genfs_vnops.c revision 1.74 1 /* $NetBSD: genfs_vnops.c,v 1.74 2003/04/10 21:34:12 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.74 2003/04/10 21:34:12 jdolecek Exp $");
39
40 #include "opt_nfsserver.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/vnode.h>
49 #include <sys/fcntl.h>
50 #include <sys/malloc.h>
51 #include <sys/poll.h>
52 #include <sys/mman.h>
53 #include <sys/file.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef NFSSERVER
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nqnfs.h>
67 #include <nfs/nfs_var.h>
68 #endif
69
70 static __inline void genfs_rel_pages(struct vm_page **, int);
71 static void filt_genfsdetach(struct knote *);
72 static int filt_genfsread(struct knote *, long);
73 static int filt_genfsvnode(struct knote *, long);
74
75
76 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
78 int genfs_racount = 2; /* # of page chunks to readahead */
79 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
80
81 int
82 genfs_poll(void *v)
83 {
84 struct vop_poll_args /* {
85 struct vnode *a_vp;
86 int a_events;
87 struct proc *a_p;
88 } */ *ap = v;
89
90 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
91 }
92
93 int
94 genfs_fsync(void *v)
95 {
96 struct vop_fsync_args /* {
97 struct vnode *a_vp;
98 struct ucred *a_cred;
99 int a_flags;
100 off_t offlo;
101 off_t offhi;
102 struct proc *a_p;
103 } */ *ap = v;
104 struct vnode *vp = ap->a_vp;
105 int wait;
106
107 wait = (ap->a_flags & FSYNC_WAIT) != 0;
108 vflushbuf(vp, wait);
109 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
110 return (0);
111 else
112 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
113 }
114
115 int
116 genfs_seek(void *v)
117 {
118 struct vop_seek_args /* {
119 struct vnode *a_vp;
120 off_t a_oldoff;
121 off_t a_newoff;
122 struct ucred *a_ucred;
123 } */ *ap = v;
124
125 if (ap->a_newoff < 0)
126 return (EINVAL);
127
128 return (0);
129 }
130
131 int
132 genfs_abortop(void *v)
133 {
134 struct vop_abortop_args /* {
135 struct vnode *a_dvp;
136 struct componentname *a_cnp;
137 } */ *ap = v;
138
139 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
140 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
141 return (0);
142 }
143
144 int
145 genfs_fcntl(void *v)
146 {
147 struct vop_fcntl_args /* {
148 struct vnode *a_vp;
149 u_int a_command;
150 caddr_t a_data;
151 int a_fflag;
152 struct ucred *a_cred;
153 struct proc *a_p;
154 } */ *ap = v;
155
156 if (ap->a_command == F_SETFL)
157 return (0);
158 else
159 return (EOPNOTSUPP);
160 }
161
162 /*ARGSUSED*/
163 int
164 genfs_badop(void *v)
165 {
166
167 panic("genfs: bad op");
168 }
169
170 /*ARGSUSED*/
171 int
172 genfs_nullop(void *v)
173 {
174
175 return (0);
176 }
177
178 /*ARGSUSED*/
179 int
180 genfs_einval(void *v)
181 {
182
183 return (EINVAL);
184 }
185
186 /*ARGSUSED*/
187 int
188 genfs_eopnotsupp(void *v)
189 {
190
191 return (EOPNOTSUPP);
192 }
193
194 /*
195 * Called when an fs doesn't support a particular vop.
196 * This takes care to vrele, vput, or vunlock passed in vnodes.
197 */
198 int
199 genfs_eopnotsupp_rele(void *v)
200 {
201 struct vop_generic_args /*
202 struct vnodeop_desc *a_desc;
203 / * other random data follows, presumably * /
204 } */ *ap = v;
205 struct vnodeop_desc *desc = ap->a_desc;
206 struct vnode *vp, *vp_last = NULL;
207 int flags, i, j, offset;
208
209 flags = desc->vdesc_flags;
210 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
211 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
212 break; /* stop at end of list */
213 if ((j = flags & VDESC_VP0_WILLPUT)) {
214 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
215
216 /* Skip if NULL */
217 if (!vp)
218 continue;
219
220 switch (j) {
221 case VDESC_VP0_WILLPUT:
222 /* Check for dvp == vp cases */
223 if (vp == vp_last)
224 vrele(vp);
225 else {
226 vput(vp);
227 vp_last = vp;
228 }
229 break;
230 case VDESC_VP0_WILLUNLOCK:
231 VOP_UNLOCK(vp, 0);
232 break;
233 case VDESC_VP0_WILLRELE:
234 vrele(vp);
235 break;
236 }
237 }
238 }
239
240 return (EOPNOTSUPP);
241 }
242
243 /*ARGSUSED*/
244 int
245 genfs_ebadf(void *v)
246 {
247
248 return (EBADF);
249 }
250
251 /* ARGSUSED */
252 int
253 genfs_enoioctl(void *v)
254 {
255
256 return (EPASSTHROUGH);
257 }
258
259
260 /*
261 * Eliminate all activity associated with the requested vnode
262 * and with all vnodes aliased to the requested vnode.
263 */
264 int
265 genfs_revoke(void *v)
266 {
267 struct vop_revoke_args /* {
268 struct vnode *a_vp;
269 int a_flags;
270 } */ *ap = v;
271 struct vnode *vp, *vq;
272 struct proc *p = curproc; /* XXX */
273
274 #ifdef DIAGNOSTIC
275 if ((ap->a_flags & REVOKEALL) == 0)
276 panic("genfs_revoke: not revokeall");
277 #endif
278
279 vp = ap->a_vp;
280 simple_lock(&vp->v_interlock);
281
282 if (vp->v_flag & VALIASED) {
283 /*
284 * If a vgone (or vclean) is already in progress,
285 * wait until it is done and return.
286 */
287 if (vp->v_flag & VXLOCK) {
288 vp->v_flag |= VXWANT;
289 simple_unlock(&vp->v_interlock);
290 tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
291 return (0);
292 }
293 /*
294 * Ensure that vp will not be vgone'd while we
295 * are eliminating its aliases.
