Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.75
      1 /*	$NetBSD: genfs_vnops.c,v 1.75 2003/04/10 21:53:33 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.75 2003/04/10 21:53:33 jdolecek Exp $");
     39 
     40 #include "opt_nfsserver.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mount.h>
     47 #include <sys/namei.h>
     48 #include <sys/vnode.h>
     49 #include <sys/fcntl.h>
     50 #include <sys/malloc.h>
     51 #include <sys/poll.h>
     52 #include <sys/mman.h>
     53 #include <sys/file.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 #ifdef NFSSERVER
     63 #include <nfs/rpcv2.h>
     64 #include <nfs/nfsproto.h>
     65 #include <nfs/nfs.h>
     66 #include <nfs/nqnfs.h>
     67 #include <nfs/nfs_var.h>
     68 #endif
     69 
     70 static __inline void genfs_rel_pages(struct vm_page **, int);
     71 static void filt_genfsdetach(struct knote *);
     72 static int filt_genfsread(struct knote *, long);
     73 static int filt_genfsvnode(struct knote *, long);
     74 
     75 
     76 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
     77 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
     78 int genfs_racount = 2;		/* # of page chunks to readahead */
     79 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
     80 
     81 int
     82 genfs_poll(void *v)
     83 {
     84 	struct vop_poll_args /* {
     85 		struct vnode *a_vp;
     86 		int a_events;
     87 		struct proc *a_p;
     88 	} */ *ap = v;
     89 
     90 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     91 }
     92 
     93 int
     94 genfs_fsync(void *v)
     95 {
     96 	struct vop_fsync_args /* {
     97 		struct vnode *a_vp;
     98 		struct ucred *a_cred;
     99 		int a_flags;
    100 		off_t offlo;
    101 		off_t offhi;
    102 		struct proc *a_p;
    103 	} */ *ap = v;
    104 	struct vnode *vp = ap->a_vp;
    105 	int wait;
    106 
    107 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
    108 	vflushbuf(vp, wait);
    109 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
    110 		return (0);
    111 	else
    112 		return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
    113 }
    114 
    115 int
    116 genfs_seek(void *v)
    117 {
    118 	struct vop_seek_args /* {
    119 		struct vnode *a_vp;
    120 		off_t a_oldoff;
    121 		off_t a_newoff;
    122 		struct ucred *a_ucred;
    123 	} */ *ap = v;
    124 
    125 	if (ap->a_newoff < 0)
    126 		return (EINVAL);
    127 
    128 	return (0);
    129 }
    130 
    131 int
    132 genfs_abortop(void *v)
    133 {
    134 	struct vop_abortop_args /* {
    135 		struct vnode *a_dvp;
    136 		struct componentname *a_cnp;
    137 	} */ *ap = v;
    138 
    139 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    140 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    141 	return (0);
    142 }
    143 
    144 int
    145 genfs_fcntl(void *v)
    146 {
    147 	struct vop_fcntl_args /* {
    148 		struct vnode *a_vp;
    149 		u_int a_command;
    150 		caddr_t a_data;
    151 		int a_fflag;
    152 		struct ucred *a_cred;
    153 		struct proc *a_p;
    154 	} */ *ap = v;
    155 
    156 	if (ap->a_command == F_SETFL)
    157 		return (0);
    158 	else
    159 		return (EOPNOTSUPP);
    160 }
    161 
    162 /*ARGSUSED*/
    163 int
    164 genfs_badop(void *v)
    165 {
    166 
    167 	panic("genfs: bad op");
    168 }
    169 
    170 /*ARGSUSED*/
    171 int
    172 genfs_nullop(void *v)
    173 {
    174 
    175 	return (0);
    176 }
    177 
    178 /*ARGSUSED*/
    179 int
    180 genfs_einval(void *v)
    181 {
    182 
    183 	return (EINVAL);
    184 }
    185 
    186 /*
    187  * Called when an fs doesn't support a particular vop.
    188  * This takes care to vrele, vput, or vunlock passed in vnodes.
