }
835 if (bp != NULL) {
836 error = biowait(mbp);
837 }
838 s = splbio();
839 pool_put(&bufpool, mbp);
840 splx(s);
841 uvm_pagermapout(kva, npages);
842 raoffset = startoffset + totalbytes;
843
844 /*
845 * if this we encountered a hole then we have to do a little more work.
846 * for read faults, we marked the page PG_RDONLY so that future
847 * write accesses to the page will fault again.
848 * for write faults, we must make sure that the backing store for
849 * the page is completely allocated while the pages are locked.
850 */
851
852 if (!error && sawhole && write) {
853 for (i = 0; i < npages; i++) {
854 if (pgs[i] == NULL) {
855 continue;
856 }
857 pgs[i]->flags &= ~PG_CLEAN;
858 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
859 }
860 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
861 cred);
862 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
863 startoffset, npages << PAGE_SHIFT, error,0);
864 }
865 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
866 simple_lock(&uobj->vmobjlock);
867
868 /*
869 * see if we want to start any readahead.
870 * XXXUBC for now, just read the next 128k on 64k boundaries.
871 * this is pretty nonsensical, but it is 50% faster than reading
872 * just the next 64k.
873 */
874
875 raout:
876 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
877 PAGE_SHIFT <= 16) {
878 off_t rasize;
879 int rapages, err, i, skipped;
880
881 /* XXXUBC temp limit, from above */
882 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
883 genfs_rapages);
884 rasize = rapages << PAGE_SHIFT;
885 for (i = skipped = 0; i < genfs_racount; i++) {
886 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
887 VM_PROT_READ, 0, 0);
888 simple_lock(&uobj->vmobjlock);
889 if (err) {
890 if (err != EBUSY ||
891 skipped++ == genfs_raskip)
892 break;
893 }
894 raoffset += rasize;
895 rapages = rasize >> PAGE_SHIFT;
896 }
897 }
898
899 /*
900 * we're almost done! release the pages...
901 * for errors, we free the pages.
902 * otherwise we activate them and mark them as valid and clean.
903 * also, unbusy pages that were not actually requested.
904 */
905
906 if (error) {
907 for (i = 0; i < npages; i++) {
908 if (pgs[i] == NULL) {
909 continue;
910 }
911 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
912 pgs[i], pgs[i]->flags, 0,0);
913 if (pgs[i]->flags & PG_FAKE) {
914 pgs[i]->flags |= PG_RELEASED;
915 }
916 }
917 uvm_lock_pageq();
918 uvm_page_unbusy(pgs, npages);
919 uvm_unlock_pageq();
920 simple_unlock(&uobj->vmobjlock);
921 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
922 return (error);
923 }
924
925 out:
926 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
927 uvm_lock_pageq();
928 for (i = 0; i < npages; i++) {
929 pg = pgs[i];
930 if (pg == NULL) {
931 continue;
932 }
933 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
934 pg, pg->flags, 0,0);
935 if (pg->flags & PG_FAKE && !overwrite) {
936 pg->flags &= ~(PG_FAKE);
937 pmap_clear_modify(pgs[i]);
938 }
939 if (write) {
940 pg->flags &= ~(PG_RDONLY);
941 }
942 if (i < ridx || i >= ridx + orignpages || async) {
943 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
944 pg, pg->offset,0,0);
945 if (pg->flags & PG_WANTED) {
946 wakeup(pg);
947 }
948 if (pg->flags & PG_FAKE) {
949 KASSERT(overwrite);
950 uvm_pagezero(pg);
951 }
952 if (pg->flags & PG_RELEASED) {
953 uvm_pagefree(pg);
954 continue;
955 }
956 uvm_pageactivate(pg);
957 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
958 UVM_PAGE_OWN(pg, NULL);
959 }
960 }
961 uvm_unlock_pageq();
962 simple_unlock(&uobj->vmobjlock);
963 if (ap->a_m != NULL) {
964 memcpy(ap->a_m, &pgs[ridx],
965 orignpages * sizeof(struct vm_page *));
966 }
967 return (0);
968 }
969
970 /*
971 * generic VM putpages routine.
972 * Write the given range of pages to backing store.
973 *
974 * => "offhi == 0" means flush all pages at or after "offlo".