296 */
297 vp->v_flag |= VXLOCK;
298 simple_unlock(&vp->v_interlock);
299 while (vp->v_flag & VALIASED) {
300 simple_lock(&spechash_slock);
301 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
302 if (vq->v_rdev != vp->v_rdev ||
303 vq->v_type != vp->v_type || vp == vq)
304 continue;
305 simple_unlock(&spechash_slock);
306 vgone(vq);
307 break;
308 }
309 if (vq == NULLVP)
310 simple_unlock(&spechash_slock);
311 }
312 /*
313 * Remove the lock so that vgone below will
314 * really eliminate the vnode after which time
315 * vgone will awaken any sleepers.
316 */
317 simple_lock(&vp->v_interlock);
318 vp->v_flag &= ~VXLOCK;
319 }
320 vgonel(vp, p);
321 return (0);
322 }
323
324 /*
325 * Lock the node.
326 */
327 int
328 genfs_lock(void *v)
329 {
330 struct vop_lock_args /* {
331 struct vnode *a_vp;
332 int a_flags;
333 } */ *ap = v;
334 struct vnode *vp = ap->a_vp;
335
336 return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
337 }
338
339 /*
340 * Unlock the node.
341 */
342 int
343 genfs_unlock(void *v)
344 {
345 struct vop_unlock_args /* {
346 struct vnode *a_vp;
347 int a_flags;
348 } */ *ap = v;
349 struct vnode *vp = ap->a_vp;
350
351 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
352 &vp->v_interlock));
353 }
354
355 /*
356 * Return whether or not the node is locked.
357 */
358 int
359 genfs_islocked(void *v)
360 {
361 struct vop_islocked_args /* {
362 struct vnode *a_vp;
363 } */ *ap = v;
364 struct vnode *vp = ap->a_vp;
365
366 return (lockstatus(&vp->v_lock));
367 }
368
369 /*
370 * Stubs to use when there is no locking to be done on the underlying object.
371 */
372 int
373 genfs_nolock(void *v)
374 {
375 struct vop_lock_args /* {
376 struct vnode *a_vp;
377 int a_flags;
378 struct proc *a_p;
379 } */ *ap = v;
380
381 /*
382 * Since we are not using the lock manager, we must clear
383 * the interlock here.
384 */
385 if (ap->a_flags & LK_INTERLOCK)
386 simple_unlock(&ap->a_vp->v_interlock);
387 return (0);
388 }
389
390 int
391 genfs_nounlock(void *v)
392 {
393
394 return (0);
395 }
396
397 int
398 genfs_noislocked(void *v)
399 {
400
401 return (0);
402 }
403
404 /*
405 * Local lease check for NFS servers. Just set up args and let
406 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
407 * this is a null operation.
408 */
409 int
410 genfs_lease_check(void *v)
411 {
412 #ifdef NFSSERVER
413 struct vop_lease_args /* {
414 struct vnode *a_vp;
415 struct proc *a_p;
416 struct ucred *a_cred;
417 int a_flag;
418 } */ *ap = v;
419 u_int32_t duration = 0;
420 int cache;
421 u_quad_t frev;
422
423 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
424 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
425 return (0);
426 #else
427 return (0);
428 #endif /* NFSSERVER */
429 }
430
431 int
432 genfs_mmap(void *v)
433 {
434
435 return (0);
436 }
437
438 static __inline void
439 genfs_rel_pages(struct vm_page **pgs, int npages)
440 {
441 int i;
442
443 for (i = 0; i < npages; i++) {
444 struct vm_page *pg = pgs[i];
445
446 if (pg == NULL)
447 continue;
448 if (pg->flags & PG_FAKE) {
449 pg->flags |= PG_RELEASED;
450 }
451 }
452 uvm_lock_pageq();
453 uvm_page_unbusy(pgs, npages);
454 uvm_unlock_pageq();
455 }
456
457 /*
458 * generic VM getpages routine.
459 * Return PG_BUSY pages for the given range,
460 * reading from backing store if necessary.
461 */
462
463 int
464 genfs_getpages(void *v)
465 {
466 struct vop_getpages_args /* {
467 struct vnode *a_vp;
468 voff_t a_offset;
469 struct vm_page **a_m;
470 int *a_count;
471 int a_centeridx;
472 vm_prot_t a_access_type;
473 int a_advice;
474 int a_flags;
475 } */ *ap = v;
476
477 off_t newsize, diskeof, memeof;
478 off_t offset, origoffset, startoffset, endoffset, raoffset;
479 daddr_t lbn, blkno;
480 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
481 int fs_bshift, fs_bsize, dev_bshift;
482 int flags = ap->a_flags;
483 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
484 vaddr_t kva;
485 struct buf *bp, *mbp;
486 struct vnode *vp = ap->a_vp;
487 struct vnode *devvp;
488 struct genfs_node *gp = VTOG(vp);
489 struct uvm_object *uobj = &vp->v_uobj;
490 struct vm_page *pg, *pgs[MAX_READ_AHEAD];
491 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
492 boolean_t async = (flags & PGO_SYNCIO) == 0;
493 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
494 boolean_t sawhole = FALSE;
495 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
496 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
497
498 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
499 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
500
501 /* XXXUBC temp limit */
502 if (*ap->a_count > MAX_READ_AHEAD) {
503 panic("genfs_getpages: too many pages");
504 }
505
506 error = 0;
507 origoffset = ap->a_offset;
508 orignpages = *ap->a_count;
509 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
510 if (flags & PGO_PASTEOF) {
511 newsize = MAX(vp->v_size,
512 origoffset + (orignpages << PAGE_SHIFT));
513 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ);
514 } else {
515 memeof = diskeof;
516 }
517 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
518 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
519 KASSERT(orignpages > 0);
520
521 /*
522 * Bounds-check the request.
523 */
524
525 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
526 if ((flags & PGO_LOCKED) == 0) {
527 simple_unlock(&uobj->vmobjlock);
528 }
529 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
530 origoffset, *ap->a_count, memeof,0);
531 return (EINVAL);
532 }
533
534 /*
535 * For PGO_LOCKED requests, just return whatever's in memory.
536 */
537
538 if (flags & PGO_LOCKED) {
539 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
540 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
541
542 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
543 }
544
545 /* vnode is VOP_LOCKed, uobj is locked */
546
547 if (write && (vp->v_flag & VONWORKLST) == 0) {
548 vn_syncer_add_to_worklist(vp, filedelay);
549 }
550
551 /*
552 * find the requested pages and make some simple checks.