    189  */
    190 int
    191 genfs_eopnotsupp(void *v)
    192 {
    193 	struct vop_generic_args /*
    194 		struct vnodeop_desc *a_desc;
    195 		/ * other random data follows, presumably * /
    196 	} */ *ap = v;
    197 	struct vnodeop_desc *desc = ap->a_desc;
    198 	struct vnode *vp, *vp_last = NULL;
    199 	int flags, i, j, offset;
    200 
    201 	flags = desc->vdesc_flags;
    202 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    203 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    204 			break;	/* stop at end of list */
    205 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    206 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    207 
    208 			/* Skip if NULL */
    209 			if (!vp)
    210 				continue;
    211 
    212 			switch (j) {
    213 			case VDESC_VP0_WILLPUT:
    214 				/* Check for dvp == vp cases */
    215 				if (vp == vp_last)
    216 					vrele(vp);
    217 				else {
    218 					vput(vp);
    219 					vp_last = vp;
    220 				}
    221 				break;
    222 			case VDESC_VP0_WILLUNLOCK:
    223 				VOP_UNLOCK(vp, 0);
    224 				break;
    225 			case VDESC_VP0_WILLRELE:
    226 				vrele(vp);
    227 				break;
    228 			}
    229 		}
    230 	}
    231 
    232 	return (EOPNOTSUPP);
    233 }
    234 
    235 /*ARGSUSED*/
    236 int
    237 genfs_ebadf(void *v)
    238 {
    239 
    240 	return (EBADF);
    241 }
    242 
    243 /* ARGSUSED */
    244 int
    245 genfs_enoioctl(void *v)
    246 {
    247 
    248 	return (EPASSTHROUGH);
    249 }
    250 
    251 
    252 /*
    253  * Eliminate all activity associated with the requested vnode
    254  * and with all vnodes aliased to the requested vnode.
    255  */
    256 int
    257 genfs_revoke(void *v)
    258 {
    259 	struct vop_revoke_args /* {
    260 		struct vnode *a_vp;
    261 		int a_flags;
    262 	} */ *ap = v;
    263 	struct vnode *vp, *vq;
    264 	struct proc *p = curproc;	/* XXX */
    265 
    266 #ifdef DIAGNOSTIC
    267 	if ((ap->a_flags & REVOKEALL) == 0)
    268 		panic("genfs_revoke: not revokeall");
    269 #endif
    270 
    271 	vp = ap->a_vp;
    272 	simple_lock(&vp->v_interlock);
    273 
    274 	if (vp->v_flag & VALIASED) {
    275 		/*
    276 		 * If a vgone (or vclean) is already in progress,
    277 		 * wait until it is done and return.
    278 		 */
    279 		if (vp->v_flag & VXLOCK) {
    280 			vp->v_flag |= VXWANT;
    281 			simple_unlock(&vp->v_interlock);
    282 			tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
    283 			return (0);
    284 		}
    285 		/*
    286 		 * Ensure that vp will not be vgone'd while we
    287 		 * are eliminating its aliases.
    288 		 */
    289 		vp->v_flag |= VXLOCK;
    290 		simple_unlock(&vp->v_interlock);
    291 		while (vp->v_flag & VALIASED) {
    292 			simple_lock(&spechash_slock);
    293 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    294 				if (vq->v_rdev != vp->v_rdev ||
    295 				    vq->v_type != vp->v_type || vp == vq)
    296 					continue;
    297 				simple_unlock(&spechash_slock);
    298 				vgone(vq);
    299 				break;
    300 			}
    301 			if (vq == NULLVP)
    302 				simple_unlock(&spechash_slock);
    303 		}
    304 		/*
    305 		 * Remove the lock so that vgone below will
    306 		 * really eliminate the vnode after which time
    307 		 * vgone will awaken any sleepers.
    308 		 */
    309 		simple_lock(&vp->v_interlock);
    310 		vp->v_flag &= ~VXLOCK;
    311 	}
    312 	vgonel(vp, p);
    313 	return (0);
    314 }
    315 
    316 /*
    317  * Lock the node.
    318  */
    319 int
    320 genfs_lock(void *v)
    321 {
    322 	struct vop_lock_args /* {
    323 		struct vnode *a_vp;
    324 		int a_flags;
    325 	} */ *ap = v;
    326 	struct vnode *vp = ap->a_vp;
    327 
    328 	return (lockmgr(&vp->v_lock, ap->a_flags, &vp->v_interlock));
    329 }
    330 
    331 /*
    332  * Unlock the node.