975 * => object should be locked by caller. we may _unlock_ the object
976 * if (and only if) we need to clean a page (PGO_CLEANIT), or
977 * if PGO_SYNCIO is set and there are pages busy.
978 * we return with the object locked.
979 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
980 * thus, a caller might want to unlock higher level resources
981 * (e.g. vm_map) before calling flush.
982 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
983 * unlock the object nor block.
984 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
985 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
986 * that new pages are inserted on the tail end of the list. thus,
987 * we can make a complete pass through the object in one go by starting
988 * at the head and working towards the tail (new pages are put in
989 * front of us).
990 * => NOTE: we are allowed to lock the page queues, so the caller
991 * must not be holding the page queue lock.
992 *
993 * note on "cleaning" object and PG_BUSY pages:
994 * this routine is holding the lock on the object. the only time
995 * that it can run into a PG_BUSY page that it does not own is if
996 * some other process has started I/O on the page (e.g. either
997 * a pagein, or a pageout). if the PG_BUSY page is being paged
998 * in, then it can not be dirty (!PG_CLEAN) because no one has
999 * had a chance to modify it yet. if the PG_BUSY page is being
1000 * paged out then it means that someone else has already started
1001 * cleaning the page for us (how nice!). in this case, if we
1002 * have syncio specified, then after we make our pass through the
1003 * object we need to wait for the other PG_BUSY pages to clear
1004 * off (i.e. we need to do an iosync). also note that once a
1005 * page is PG_BUSY it must stay in its object until it is un-busyed.
1006 *
1007 * note on page traversal:
1008 * we can traverse the pages in an object either by going down the
1009 * linked list in "uobj->memq", or we can go over the address range
1010 * by page doing hash table lookups for each address. depending
1011 * on how many pages are in the object it may be cheaper to do one
1012 * or the other. we set "by_list" to true if we are using memq.
1013 * if the cost of a hash lookup was equal to the cost of the list
1014 * traversal we could compare the number of pages in the start->stop
1015 * range to the total number of pages in the object. however, it
1016 * seems that a hash table lookup is more expensive than the linked
1017 * list traversal, so we multiply the number of pages in the
1018 * range by an estimate of the relatively higher cost of the hash lookup.
1019 */
1020
1021 int
1022 genfs_putpages(void *v)
1023 {
1024 struct vop_putpages_args /* {
1025 struct vnode *a_vp;
1026 voff_t a_offlo;
1027 voff_t a_offhi;
1028 int a_flags;
1029 } */ *ap = v;
1030 struct vnode *vp = ap->a_vp;
1031 struct uvm_object *uobj = &vp->v_uobj;
1032 struct simplelock *slock = &uobj->vmobjlock;
1033 off_t startoff = ap->a_offlo;
1034 off_t endoff = ap->a_offhi;
1035 off_t off;
1036 int flags = ap->a_flags;
1037 const int maxpages = MAXBSIZE >> PAGE_SHIFT;
1038 int i, s, error, npages, nback;
1039 int freeflag;
1040 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1041 boolean_t wasclean, by_list, needs_clean, yield;
1042 boolean_t async = (flags & PGO_SYNCIO) == 0;
1043 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1044 struct lwp *l = curlwp ? curlwp : &lwp0;
1045
1046 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1047
1048 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1049 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1050 KASSERT(startoff < endoff || endoff == 0);
1051
1052 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1053 vp, uobj->uo_npages, startoff, endoff - startoff);
1054 if (uobj->uo_npages == 0) {
1055 s = splbio();
1056 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1057 (vp->v_flag & VONWORKLST)) {
1058 vp->v_flag &= ~VONWORKLST;
1059 LIST_REMOVE(vp, v_synclist);
1060 }
1061 splx(s);
1062 simple_unlock(slock);
1063 return (0);
1064 }
1065
1066 /*
1067 * the vnode has pages, set up to process the request.