553 * leave space in the page array for a whole block.
554 */
555
556 if (vp->v_type == VREG) {
557 fs_bshift = vp->v_mount->mnt_fs_bshift;
558 dev_bshift = vp->v_mount->mnt_dev_bshift;
559 } else {
560 fs_bshift = DEV_BSHIFT;
561 dev_bshift = DEV_BSHIFT;
562 }
563 fs_bsize = 1 << fs_bshift;
564
565 orignpages = MIN(orignpages,
566 round_page(memeof - origoffset) >> PAGE_SHIFT);
567 npages = orignpages;
568 startoffset = origoffset & ~(fs_bsize - 1);
569 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
570 fs_bsize - 1) & ~(fs_bsize - 1));
571 endoffset = MIN(endoffset, round_page(memeof));
572 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
573
574 memset(pgs, 0, sizeof(pgs));
575 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
576 ridx, npages, startoffset, endoffset);
577 KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
578 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
579 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
580 KASSERT(async != 0);
581 genfs_rel_pages(&pgs[ridx], orignpages);
582 simple_unlock(&uobj->vmobjlock);
583 return (EBUSY);
584 }
585
586 /*
587 * if the pages are already resident, just return them.
588 */
589
590 for (i = 0; i < npages; i++) {
591 struct vm_page *pg = pgs[ridx + i];
592
593 if ((pg->flags & PG_FAKE) ||
594 (write && (pg->flags & PG_RDONLY))) {
595 break;
596 }
597 }
598 if (i == npages) {
599 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
600 raoffset = origoffset + (orignpages << PAGE_SHIFT);
601 npages += ridx;
602 goto raout;
603 }
604
605 /*
606 * if PGO_OVERWRITE is set, don't bother reading the pages.
607 */
608
609 if (flags & PGO_OVERWRITE) {
610 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
611
612 for (i = 0; i < npages; i++) {
613 struct vm_page *pg = pgs[ridx + i];
614
615 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
616 }
617 npages += ridx;
618 goto out;
619 }
620
621 /*
622 * the page wasn't resident and we're not overwriting,
623 * so we're going to have to do some i/o.
624 * find any additional pages needed to cover the expanded range.
625 */
626
627 npages = (endoffset - startoffset) >> PAGE_SHIFT;
628 if (startoffset != origoffset || npages != orignpages) {
629
630 /*
631 * we need to avoid deadlocks caused by locking
632 * additional pages at lower offsets than pages we
633 * already have locked. unlock them all and start over.
634 */
635
636 genfs_rel_pages(&pgs[ridx], orignpages);
637 memset(pgs, 0, sizeof(pgs));
638
639 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
640 startoffset, endoffset, 0,0);
641 npgs = npages;
642 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
643 async ? UFP_NOWAIT : UFP_ALL) != npages) {
644 KASSERT(async != 0);
645 genfs_rel_pages(pgs, npages);
646 simple_unlock(&uobj->vmobjlock);
647 return (EBUSY);
648 }
649 }
650 simple_unlock(&uobj->vmobjlock);
651
652 /*
653 * read the desired page(s).
654 */
655
656 totalbytes = npages << PAGE_SHIFT;
657 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
658 tailbytes = totalbytes - bytes;
659 skipbytes = 0;
660
661 kva = uvm_pagermapin(pgs, npages,
662 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
663
664 s = splbio();
665 mbp = pool_get(&bufpool, PR_WAITOK);
666 splx(s);
667 BUF_INIT(mbp);
668 mbp->b_bufsize = totalbytes;
669 mbp->b_data = (void *)kva;
670 mbp->b_resid = mbp->b_bcount = bytes;
671 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
672 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
673 mbp->b_vp = vp;
674
675 /*
676 * if EOF is in the middle of the range, zero the part past EOF.
677 * if the page including EOF is not PG_FAKE, skip over it since
678 * in that case it has valid data that we need to preserve.
679 */
680
681 if (tailbytes > 0) {
682 size_t tailstart = bytes;
683
684 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
685 tailstart = round_page(tailstart);
686 tailbytes -= tailstart - bytes;
687 }
688 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
689 kva, tailstart, tailbytes,0);
690 memset((void *)(kva + tailstart), 0, tailbytes);
691 }
692
693 /*
694 * now loop over the pages, reading as needed.
695 */
696
697 if (write) {
698 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
699 } else {
700 lockmgr(&gp->g_glock, LK_SHARED, NULL);
701 }
702
703 bp = NULL;
704 for (offset = startoffset;
705 bytes > 0;
706 offset += iobytes, bytes -= iobytes) {
707
708 /*
709 * skip pages which don't need to be read.
710 */
711
712 pidx = (offset - startoffset) >> PAGE_SHIFT;
713 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
714 size_t b;
715
716 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
717 b = MIN(PAGE_SIZE, bytes);
718 offset += b;
719 bytes -= b;
720 skipbytes += b;
721 pidx++;
722 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
723 offset, 0,0,0);
724 if (bytes == 0) {
725 goto loopdone;
726 }
727 }
728
729 /*
730 * bmap the file to find out the blkno to read from and
731 * how much we can read in one i/o. if bmap returns an error,
732 * skip the rest of the top-level i/o.
733 */
734
735 lbn = offset >> fs_bshift;
736 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
737 if (error) {
738 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
739 lbn, error,0,0);
740 skipbytes += bytes;
741 goto loopdone;
742 }
743
744 /*
745 * see how many pages can be read with this i/o.
746 * reduce the i/o size if necessary to avoid
747 * overwriting pages with valid data.
748 */
749
750 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
751 bytes);
752 if (offset + iobytes > round_page(offset)) {
753 pcount = 1;
754 while (pidx + pcount < npages &&
755 pgs[pidx + pcount]->flags & PG_FAKE) {
756 pcount++;
757 }
758 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
759 (offset - trunc_page(offset)));
760 }
761
762 /*
763 * if this block isn't allocated, zero it instead of
764 * reading it. if this is a read access, mark the
765 * pages we zeroed PG_RDONLY.