    333  */
    334 int
    335 genfs_unlock(void *v)
    336 {
    337 	struct vop_unlock_args /* {
    338 		struct vnode *a_vp;
    339 		int a_flags;
    340 	} */ *ap = v;
    341 	struct vnode *vp = ap->a_vp;
    342 
    343 	return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    344 	    &vp->v_interlock));
    345 }
    346 
    347 /*
    348  * Return whether or not the node is locked.
    349  */
    350 int
    351 genfs_islocked(void *v)
    352 {
    353 	struct vop_islocked_args /* {
    354 		struct vnode *a_vp;
    355 	} */ *ap = v;
    356 	struct vnode *vp = ap->a_vp;
    357 
    358 	return (lockstatus(&vp->v_lock));
    359 }
    360 
    361 /*
    362  * Stubs to use when there is no locking to be done on the underlying object.
    363  */
    364 int
    365 genfs_nolock(void *v)
    366 {
    367 	struct vop_lock_args /* {
    368 		struct vnode *a_vp;
    369 		int a_flags;
    370 		struct proc *a_p;
    371 	} */ *ap = v;
    372 
    373 	/*
    374 	 * Since we are not using the lock manager, we must clear
    375 	 * the interlock here.
    376 	 */
    377 	if (ap->a_flags & LK_INTERLOCK)
    378 		simple_unlock(&ap->a_vp->v_interlock);
    379 	return (0);
    380 }
    381 
    382 int
    383 genfs_nounlock(void *v)
    384 {
    385 
    386 	return (0);
    387 }
    388 
    389 int
    390 genfs_noislocked(void *v)
    391 {
    392 
    393 	return (0);
    394 }
    395 
    396 /*
    397  * Local lease check for NFS servers.  Just set up args and let
    398  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    399  * this is a null operation.
    400  */
    401 int
    402 genfs_lease_check(void *v)
    403 {
    404 #ifdef NFSSERVER
    405 	struct vop_lease_args /* {
    406 		struct vnode *a_vp;
    407 		struct proc *a_p;
    408 		struct ucred *a_cred;
    409 		int a_flag;
    410 	} */ *ap = v;
    411 	u_int32_t duration = 0;
    412 	int cache;
    413 	u_quad_t frev;
    414 
    415 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    416 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    417 	return (0);
    418 #else
    419 	return (0);
    420 #endif /* NFSSERVER */
    421 }
    422 
    423 int
    424 genfs_mmap(void *v)
    425 {
    426 
    427 	return (0);
    428 }
    429 
    430 static __inline void
    431 genfs_rel_pages(struct vm_page **pgs, int npages)
    432 {
    433 	int i;
    434 
    435 	for (i = 0; i < npages; i++) {
    436 		struct vm_page *pg = pgs[i];
    437 
    438 		if (pg == NULL)
    439 			continue;
    440 		if (pg->flags & PG_FAKE) {
    441 			pg->flags |= PG_RELEASED;
    442 		}
    443 	}
    444 	uvm_lock_pageq();
    445 	uvm_page_unbusy(pgs, npages);
    446 	uvm_unlock_pageq();
    447 }
    448 
    449 /*
    450  * generic VM getpages routine.
    451  * Return PG_BUSY pages for the given range,
    452  * reading from backing store if necessary.
    453  */
    454 
    455 int
    456 genfs_getpages(void *v)
    457 {
    458 	struct vop_getpages_args /* {
    459 		struct vnode *a_vp;
    460 		voff_t a_offset;
    461 		struct vm_page **a_m;
    462 		int *a_count;
    463 		int a_centeridx;
    464 		vm_prot_t a_access_type;
    465 		int a_advice;
    466 		int a_flags;
    467 	} */ *ap = v;
    468 
    469 	off_t newsize, diskeof, memeof;
    470 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    471 	daddr_t lbn, blkno;
    472 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    473 	int fs_bshift, fs_bsize, dev_bshift;
    474 	int flags = ap->a_flags;
    475 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    476 	vaddr_t kva;
    477 	struct buf *bp, *mbp;
    478 	struct vnode *vp = ap->a_vp;
    479 	struct vnode *devvp;
    480 	struct genfs_node *gp = VTOG(vp);
    481 	struct uvm_object *uobj = &vp->v_uobj;
    482 	struct vm_page *pg, *pgs[MAX_READ_AHEAD];
    483 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
    484 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    485 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    486 	boolean_t sawhole = FALSE;
    487 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    488 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    489 
    490 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    491 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    492 
    493 	/* XXXUBC temp limit */
    494 	if (*ap->a_count > MAX_READ_AHEAD) {
    495 		panic("genfs_getpages: too many pages");
    496 	}
    497 
    498 	error = 0;
    499 	origoffset = ap->a_offset;
    500 	orignpages = *ap->a_count;
    501 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
    502 	if (flags & PGO_PASTEOF) {
    503 		newsize = MAX(vp->v_size,
    504 		    origoffset + (orignpages << PAGE_SHIFT));
    505 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ);
    506 	} else {
    507 		memeof = diskeof;
    508 	}
    509 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    510 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    511 	KASSERT(orignpages > 0);
    512 
    513 	/*
    514 	 * Bounds-check the request.