1068 */
1069
1070 error = 0;
1071 s = splbio();
1072 simple_lock(&global_v_numoutput_slock);
1073 wasclean = (vp->v_numoutput == 0);
1074 simple_unlock(&global_v_numoutput_slock);
1075 splx(s);
1076 off = startoff;
1077 if (endoff == 0 || flags & PGO_ALLPAGES) {
1078 endoff = trunc_page(LLONG_MAX);
1079 }
1080 by_list = (uobj->uo_npages <=
1081 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1082
1083 /*
1084 * start the loop. when scanning by list, hold the last page
1085 * in the list before we start. pages allocated after we start
1086 * will be added to the end of the list, so we can stop at the
1087 * current last page.
1088 */
1089
1090 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1091 curmp.uobject = uobj;
1092 curmp.offset = (voff_t)-1;
1093 curmp.flags = PG_BUSY;
1094 endmp.uobject = uobj;
1095 endmp.offset = (voff_t)-1;
1096 endmp.flags = PG_BUSY;
1097 if (by_list) {
1098 pg = TAILQ_FIRST(&uobj->memq);
1099 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1100 PHOLD(l);
1101 } else {
1102 pg = uvm_pagelookup(uobj, off);
1103 }
1104 nextpg = NULL;
1105 while (by_list || off < endoff) {
1106
1107 /*
1108 * if the current page is not interesting, move on to the next.
1109 */
1110
1111 KASSERT(pg == NULL || pg->uobject == uobj);
1112 KASSERT(pg == NULL ||
1113 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1114 (pg->flags & PG_BUSY) != 0);
1115 if (by_list) {
1116 if (pg == &endmp) {
1117 break;
1118 }
1119 if (pg->offset < startoff || pg->offset >= endoff ||
1120 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1121 pg = TAILQ_NEXT(pg, listq);
1122 continue;
1123 }
1124 off = pg->offset;
1125 } else if (pg == NULL ||
1126 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1127 off += PAGE_SIZE;
1128 if (off < endoff) {
1129 pg = uvm_pagelookup(uobj, off);
1130 }
1131 continue;
1132 }
1133
1134 /*
1135 * if the current page needs to be cleaned and it's busy,
1136 * wait for it to become unbusy.
1137 */
1138
1139 yield = (l->l_cpu->ci_schedstate.spc_flags &
1140 SPCF_SHOULDYIELD) && !pagedaemon;
1141 if (pg->flags & PG_BUSY || yield) {
1142 KASSERT(!pagedaemon);
1143 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1144 if (by_list) {
1145 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1146 UVMHIST_LOG(ubchist, "curmp next %p",
1147 TAILQ_NEXT(&curmp, listq), 0,0,0);
1148 }
1149 if (yield) {
1150 simple_unlock(slock);
1151 preempt(1);
1152 simple_lock(slock);
1153 } else {
1154 pg->flags |= PG_WANTED;
1155 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1156 simple_lock(slock);
1157 }
1158 if (by_list) {
1159 UVMHIST_LOG(ubchist, "after next %p",
1160 TAILQ_NEXT(&curmp, listq), 0,0,0);
1161 pg = TAILQ_NEXT(&curmp, listq);
1162 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1163 } else {
1164 pg = uvm_pagelookup(uobj, off);
1165 }
1166 continue;
1167 }
1168
1169 /*
1170 * if we're freeing, remove all mappings of the page now.
1171 * if we're cleaning, check if the page is needs to be cleaned.
1172 */
1173
1174 if (flags & PGO_FREE) {
1175 pmap_page_protect(pg, VM_PROT_NONE);
1176 }
1177 if (flags & PGO_CLEANIT) {
1178 needs_clean = pmap_clear_modify(pg) ||
1179 (pg->flags & PG_CLEAN) == 0;
1180 pg->flags |= PG_CLEAN;
1181 } else {
1182 needs_clean = FALSE;
1183 }
1184
1185 /*
1186 * if we're cleaning, build a cluster.
1187 * the cluster will consist of pages which are currently dirty,
1188 * but they will be returned to us marked clean.
1189 * if not cleaning, just operate on the one page.
1190 */
1191
1192 if (needs_clean) {
1193 wasclean = FALSE;
1194 memset(pgs, 0, sizeof(pgs));
1195 pg->flags |= PG_BUSY;
1196 UVM_PAGE_OWN(pg, "genfs_putpages");
1197
1198 /*
1199 * first look backward.