766 */
767
768 if (blkno < 0) {
769 int holepages = (round_page(offset + iobytes) -
770 trunc_page(offset)) >> PAGE_SHIFT;
771 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
772
773 sawhole = TRUE;
774 memset((char *)kva + (offset - startoffset), 0,
775 iobytes);
776 skipbytes += iobytes;
777
778 for (i = 0; i < holepages; i++) {
779 if (write) {
780 pgs[pidx + i]->flags &= ~PG_CLEAN;
781 } else {
782 pgs[pidx + i]->flags |= PG_RDONLY;
783 }
784 }
785 continue;
786 }
787
788 /*
789 * allocate a sub-buf for this piece of the i/o
790 * (or just use mbp if there's only 1 piece),
791 * and start it going.
792 */
793
794 if (offset == startoffset && iobytes == bytes) {
795 bp = mbp;
796 } else {
797 s = splbio();
798 bp = pool_get(&bufpool, PR_WAITOK);
799 splx(s);
800 BUF_INIT(bp);
801 bp->b_data = (char *)kva + offset - startoffset;
802 bp->b_resid = bp->b_bcount = iobytes;
803 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
804 bp->b_iodone = uvm_aio_biodone1;
805 bp->b_vp = vp;
806 bp->b_proc = NULL;
807 }
808 bp->b_lblkno = 0;
809 bp->b_private = mbp;
810 if (devvp->v_type == VBLK) {
811 bp->b_dev = devvp->v_rdev;
812 }
813
814 /* adjust physical blkno for partial blocks */
815 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
816 dev_bshift);
817
818 UVMHIST_LOG(ubchist,
819 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
820 bp, offset, iobytes, bp->b_blkno);
821
822 VOP_STRATEGY(bp);
823 }
824
825 loopdone:
826 if (skipbytes) {
827 s = splbio();
828 if (error) {
829 mbp->b_flags |= B_ERROR;
830 mbp->b_error = error;
831 }
832 mbp->b_resid -= skipbytes;
833 if (mbp->b_resid == 0) {
834 biodone(mbp);
835 }
836 splx(s);
837 }
838
839 if (async) {
840 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
841 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
842 return (0);
843 }
844 if (bp != NULL) {
845 error = biowait(mbp);
846 }
847 s = splbio();
848 pool_put(&bufpool, mbp);
849 splx(s);
850 uvm_pagermapout(kva, npages);
851 raoffset = startoffset + totalbytes;
852
853 /*
854 * if this we encountered a hole then we have to do a little more work.
855 * for read faults, we marked the page PG_RDONLY so that future
856 * write accesses to the page will fault again.
857 * for write faults, we must make sure that the backing store for
858 * the page is completely allocated while the pages are locked.
859 */
860
861 if (!error && sawhole && write) {
862 for (i = 0; i < npages; i++) {
863 if (pgs[i] == NULL) {
864 continue;
865 }
866 pgs[i]->flags &= ~PG_CLEAN;
867 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
868 }
869 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
870 cred);
871 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
872 startoffset, npages << PAGE_SHIFT, error,0);
873 }
874 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
875 simple_lock(&uobj->vmobjlock);
876
877 /*
878 * see if we want to start any readahead.
879 * XXXUBC for now, just read the next 128k on 64k boundaries.
880 * this is pretty nonsensical, but it is 50% faster than reading
881 * just the next 64k.
882 */
883
884 raout:
885 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
886 PAGE_SHIFT <= 16) {
887 off_t rasize;
888 int rapages, err, i, skipped;
889
890 /* XXXUBC temp limit, from above */
891 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
892 genfs_rapages);
893 rasize = rapages << PAGE_SHIFT;
894 for (i = skipped = 0; i < genfs_racount; i++) {
895 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
896 VM_PROT_READ, 0, 0);
897 simple_lock(&uobj->vmobjlock);
898 if (err) {
899 if (err != EBUSY ||
900 skipped++ == genfs_raskip)
901 break;
902 }
903 raoffset += rasize;
904 rapages = rasize >> PAGE_SHIFT;
905 }
906 }
907
908 /*
909 * we're almost done! release the pages...
910 * for errors, we free the pages.
911 * otherwise we activate them and mark them as valid and clean.
912 * also, unbusy pages that were not actually requested.
913 */
914
915 if (error) {
916 for (i = 0; i < npages; i++) {
917 if (pgs[i] == NULL) {
918 continue;
919 }
920 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
921 pgs[i], pgs[i]->flags, 0,0);
922 if (pgs[i]->flags & PG_FAKE) {
923 pgs[i]->flags |= PG_RELEASED;
924 }
925 }
926 uvm_lock_pageq();
927 uvm_page_unbusy(pgs, npages);
928 uvm_unlock_pageq();
929 simple_unlock(&uobj->vmobjlock);
930 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
931 return (error);
932 }
933
934 out:
935 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
936 uvm_lock_pageq();
937 for (i = 0; i < npages; i++) {
938 pg = pgs[i];
939 if (pg == NULL) {
940 continue;
941 }
942 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
943 pg, pg->flags, 0,0);
944 if (pg->flags & PG_FAKE && !overwrite) {
945 pg->flags &= ~(PG_FAKE);
946 pmap_clear_modify(pgs[i]);
947 }
948 if (write) {
949 pg->flags &= ~(PG_RDONLY);
950 }
951 if (i < ridx || i >= ridx + orignpages || async) {
952 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
953 pg, pg->offset,0,0);
954 if (pg->flags & PG_WANTED) {
955 wakeup(pg);
956 }
957 if (pg->flags & PG_FAKE) {
958 KASSERT(overwrite);
959 uvm_pagezero(pg);
960 }
961 if (pg->flags & PG_RELEASED) {
962 uvm_pagefree(pg);
963 continue;
964 }
965 uvm_pageactivate(pg);
966 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
967 UVM_PAGE_OWN(pg, NULL);
968 }
969 }
970 uvm_unlock_pageq();
971 simple_unlock(&uobj->vmobjlock);
972 if (ap->a_m != NULL) {
973 memcpy(ap->a_m, &pgs[ridx],
974 orignpages * sizeof(struct vm_page *));
975 }
976 return (0);
977 }
978
979 /*
980 * generic VM putpages routine.
981 * Write the given range of pages to backing store.