    515 	 */
    516 
    517 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    518 		if ((flags & PGO_LOCKED) == 0) {
    519 			simple_unlock(&uobj->vmobjlock);
    520 		}
    521 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    522 		    origoffset, *ap->a_count, memeof,0);
    523 		return (EINVAL);
    524 	}
    525 
    526 	/*
    527 	 * For PGO_LOCKED requests, just return whatever's in memory.
    528 	 */
    529 
    530 	if (flags & PGO_LOCKED) {
    531 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    532 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
    533 
    534 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    535 	}
    536 
    537 	/* vnode is VOP_LOCKed, uobj is locked */
    538 
    539 	if (write && (vp->v_flag & VONWORKLST) == 0) {
    540 		vn_syncer_add_to_worklist(vp, filedelay);
    541 	}
    542 
    543 	/*
    544 	 * find the requested pages and make some simple checks.
    545 	 * leave space in the page array for a whole block.
    546 	 */
    547 
    548 	if (vp->v_type == VREG) {
    549 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    550 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    551 	} else {
    552 		fs_bshift = DEV_BSHIFT;
    553 		dev_bshift = DEV_BSHIFT;
    554 	}
    555 	fs_bsize = 1 << fs_bshift;
    556 
    557 	orignpages = MIN(orignpages,
    558 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    559 	npages = orignpages;
    560 	startoffset = origoffset & ~(fs_bsize - 1);
    561 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    562 	    fs_bsize - 1) & ~(fs_bsize - 1));
    563 	endoffset = MIN(endoffset, round_page(memeof));
    564 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    565 
    566 	memset(pgs, 0, sizeof(pgs));
    567 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    568 	    ridx, npages, startoffset, endoffset);
    569 	KASSERT(&pgs[ridx + npages] <= &pgs[MAX_READ_AHEAD]);
    570 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    571 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    572 		KASSERT(async != 0);
    573 		genfs_rel_pages(&pgs[ridx], orignpages);
    574 		simple_unlock(&uobj->vmobjlock);
    575 		return (EBUSY);
    576 	}
    577 
    578 	/*
    579 	 * if the pages are already resident, just return them.
    580 	 */
    581 
    582 	for (i = 0; i < npages; i++) {
    583 		struct vm_page *pg = pgs[ridx + i];
    584 
    585 		if ((pg->flags & PG_FAKE) ||
    586 		    (write && (pg->flags & PG_RDONLY))) {
    587 			break;
    588 		}
    589 	}
    590 	if (i == npages) {
    591 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    592 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    593 		npages += ridx;
    594 		goto raout;
    595 	}
    596 
    597 	/*
    598 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    599 	 */
    600 
    601 	if (flags & PGO_OVERWRITE) {
    602 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    603 
    604 		for (i = 0; i < npages; i++) {
    605 			struct vm_page *pg = pgs[ridx + i];
    606 
    607 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    608 		}
    609 		npages += ridx;
    610 		goto out;
    611 	}
    612 
    613 	/*
    614 	 * the page wasn't resident and we're not overwriting,
    615 	 * so we're going to have to do some i/o.
    616 	 * find any additional pages needed to cover the expanded range.
    617 	 */
    618 
    619 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    620 	if (startoffset != origoffset || npages != orignpages) {
    621 
    622 		/*
    623 		 * we need to avoid deadlocks caused by locking
    624 		 * additional pages at lower offsets than pages we
    625 		 * already have locked.  unlock them all and start over.