1200 */
1201
1202 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1203 nback = npages;
1204 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1205 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1206 if (nback) {
1207 memmove(&pgs[0], &pgs[npages - nback],
1208 nback * sizeof(pgs[0]));
1209 if (npages - nback < nback)
1210 memset(&pgs[nback], 0,
1211 (npages - nback) * sizeof(pgs[0]));
1212 else
1213 memset(&pgs[npages - nback], 0,
1214 nback * sizeof(pgs[0]));
1215 }
1216
1217 /*
1218 * then plug in our page of interest.
1219 */
1220
1221 pgs[nback] = pg;
1222
1223 /*
1224 * then look forward to fill in the remaining space in
1225 * the array of pages.
1226 */
1227
1228 npages = maxpages - nback - 1;
1229 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1230 &pgs[nback + 1],
1231 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1232 npages += nback + 1;
1233 } else {
1234 pgs[0] = pg;
1235 npages = 1;
1236 nback = 0;
1237 }
1238
1239 /*
1240 * apply FREE or DEACTIVATE options if requested.
1241 */
1242
1243 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1244 uvm_lock_pageq();
1245 }
1246 for (i = 0; i < npages; i++) {
1247 tpg = pgs[i];
1248 KASSERT(tpg->uobject == uobj);
1249 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1250 pg = tpg;
1251 if (tpg->offset < startoff || tpg->offset >= endoff)
1252 continue;
1253 if (flags & PGO_DEACTIVATE &&
1254 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1255 tpg->wire_count == 0) {
1256 (void) pmap_clear_reference(tpg);
1257 uvm_pagedeactivate(tpg);
1258 } else if (flags & PGO_FREE) {
1259 pmap_page_protect(tpg, VM_PROT_NONE);
1260 if (tpg->flags & PG_BUSY) {
1261 tpg->flags |= freeflag;
1262 if (pagedaemon) {
1263 uvmexp.paging++;
1264 uvm_pagedequeue(tpg);
1265 }
1266 } else {
1267
1268 /*
1269 * ``page is not busy''
1270 * implies that npages is 1
1271 * and needs_clean is false.
1272 */
1273
1274 nextpg = TAILQ_NEXT(tpg, listq);
1275 uvm_pagefree(tpg);
1276 }
1277 }
1278 }
1279 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1280 uvm_unlock_pageq();
1281 }
1282 if (needs_clean) {
1283
1284 /*
1285 * start the i/o. if we're traversing by list,
1286 * keep our place in the list with a marker page.
1287 */
1288
1289 if (by_list) {
1290 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1291 listq);
1292 }
1293 simple_unlock(slock);
1294 error = GOP_WRITE(vp, pgs, npages, flags);
1295 simple_lock(slock);
1296 if (by_list) {
1297 pg = TAILQ_NEXT(&curmp, listq);
1298 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1299 }
1300 if (error) {
1301 break;
1302 }
1303 if (by_list) {
1304 continue;
1305 }
1306 }
1307
1308 /*
1309 * find the next page and continue if there was no error.
1310 */
1311
1312 if (by_list) {
1313 if (nextpg) {
1314 pg = nextpg;
1315 nextpg = NULL;
1316 } else {
1317 pg = TAILQ_NEXT(pg, listq);
1318 }
1319 } else {
1320 off += (npages - nback) << PAGE_SHIFT;
1321 if (off < endoff) {
1322 pg = uvm_pagelookup(uobj, off);
1323 }
1324 }
1325 }
1326 if (by_list) {
1327 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1328 PRELE(l);
1329 }
1330
1331 /*
1332 * if we're cleaning and there was nothing to clean,
1333 * take us off the syncer list. if we started any i/o
1334 * and we're doing sync i/o, wait for all writes to finish.
1335 */
1336
1337 s = splbio();
1338 if ((flags & PGO_CLEANIT) && wasclean &&
1339 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1340 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1341 (vp->v_flag & VONWORKLST)) {
1342 vp->v_flag &= ~VONWORKLST;
1343 LIST_REMOVE(vp, v_synclist);
1344 }
1345 splx(s);
1346 if (!wasclean && !async) {
1347 s = splbio();
1348 /*
1349 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1350 * but the slot in ltsleep() is taken!
1351 * XXX - try to recover from missed wakeups with a timeout..
1352 * must think of something better.