982 *
983 * => "offhi == 0" means flush all pages at or after "offlo".
984 * => object should be locked by caller. we may _unlock_ the object
985 * if (and only if) we need to clean a page (PGO_CLEANIT), or
986 * if PGO_SYNCIO is set and there are pages busy.
987 * we return with the object locked.
988 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
989 * thus, a caller might want to unlock higher level resources
990 * (e.g. vm_map) before calling flush.
991 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
992 * unlock the object nor block.
993 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
994 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
995 * that new pages are inserted on the tail end of the list. thus,
996 * we can make a complete pass through the object in one go by starting
997 * at the head and working towards the tail (new pages are put in
998 * front of us).
999 * => NOTE: we are allowed to lock the page queues, so the caller
1000 * must not be holding the page queue lock.
1001 *
1002 * note on "cleaning" object and PG_BUSY pages:
1003 * this routine is holding the lock on the object. the only time
1004 * that it can run into a PG_BUSY page that it does not own is if
1005 * some other process has started I/O on the page (e.g. either
1006 * a pagein, or a pageout). if the PG_BUSY page is being paged
1007 * in, then it can not be dirty (!PG_CLEAN) because no one has
1008 * had a chance to modify it yet. if the PG_BUSY page is being
1009 * paged out then it means that someone else has already started
1010 * cleaning the page for us (how nice!). in this case, if we
1011 * have syncio specified, then after we make our pass through the
1012 * object we need to wait for the other PG_BUSY pages to clear
1013 * off (i.e. we need to do an iosync). also note that once a
1014 * page is PG_BUSY it must stay in its object until it is un-busyed.
1015 *
1016 * note on page traversal:
1017 * we can traverse the pages in an object either by going down the
1018 * linked list in "uobj->memq", or we can go over the address range
1019 * by page doing hash table lookups for each address. depending
1020 * on how many pages are in the object it may be cheaper to do one
1021 * or the other. we set "by_list" to true if we are using memq.
1022 * if the cost of a hash lookup was equal to the cost of the list
1023 * traversal we could compare the number of pages in the start->stop
1024 * range to the total number of pages in the object. however, it
1025 * seems that a hash table lookup is more expensive than the linked
1026 * list traversal, so we multiply the number of pages in the
1027 * range by an estimate of the relatively higher cost of the hash lookup.
1028 */
1029
1030 int
1031 genfs_putpages(void *v)
1032 {
1033 struct vop_putpages_args /* {
1034 struct vnode *a_vp;
1035 voff_t a_offlo;
1036 voff_t a_offhi;
1037 int a_flags;
1038 } */ *ap = v;
1039 struct vnode *vp = ap->a_vp;
1040 struct uvm_object *uobj = &vp->v_uobj;
1041 struct simplelock *slock = &uobj->vmobjlock;
1042 off_t startoff = ap->a_offlo;
1043 off_t endoff = ap->a_offhi;
1044 off_t off;
1045 int flags = ap->a_flags;
1046 const int maxpages = MAXBSIZE >> PAGE_SHIFT;
1047 int i, s, error, npages, nback;
1048 int freeflag;
1049 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1050 boolean_t wasclean, by_list, needs_clean, yield;
1051 boolean_t async = (flags & PGO_SYNCIO) == 0;
1052 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1053 struct lwp *l = curlwp ? curlwp : &lwp0;
1054
1055 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1056
1057 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1058 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1059 KASSERT(startoff < endoff || endoff == 0);
1060
1061 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1062 vp, uobj->uo_npages, startoff, endoff - startoff);
1063 if (uobj->uo_npages == 0) {
1064 s = splbio();
1065 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1066 (vp->v_flag & VONWORKLST)) {
1067 vp->v_flag &= ~VONWORKLST;
1068 LIST_REMOVE(vp, v_synclist);
1069 }
1070 splx(s);
1071 simple_unlock(slock);
1072 return (0);
1073 }
1074
1075 /*
1076 * the vnode has pages, set up to process the request.
1077 */
1078
1079 error = 0;
1080 s = splbio();
1081 simple_lock(&global_v_numoutput_slock);
1082 wasclean = (vp->v_numoutput == 0);
1083 simple_unlock(&global_v_numoutput_slock);
1084 splx(s);
1085 off = startoff;
1086 if (endoff == 0 || flags & PGO_ALLPAGES) {
1087 endoff = trunc_page(LLONG_MAX);
1088 }
1089 by_list = (uobj->uo_npages <=
1090 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1091
1092 /*
1093 * start the loop. when scanning by list, hold the last page
1094 * in the list before we start. pages allocated after we start
1095 * will be added to the end of the list, so we can stop at the
1096 * current last page.
1097 */
1098
1099 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1100 curmp.uobject = uobj;
1101 curmp.offset = (voff_t)-1;
1102 curmp.flags = PG_BUSY;
1103 endmp.uobject = uobj;
1104 endmp.offset = (voff_t)-1;
1105 endmp.flags = PG_BUSY;
1106 if (by_list) {
1107 pg = TAILQ_FIRST(&uobj->memq);
1108 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1109 PHOLD(l);
1110 } else {
1111 pg = uvm_pagelookup(uobj, off);
1112 }
1113 nextpg = NULL;
1114 while (by_list || off < endoff) {
1115
1116 /*
1117 * if the current page is not interesting, move on to the next.
1118 */
1119
1120 KASSERT(pg == NULL || pg->uobject == uobj);
1121 KASSERT(pg == NULL ||
1122 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1123 (pg->flags & PG_BUSY) != 0);
1124 if (by_list) {
1125 if (pg == &endmp) {
1126 break;
1127 }
1128 if (pg->offset < startoff || pg->offset >= endoff ||
1129 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1130 pg = TAILQ_NEXT(pg, listq);
1131 continue;
1132 }
1133 off = pg->offset;
1134 } else if (pg == NULL ||
1135 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1136 off += PAGE_SIZE;
1137 if (off < endoff) {
1138 pg = uvm_pagelookup(uobj, off);
1139 }
1140 continue;
1141 }
1142
1143 /*
1144 * if the current page needs to be cleaned and it's busy,
1145 * wait for it to become unbusy.