    626 		 */
    627 
    628 		genfs_rel_pages(&pgs[ridx], orignpages);
    629 		memset(pgs, 0, sizeof(pgs));
    630 
    631 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    632 		    startoffset, endoffset, 0,0);
    633 		npgs = npages;
    634 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    635 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    636 			KASSERT(async != 0);
    637 			genfs_rel_pages(pgs, npages);
    638 			simple_unlock(&uobj->vmobjlock);
    639 			return (EBUSY);
    640 		}
    641 	}
    642 	simple_unlock(&uobj->vmobjlock);
    643 
    644 	/*
    645 	 * read the desired page(s).
    646 	 */
    647 
    648 	totalbytes = npages << PAGE_SHIFT;
    649 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    650 	tailbytes = totalbytes - bytes;
    651 	skipbytes = 0;
    652 
    653 	kva = uvm_pagermapin(pgs, npages,
    654 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    655 
    656 	s = splbio();
    657 	mbp = pool_get(&bufpool, PR_WAITOK);
    658 	splx(s);
    659 	BUF_INIT(mbp);
    660 	mbp->b_bufsize = totalbytes;
    661 	mbp->b_data = (void *)kva;
    662 	mbp->b_resid = mbp->b_bcount = bytes;
    663 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    664 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    665 	mbp->b_vp = vp;
    666 
    667 	/*
    668 	 * if EOF is in the middle of the range, zero the part past EOF.
    669 	 * if the page including EOF is not PG_FAKE, skip over it since
    670 	 * in that case it has valid data that we need to preserve.
    671 	 */
    672 
    673 	if (tailbytes > 0) {
    674 		size_t tailstart = bytes;
    675 
    676 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    677 			tailstart = round_page(tailstart);
    678 			tailbytes -= tailstart - bytes;
    679 		}
    680 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    681 		    kva, tailstart, tailbytes,0);
    682 		memset((void *)(kva + tailstart), 0, tailbytes);
    683 	}
    684 
    685 	/*
    686 	 * now loop over the pages, reading as needed.
    687 	 */
    688 
    689 	if (write) {
    690 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    691 	} else {
    692 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    693 	}
    694 
    695 	bp = NULL;
    696 	for (offset = startoffset;
    697 	    bytes > 0;
    698 	    offset += iobytes, bytes -= iobytes) {
    699 
    700 		/*
    701 		 * skip pages which don't need to be read.
    702 		 */
    703 
    704 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    705 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
    706 			size_t b;
    707 
    708 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    709 			b = MIN(PAGE_SIZE, bytes);
    710 			offset += b;
    711 			bytes -= b;
    712 			skipbytes += b;
    713 			pidx++;
    714 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    715 			    offset, 0,0,0);
    716 			if (bytes == 0) {
    717 				goto loopdone;
    718 			}
    719 		}
    720 
    721 		/*
    722 		 * bmap the file to find out the blkno to read from and
    723 		 * how much we can read in one i/o.  if bmap returns an error,
    724 		 * skip the rest of the top-level i/o.
    725 		 */
    726 
    727 		lbn = offset >> fs_bshift;
    728 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    729 		if (error) {
    730 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    731 			    lbn, error,0,0);
    732 			skipbytes += bytes;
    733 			goto loopdone;
    734 		}
    735 
    736 		/*
    737 		 * see how many pages can be read with this i/o.
    738 		 * reduce the i/o size if necessary to avoid
    739 		 * overwriting pages with valid data.
    740 		 */
    741 
    742 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    743 		    bytes);
    744 		if (offset + iobytes > round_page(offset)) {
    745 			pcount = 1;
    746 			while (pidx + pcount < npages &&
    747 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    748 				pcount++;
    749 			}
    750 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    751 			    (offset - trunc_page(offset)));
    752 		}
    753 
    754 		/*
    755 		 * if this block isn't allocated, zero it instead of
    756 		 * reading it.  if this is a read access, mark the
    757 		 * pages we zeroed PG_RDONLY.
    758 		 */
    759 
    760 		if (blkno < 0) {
    761 			int holepages = (round_page(offset + iobytes) -
    762 			    trunc_page(offset)) >> PAGE_SHIFT;
    763 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    764 
    765 			sawhole = TRUE;
    766 			memset((char *)kva + (offset - startoffset), 0,
    767 			    iobytes);
    768 			skipbytes += iobytes;
    769 
    770 			for (i = 0; i < holepages; i++) {
    771 				if (write) {
    772 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    773 				} else {
    774 					pgs[pidx + i]->flags |= PG_RDONLY;
    775 				}
    776 			}
    777 			continue;
    778 		}
    779 
    780 		/*
    781 		 * allocate a sub-buf for this piece of the i/o
    782 		 * (or just use mbp if there's only 1 piece),
    783 		 * and start it going.