1353 */
1354 while (vp->v_numoutput != 0) {
1355 vp->v_flag |= VBWAIT;
1356 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1357 "genput2", hz);
1358 simple_lock(slock);
1359 }
1360 splx(s);
1361 }
1362 simple_unlock(&uobj->vmobjlock);
1363 return (error);
1364 }
1365
1366 int
1367 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1368 {
1369 int s, error, run;
1370 int fs_bshift, dev_bshift;
1371 vaddr_t kva;
1372 off_t eof, offset, startoffset;
1373 size_t bytes, iobytes, skipbytes;
1374 daddr_t lbn, blkno;
1375 struct vm_page *pg;
1376 struct buf *mbp, *bp;
1377 struct vnode *devvp;
1378 boolean_t async = (flags & PGO_SYNCIO) == 0;
1379 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1380
1381 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1382 vp, pgs, npages, flags);
1383
1384 GOP_SIZE(vp, vp->v_size, &eof);
1385 if (vp->v_type == VREG) {
1386 fs_bshift = vp->v_mount->mnt_fs_bshift;
1387 dev_bshift = vp->v_mount->mnt_dev_bshift;
1388 } else {
1389 fs_bshift = DEV_BSHIFT;
1390 dev_bshift = DEV_BSHIFT;
1391 }
1392 error = 0;
1393 pg = pgs[0];
1394 startoffset = pg->offset;
1395 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1396 skipbytes = 0;
1397 KASSERT(bytes != 0);
1398
1399 kva = uvm_pagermapin(pgs, npages,
1400 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1401
1402 s = splbio();
1403 simple_lock(&global_v_numoutput_slock);
1404 vp->v_numoutput += 2;
1405 simple_unlock(&global_v_numoutput_slock);
1406 mbp = pool_get(&bufpool, PR_WAITOK);
1407 simple_lock_init(&mbp->b_interlock);
1408 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1409 vp, mbp, vp->v_numoutput, bytes);
1410 splx(s);
1411 mbp->b_bufsize = npages << PAGE_SHIFT;
1412 mbp->b_data = (void *)kva;
1413 mbp->b_resid = mbp->b_bcount = bytes;
1414 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1415 mbp->b_iodone = uvm_aio_biodone;
1416 mbp->b_vp = vp;
1417 LIST_INIT(&mbp->b_dep);
1418
1419 bp = NULL;
1420 for (offset = startoffset;
1421 bytes > 0;
1422 offset += iobytes, bytes -= iobytes) {
1423 lbn = offset >> fs_bshift;
1424 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1425 if (error) {
1426 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1427 skipbytes += bytes;
1428 bytes = 0;
1429 break;
1430 }
1431
1432 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1433 bytes);
1434 if (blkno == (daddr_t)-1) {
1435 skipbytes += iobytes;
1436 continue;
1437 }
1438
1439 /* if it's really one i/o, don't make a second buf */
1440 if (offset == startoffset && iobytes == bytes) {
1441 bp = mbp;
1442 } else {
1443 s = splbio();
1444 V_INCR_NUMOUTPUT(vp);
1445 bp = pool_get(&bufpool, PR_WAITOK);
1446 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1447 vp, bp, vp->v_numoutput, 0);
1448 splx(s);
1449 simple_lock_init(&bp->b_interlock);
1450 bp->b_data = (char *)kva +
1451 (vaddr_t)(offset - pg->offset);
1452 bp->b_resid = bp->b_bcount = iobytes;
1453 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1454 bp->b_iodone = uvm_aio_biodone1;
1455 bp->b_vp = vp;
1456 LIST_INIT(&bp->b_dep);
1457 }
1458 bp->b_lblkno = 0;
1459 bp->b_private = mbp;
1460 if (devvp->v_type == VBLK) {
1461 bp->b_dev = devvp->v_rdev;
1462 }
1463
1464 /* adjust physical blkno for partial blocks */
1465 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1466 dev_bshift);
1467 UVMHIST_LOG(ubchist,
1468 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1469 vp, offset, bp->b_bcount, bp->b_blkno);
1470 VOP_STRATEGY(bp);
1471 }
1472 if (skipbytes) {
1473 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1474 s = splbio();
1475 if (error) {
1476 mbp->b_flags |= B_ERROR;
1477 mbp->b_error = error;
1478 }
1479 mbp->b_resid -= skipbytes;
1480 if (mbp->b_resid == 0) {
1481 biodone(mbp);
1482 }
1483 splx(s);
1484 }
1485 if (async) {
1486 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1487 return (0);
1488 }
1489 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1490 error = biowait(mbp);
1491 uvm_aio_aiodone(mbp);
1492 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1493 return (error);
1494 }
1495
1496 /*
1497 * VOP_PUTPAGES() for vnodes which never have pages.