1146 */
1147
1148 yield = (l->l_cpu->ci_schedstate.spc_flags &
1149 SPCF_SHOULDYIELD) && !pagedaemon;
1150 if (pg->flags & PG_BUSY || yield) {
1151 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1152 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1153 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1154 error = EDEADLK;
1155 break;
1156 }
1157 KASSERT(!pagedaemon);
1158 if (by_list) {
1159 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1160 UVMHIST_LOG(ubchist, "curmp next %p",
1161 TAILQ_NEXT(&curmp, listq), 0,0,0);
1162 }
1163 if (yield) {
1164 simple_unlock(slock);
1165 preempt(1);
1166 simple_lock(slock);
1167 } else {
1168 pg->flags |= PG_WANTED;
1169 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1170 simple_lock(slock);
1171 }
1172 if (by_list) {
1173 UVMHIST_LOG(ubchist, "after next %p",
1174 TAILQ_NEXT(&curmp, listq), 0,0,0);
1175 pg = TAILQ_NEXT(&curmp, listq);
1176 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1177 } else {
1178 pg = uvm_pagelookup(uobj, off);
1179 }
1180 continue;
1181 }
1182
1183 /*
1184 * if we're freeing, remove all mappings of the page now.
1185 * if we're cleaning, check if the page is needs to be cleaned.
1186 */
1187
1188 if (flags & PGO_FREE) {
1189 pmap_page_protect(pg, VM_PROT_NONE);
1190 }
1191 if (flags & PGO_CLEANIT) {
1192 needs_clean = pmap_clear_modify(pg) ||
1193 (pg->flags & PG_CLEAN) == 0;
1194 pg->flags |= PG_CLEAN;
1195 } else {
1196 needs_clean = FALSE;
1197 }
1198
1199 /*
1200 * if we're cleaning, build a cluster.
1201 * the cluster will consist of pages which are currently dirty,
1202 * but they will be returned to us marked clean.
1203 * if not cleaning, just operate on the one page.
1204 */
1205
1206 if (needs_clean) {
1207 wasclean = FALSE;
1208 memset(pgs, 0, sizeof(pgs));
1209 pg->flags |= PG_BUSY;
1210 UVM_PAGE_OWN(pg, "genfs_putpages");
1211
1212 /*
1213 * first look backward.
1214 */
1215
1216 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1217 nback = npages;
1218 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1219 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1220 if (nback) {
1221 memmove(&pgs[0], &pgs[npages - nback],
1222 nback * sizeof(pgs[0]));
1223 if (npages - nback < nback)
1224 memset(&pgs[nback], 0,
1225 (npages - nback) * sizeof(pgs[0]));
1226 else
1227 memset(&pgs[npages - nback], 0,
1228 nback * sizeof(pgs[0]));
1229 }
1230
1231 /*
1232 * then plug in our page of interest.
1233 */
1234
1235 pgs[nback] = pg;
1236
1237 /*
1238 * then look forward to fill in the remaining space in
1239 * the array of pages.
1240 */
1241
1242 npages = maxpages - nback - 1;
1243 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1244 &pgs[nback + 1],
1245 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1246 npages += nback + 1;
1247 } else {
1248 pgs[0] = pg;
1249 npages = 1;
1250 nback = 0;
1251 }
1252
1253 /*
1254 * apply FREE or DEACTIVATE options if requested.
1255 */
1256
1257 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1258 uvm_lock_pageq();
1259 }
1260 for (i = 0; i < npages; i++) {
1261 tpg = pgs[i];
1262 KASSERT(tpg->uobject == uobj);
1263 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1264 pg = tpg;
1265 if (tpg->offset < startoff || tpg->offset >= endoff)
1266 continue;
1267 if (flags & PGO_DEACTIVATE &&
1268 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1269 tpg->wire_count == 0) {
1270 (void) pmap_clear_reference(tpg);
1271 uvm_pagedeactivate(tpg);
1272 } else if (flags & PGO_FREE) {
1273 pmap_page_protect(tpg, VM_PROT_NONE);
1274 if (tpg->flags & PG_BUSY) {
1275 tpg->flags |= freeflag;
1276 if (pagedaemon) {
1277 uvmexp.paging++;
1278 uvm_pagedequeue(tpg);
1279 }
1280 } else {
1281
1282 /*
1283 * ``page is not busy''
1284 * implies that npages is 1
1285 * and needs_clean is false.
1286 */
1287
1288 nextpg = TAILQ_NEXT(tpg, listq);
1289 uvm_pagefree(tpg);
1290 }
1291 }
1292 }
1293 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1294 uvm_unlock_pageq();
1295 }
1296 if (needs_clean) {
1297
1298 /*
1299 * start the i/o. if we're traversing by list,
1300 * keep our place in the list with a marker page.
1301 */
1302
1303 if (by_list) {
1304 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1305 listq);
1306 }
1307 simple_unlock(slock);
1308 error = GOP_WRITE(vp, pgs, npages, flags);
1309 simple_lock(slock);
1310 if (by_list) {
1311 pg = TAILQ_NEXT(&curmp, listq);
1312 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1313 }
1314 if (error) {
1315 break;
1316 }
1317 if (by_list) {
1318 continue;
1319 }
1320 }
1321
1322 /*
1323 * find the next page and continue if there was no error.
1324 */
1325
1326 if (by_list) {
1327 if (nextpg) {
1328 pg = nextpg;
1329 nextpg = NULL;
1330 } else {
1331 pg = TAILQ_NEXT(pg, listq);
1332 }
1333 } else {
1334 off += (npages - nback) << PAGE_SHIFT;
1335 if (off < endoff) {
1336 pg = uvm_pagelookup(uobj, off);
1337 }
1338 }
1339 }
1340 if (by_list) {
1341 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1342 PRELE(l);
1343 }
1344
1345 /*
1346 * if we're cleaning and there was nothing to clean,
1347 * take us off the syncer list. if we started any i/o
1348 * and we're doing sync i/o, wait for all writes to finish.
1349 */
1350
1351 s = splbio();
1352 if ((flags & PGO_CLEANIT) && wasclean &&
1353 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1354 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1355 (vp->v_flag & VONWORKLST)) {
1356 vp->v_flag &= ~VONWORKLST;
1357 LIST_REMOVE(vp, v_synclist);
1358 }
1359 splx(s);
1360 if (!wasclean && !async) {
1361 s = splbio();
1362 /*
1363 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1364 * but the slot in ltsleep() is taken!