1498 */
1499
1500 int
1501 genfs_null_putpages(void *v)
1502 {
1503 struct vop_putpages_args /* {
1504 struct vnode *a_vp;
1505 voff_t a_offlo;
1506 voff_t a_offhi;
1507 int a_flags;
1508 } */ *ap = v;
1509 struct vnode *vp = ap->a_vp;
1510
1511 KASSERT(vp->v_uobj.uo_npages == 0);
1512 simple_unlock(&vp->v_interlock);
1513 return (0);
1514 }
1515
1516 void
1517 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1518 {
1519 struct genfs_node *gp = VTOG(vp);
1520
1521 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1522 gp->g_op = ops;
1523 }
1524
1525 void
1526 genfs_size(struct vnode *vp, off_t size, off_t *eobp)
1527 {
1528 int bsize;
1529
1530 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1531 *eobp = (size + bsize - 1) & ~(bsize - 1);
1532 }
1533
1534 int
1535 genfs_compat_getpages(void *v)
1536 {
1537 struct vop_getpages_args /* {
1538 struct vnode *a_vp;
1539 voff_t a_offset;
1540 struct vm_page **a_m;
1541 int *a_count;
1542 int a_centeridx;
1543 vm_prot_t a_access_type;
1544 int a_advice;
1545 int a_flags;
1546 } */ *ap = v;
1547
1548 off_t origoffset;
1549 struct vnode *vp = ap->a_vp;
1550 struct uvm_object *uobj = &vp->v_uobj;
1551 struct vm_page *pg, **pgs;
1552 vaddr_t kva;
1553 int i, error, orignpages, npages;
1554 struct iovec iov;
1555 struct uio uio;
1556 struct ucred *cred = curproc->p_ucred;
1557 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1558
1559 error = 0;
1560 origoffset = ap->a_offset;
1561 orignpages = *ap->a_count;
1562 pgs = ap->a_m;
1563
1564 if (write && (vp->v_flag & VONWORKLST) == 0) {
1565 vn_syncer_add_to_worklist(vp, filedelay);
1566 }
1567 if (ap->a_flags & PGO_LOCKED) {
1568 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1569 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1570
1571 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1572 }
1573 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1574 simple_unlock(&uobj->vmobjlock);
1575 return (EINVAL);
1576 }
1577 npages = orignpages;
1578 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1579 simple_unlock(&uobj->vmobjlock);
1580 kva = uvm_pagermapin(pgs, npages,
1581 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1582 for (i = 0; i < npages; i++) {
1583 pg = pgs[i];
1584 if ((pg->flags & PG_FAKE) == 0) {
1585 continue;
1586 }
1587 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1588 iov.iov_len = PAGE_SIZE;
1589 uio.uio_iov = &iov;
1590 uio.uio_iovcnt = 1;
1591 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1592 uio.uio_segflg = UIO_SYSSPACE;
1593 uio.uio_rw = UIO_READ;
1594 uio.uio_resid = PAGE_SIZE;
1595 uio.uio_procp = curproc;
1596 error = VOP_READ(vp, &uio, 0, cred);
1597 if (error) {
1598 break;
1599 }
1600 if (uio.uio_resid) {
1601 memset(iov.iov_base, 0, uio.uio_resid);
1602 }
1603 }
1604 uvm_pagermapout(kva, npages);
1605 simple_lock(&uobj->vmobjlock);
1606 uvm_lock_pageq();
1607 for (i = 0; i < npages; i++) {
1608 pg = pgs[i];
1609 if (error && (pg->flags & PG_FAKE) != 0) {
1610 pg->flags |= PG_RELEASED;
1611 } else {
1612 pmap_clear_modify(pg);
1613 uvm_pageactivate(pg);
1614 }
1615 }
1616 if (error) {
1617 uvm_page_unbusy(pgs, npages);
1618 }
1619 uvm_unlock_pageq();
1620 simple_unlock(&uobj->vmobjlock);
1621 return (error);
1622 }
1623
1624 int
1625 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1626 int flags)
1627 {
1628 off_t offset;
1629 struct iovec iov;
1630 struct uio uio;
1631 struct ucred *cred = curproc->p_ucred;
1632 struct buf *bp;
1633 vaddr_t kva;
1634 int s, error;
1635
1636 offset = pgs[0]->offset;
1637 kva = uvm_pagermapin(pgs, npages,
1638 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1639
1640 iov.iov_base = (void *)kva;
1641 iov.iov_len = npages << PAGE_SHIFT;
1642 uio.uio_iov = &iov;
1643 uio.uio_iovcnt = 1;
1644 uio.uio_offset = offset;
1645 uio.uio_segflg = UIO_SYSSPACE;
1646 uio.uio_rw = UIO_WRITE;
1647 uio.uio_resid = npages << PAGE_SHIFT;
1648 uio.uio_procp = curproc;
1649 error = VOP_WRITE(vp, &uio, 0, cred);
1650
1651 s = splbio();
1652 V_INCR_NUMOUTPUT(vp);
1653 bp = pool_get(&bufpool, PR_WAITOK);
1654 splx(s);
1655
1656 simple_lock_init(&bp->b_interlock);
1657 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1658 bp->b_vp = vp;
1659 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1660 bp->b_data = (char *)kva;
1661 bp->b_bcount = npages << PAGE_SHIFT;
1662 bp->b_bufsize = npages << PAGE_SHIFT;
1663 bp->b_resid = 0;
1664 LIST_INIT(&bp->b_dep);
1665 if (error) {
1666 bp->b_flags |= B_ERROR;
1667 bp->b_error = error;
1668 }
1669 uvm_aio_aiodone(bp);
1670 return (error);
1671 }
1672
1673 static void
1674 filt_genfsdetach(struct knote *kn)
1675 {
1676 struct vnode *vp = (struct vnode *)kn->kn_hook;
1677
1678 /* XXXLUKEM lock the struct? */
1679 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1680 }
1681
1682 static int
1683 filt_genfsread(struct knote *kn, long hint)
1684 {
1685 struct vnode *vp = (struct vnode *)kn->kn_hook;
1686
1687 /*
1688 * filesystem is gone, so set the EOF flag and schedule
1689 * the knote for deletion.
1690 */
1691 if (hint == NOTE_REVOKE) {
1692 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1693 return (1);
1694 }
1695
1696 /* XXXLUKEM lock the struct? */
1697 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1698 return (kn->kn_data != 0);
1699 }
1700
1701 static int
1702 filt_genfsvnode(struct knote *kn, long hint)
1703 {
1704
1705 if (kn->kn_sfflags & hint)
1706 kn->kn_fflags |= hint;
1707 if (hint == NOTE_REVOKE) {
1708 kn->kn_flags |= EV_EOF;
1709 return (1);
1710 }
1711 return (kn->kn_fflags != 0);
1712 }
1713
1714 static const struct filterops genfsread_filtops =
1715 { 1, NULL, filt_genfsdetach, filt_genfsread };
1716 static const struct filterops genfsvnode_filtops =
1717 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1718
1719 int
1720 genfs_kqfilter(void *v)
1721 {
1722 struct vop_kqfilter_args /* {
1723 struct vnode *a_vp;
1724 struct knote *a_kn;
1725 } */ *ap = v;
1726 struct vnode *vp;
1727 struct knote *kn;
1728
1729 vp = ap->a_vp;
1730 kn = ap->a_kn;
1731 switch (kn->kn_filter) {
1732 case EVFILT_READ:
1733 kn->kn_fop = &genfsread_filtops;
1734 break;
1735 case EVFILT_VNODE:
1736 kn->kn_fop = &genfsvnode_filtops;
1737 break;
1738 default:
1739 return (1);
1740 }
1741
1742 kn->kn_hook = vp;
1743
1744 /* XXXLUKEM lock the struct? */
1745 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1746
1747 return (0);
1748 }
1749