1365 * XXX - try to recover from missed wakeups with a timeout..
1366 * must think of something better.
1367 */
1368 while (vp->v_numoutput != 0) {
1369 vp->v_flag |= VBWAIT;
1370 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1371 "genput2", hz);
1372 simple_lock(slock);
1373 }
1374 splx(s);
1375 }
1376 simple_unlock(&uobj->vmobjlock);
1377 return (error);
1378 }
1379
1380 int
1381 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1382 {
1383 int s, error, run;
1384 int fs_bshift, dev_bshift;
1385 vaddr_t kva;
1386 off_t eof, offset, startoffset;
1387 size_t bytes, iobytes, skipbytes;
1388 daddr_t lbn, blkno;
1389 struct vm_page *pg;
1390 struct buf *mbp, *bp;
1391 struct vnode *devvp;
1392 boolean_t async = (flags & PGO_SYNCIO) == 0;
1393 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1394
1395 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1396 vp, pgs, npages, flags);
1397
1398 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1399 if (vp->v_type == VREG) {
1400 fs_bshift = vp->v_mount->mnt_fs_bshift;
1401 dev_bshift = vp->v_mount->mnt_dev_bshift;
1402 } else {
1403 fs_bshift = DEV_BSHIFT;
1404 dev_bshift = DEV_BSHIFT;
1405 }
1406 error = 0;
1407 pg = pgs[0];
1408 startoffset = pg->offset;
1409 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1410 skipbytes = 0;
1411 KASSERT(bytes != 0);
1412
1413 kva = uvm_pagermapin(pgs, npages,
1414 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1415
1416 s = splbio();
1417 simple_lock(&global_v_numoutput_slock);
1418 vp->v_numoutput += 2;
1419 simple_unlock(&global_v_numoutput_slock);
1420 mbp = pool_get(&bufpool, PR_WAITOK);
1421 BUF_INIT(mbp);
1422 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1423 vp, mbp, vp->v_numoutput, bytes);
1424 splx(s);
1425 mbp->b_bufsize = npages << PAGE_SHIFT;
1426 mbp->b_data = (void *)kva;
1427 mbp->b_resid = mbp->b_bcount = bytes;
1428 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1429 mbp->b_iodone = uvm_aio_biodone;
1430 mbp->b_vp = vp;
1431
1432 bp = NULL;
1433 for (offset = startoffset;
1434 bytes > 0;
1435 offset += iobytes, bytes -= iobytes) {
1436 lbn = offset >> fs_bshift;
1437 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1438 if (error) {
1439 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1440 skipbytes += bytes;
1441 bytes = 0;
1442 break;
1443 }
1444
1445 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1446 bytes);
1447 if (blkno == (daddr_t)-1) {
1448 skipbytes += iobytes;
1449 continue;
1450 }
1451
1452 /* if it's really one i/o, don't make a second buf */
1453 if (offset == startoffset && iobytes == bytes) {
1454 bp = mbp;
1455 } else {
1456 s = splbio();
1457 V_INCR_NUMOUTPUT(vp);
1458 bp = pool_get(&bufpool, PR_WAITOK);
1459 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1460 vp, bp, vp->v_numoutput, 0);
1461 splx(s);
1462 BUF_INIT(bp);
1463 bp->b_data = (char *)kva +
1464 (vaddr_t)(offset - pg->offset);
1465 bp->b_resid = bp->b_bcount = iobytes;
1466 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1467 bp->b_iodone = uvm_aio_biodone1;
1468 bp->b_vp = vp;
1469 }
1470 bp->b_lblkno = 0;
1471 bp->b_private = mbp;
1472 if (devvp->v_type == VBLK) {
1473 bp->b_dev = devvp->v_rdev;
1474 }
1475
1476 /* adjust physical blkno for partial blocks */
1477 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1478 dev_bshift);
1479 UVMHIST_LOG(ubchist,
1480 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1481 vp, offset, bp->b_bcount, bp->b_blkno);
1482 VOP_STRATEGY(bp);
1483 }
1484 if (skipbytes) {
1485 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1486 s = splbio();
1487 if (error) {
1488 mbp->b_flags |= B_ERROR;
1489 mbp->b_error = error;
1490 }
1491 mbp->b_resid -= skipbytes;
1492 if (mbp->b_resid == 0) {
1493 biodone(mbp);
1494 }
1495 splx(s);
1496 }
1497 if (async) {
1498 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1499 return (0);
1500 }
1501 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1502 error = biowait(mbp);
1503 uvm_aio_aiodone(mbp);
1504 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1505 return (error);
1506 }
1507
1508 /*
1509 * VOP_PUTPAGES() for vnodes which never have pages.
1510 */
1511
1512 int
1513 genfs_null_putpages(void *v)
1514 {
1515 struct vop_putpages_args /* {
1516 struct vnode *a_vp;
1517 voff_t a_offlo;
1518 voff_t a_offhi;
1519 int a_flags;
1520 } */ *ap = v;
1521 struct vnode *vp = ap->a_vp;
1522
1523 KASSERT(vp->v_uobj.uo_npages == 0);
1524 simple_unlock(&vp->v_interlock);
1525 return (0);
1526 }
1527
1528 void
1529 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1530 {
1531 struct genfs_node *gp = VTOG(vp);
1532
1533 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1534 gp->g_op = ops;
1535 }
1536
1537 void
1538 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1539 {
1540 int bsize;
1541
1542 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1543 *eobp = (size + bsize - 1) & ~(bsize - 1);
1544 }
1545
1546 int
1547 genfs_compat_getpages(void *v)
1548 {
1549 struct vop_getpages_args /* {
1550 struct vnode *a_vp;
1551 voff_t a_offset;
1552 struct vm_page **a_m;
1553 int *a_count;
1554 int a_centeridx;
1555 vm_prot_t a_access_type;
1556 int a_advice;
1557 int a_flags;
1558 } */ *ap = v;
1559
1560 off_t origoffset;
1561 struct vnode *vp = ap->a_vp;
1562 struct uvm_object *uobj = &vp->v_uobj;
1563 struct vm_page *pg, **pgs;
1564 vaddr_t kva;
1565 int i, error, orignpages, npages;
1566 struct iovec iov;
1567 struct uio uio;
1568 struct ucred *cred = curproc->p_ucred;
1569 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1570
1571 error = 0;
1572 origoffset = ap->a_offset;
1573 orignpages = *ap->a_count;
1574 pgs = ap->a_m;
1575
1576 if (write && (vp->v_flag & VONWORKLST) == 0) {
1577 vn_syncer_add_to_worklist(vp, filedelay);
1578 }
1579 if (ap->a_flags & PGO_LOCKED) {
1580 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1581 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1582
1583 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1584 }
1585 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1586 simple_unlock(&uobj->vmobjlock);
1587 return (EINVAL);
1588 }
1589 npages = orignpages;
1590 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1591 simple_unlock(&uobj->vmobjlock);
1592 kva = uvm_pagermapin(pgs, npages,
1593 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1594 for (i = 0; i < npages; i++) {
1595 pg = pgs[i];
1596 if ((pg->flags & PG_FAKE) == 0) {
1597 continue;
1598 }
1599 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1600 iov.iov_len = PAGE_SIZE;
1601 uio.uio_iov = &iov;
1602 uio.uio_iovcnt = 1;
1603 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1604 uio.uio_segflg = UIO_SYSSPACE;
1605 uio.uio_rw = UIO_READ;
1606 uio.uio_resid = PAGE_SIZE;
1607 uio.uio_procp = curproc;
1608 error = VOP_READ(vp, &uio, 0, cred);
1609 if (error) {
1610 break;
1611 }
1612 if (uio.uio_resid) {
1613 memset(iov.iov_base, 0, uio.uio_resid);
1614 }
1615 }
1616 uvm_pagermapout(kva, npages);
1617 simple_lock(&uobj->vmobjlock);
1618 uvm_lock_pageq();
1619 for (i = 0; i < npages; i++) {
1620 pg = pgs[i];
1621 if (error && (pg->flags & PG_FAKE) != 0) {
1622 pg->flags |= PG_RELEASED;
1623 } else {
1624 pmap_clear_modify(pg);
1625 uvm_pageactivate(pg);
1626 }
1627 }
1628 if (error) {
1629 uvm_page_unbusy(pgs, npages);
1630 }
1631 uvm_unlock_pageq();
1632 simple_unlock(&uobj->vmobjlock);
1633 return (error);
1634 }
1635
1636 int
1637 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1638 int flags)
1639 {
1640 off_t offset;
1641 struct iovec iov;
1642 struct uio uio;
1643 struct ucred *cred = curproc->p_ucred;
1644 struct buf *bp;
1645 vaddr_t kva;
1646 int s, error;
1647
1648 offset = pgs[0]->offset;
1649 kva = uvm_pagermapin(pgs, npages,
1650 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1651
1652 iov.iov_base = (void *)kva;
1653 iov.iov_len = npages << PAGE_SHIFT;
1654 uio.uio_iov = &iov;
1655 uio.uio_iovcnt = 1;
1656 uio.uio_offset = offset;
1657 uio.uio_segflg = UIO_SYSSPACE;
1658 uio.uio_rw = UIO_WRITE;
1659 uio.uio_resid = npages << PAGE_SHIFT;
1660 uio.uio_procp = curproc;
1661 error = VOP_WRITE(vp, &uio, 0, cred);
1662
1663 s = splbio();
1664 V_INCR_NUMOUTPUT(vp);
1665 bp = pool_get(&bufpool, PR_WAITOK);
1666 splx(s);
1667
1668 BUF_INIT(bp);
1669 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1670 bp->b_vp = vp;
1671 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1672 bp->b_data = (char *)kva;
1673 bp->b_bcount = npages << PAGE_SHIFT;
1674 bp->b_bufsize = npages << PAGE_SHIFT;
1675 bp->b_resid = 0;
1676 if (error) {
1677 bp->b_flags |= B_ERROR;
1678 bp->b_error = error;
1679 }
1680 uvm_aio_aiodone(bp);
1681 return (error);
1682 }
1683
1684 static void
1685 filt_genfsdetach(struct knote *kn)
1686 {
1687 struct vnode *vp = (struct vnode *)kn->kn_hook;
1688
1689 /* XXXLUKEM lock the struct? */
1690 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1691 }
1692
1693 static int
1694 filt_genfsread(struct knote *kn, long hint)
1695 {
1696 struct vnode *vp = (struct vnode *)kn->kn_hook;
1697
1698 /*
1699 * filesystem is gone, so set the EOF flag and schedule
1700 * the knote for deletion.
1701 */
1702 if (hint == NOTE_REVOKE) {
1703 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1704 return (1);
1705 }
1706
1707 /* XXXLUKEM lock the struct? */
1708 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1709 return (kn->kn_data != 0);
1710 }
1711
1712 static int
1713 filt_genfsvnode(struct knote *kn, long hint)
1714 {
1715
1716 if (kn->kn_sfflags & hint)
1717 kn->kn_fflags |= hint;
1718 if (hint == NOTE_REVOKE) {
1719 kn->kn_flags |= EV_EOF;
1720 return (1);
1721 }
1722 return (kn->kn_fflags != 0);
1723 }
1724
1725 static const struct filterops genfsread_filtops =
1726 { 1, NULL, filt_genfsdetach, filt_genfsread };
1727 static const struct filterops genfsvnode_filtops =
1728 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1729
1730 int
1731 genfs_kqfilter(void *v)
1732 {
1733 struct vop_kqfilter_args /* {
1734 struct vnode *a_vp;
1735 struct knote *a_kn;
1736 } */ *ap = v;
1737 struct vnode *vp;
1738 struct knote *kn;
1739
1740 vp = ap->a_vp;
1741 kn = ap->a_kn;
1742 switch (kn->kn_filter) {
1743 case EVFILT_READ:
1744 kn->kn_fop = &genfsread_filtops;
1745 break;
1746 case EVFILT_VNODE:
1747 kn->kn_fop = &genfsvnode_filtops;
1748 break;
1749 default:
1750 return (1);
1751 }
1752
1753 kn->kn_hook = vp;
1754
1755 /* XXXLUKEM lock the struct? */
1756 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1757
1758 return (0);
1759 }
1760