    784 		 */
    785 
    786 		if (offset == startoffset && iobytes == bytes) {
    787 			bp = mbp;
    788 		} else {
    789 			s = splbio();
    790 			bp = pool_get(&bufpool, PR_WAITOK);
    791 			splx(s);
    792 			BUF_INIT(bp);
    793 			bp->b_data = (char *)kva + offset - startoffset;
    794 			bp->b_resid = bp->b_bcount = iobytes;
    795 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
    796 			bp->b_iodone = uvm_aio_biodone1;
    797 			bp->b_vp = vp;
    798 			bp->b_proc = NULL;
    799 		}
    800 		bp->b_lblkno = 0;
    801 		bp->b_private = mbp;
    802 		if (devvp->v_type == VBLK) {
    803 			bp->b_dev = devvp->v_rdev;
    804 		}
    805 
    806 		/* adjust physical blkno for partial blocks */
    807 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    808 		    dev_bshift);
    809 
    810 		UVMHIST_LOG(ubchist,
    811 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    812 		    bp, offset, iobytes, bp->b_blkno);
    813 
    814 		VOP_STRATEGY(bp);
    815 	}
    816 
    817 loopdone:
    818 	if (skipbytes) {
    819 		s = splbio();
    820 		if (error) {
    821 			mbp->b_flags |= B_ERROR;
    822 			mbp->b_error = error;
    823 		}
    824 		mbp->b_resid -= skipbytes;
    825 		if (mbp->b_resid == 0) {
    826 			biodone(mbp);
    827 		}
    828 		splx(s);
    829 	}
    830 
    831 	if (async) {
    832 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    833 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    834 		return (0);
    835 	}
    836 	if (bp != NULL) {
    837 		error = biowait(mbp);
    838 	}
    839 	s = splbio();
    840 	pool_put(&bufpool, mbp);
    841 	splx(s);
    842 	uvm_pagermapout(kva, npages);
    843 	raoffset = startoffset + totalbytes;
    844 
    845 	/*
    846 	 * if this we encountered a hole then we have to do a little more work.
    847 	 * for read faults, we marked the page PG_RDONLY so that future
    848 	 * write accesses to the page will fault again.
    849 	 * for write faults, we must make sure that the backing store for
    850 	 * the page is completely allocated while the pages are locked.
    851 	 */
    852 
    853 	if (!error && sawhole && write) {
    854 		for (i = 0; i < npages; i++) {
    855 			if (pgs[i] == NULL) {
    856 				continue;
    857 			}
    858 			pgs[i]->flags &= ~PG_CLEAN;
    859 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
    860 		}
    861 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    862 		    cred);
    863 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    864 		    startoffset, npages << PAGE_SHIFT, error,0);
    865 	}
    866 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    867 	simple_lock(&uobj->vmobjlock);
    868 
    869 	/*
    870 	 * see if we want to start any readahead.
    871 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
    872 	 * this is pretty nonsensical, but it is 50% faster than reading
    873 	 * just the next 64k.
    874 	 */
    875 
    876 raout:
    877 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
    878 	    PAGE_SHIFT <= 16) {
    879 		off_t rasize;
    880 		int rapages, err, i, skipped;
    881 
    882 		/* XXXUBC temp limit, from above */
    883 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
    884 		    genfs_rapages);
    885 		rasize = rapages << PAGE_SHIFT;
    886 		for (i = skipped = 0; i < genfs_racount; i++) {
    887 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
    888 			    VM_PROT_READ, 0, 0);
    889 			simple_lock(&uobj->vmobjlock);
    890 			if (err) {
    891 				if (err != EBUSY ||
    892 				    skipped++ == genfs_raskip)
    893 					break;
    894 			}
    895 			raoffset += rasize;
    896 			rapages = rasize >> PAGE_SHIFT;
    897 		}
    898 	}
    899 
    900 	/*
    901 	 * we're almost done!  release the pages...
    902 	 * for errors, we free the pages.
    903 	 * otherwise we activate them and mark them as valid and clean.
    904 	 * also, unbusy pages that were not actually requested.
    905 	 */
    906 
    907 	if (error) {
    908 		for (i = 0; i < npages; i++) {
    909 			if (pgs[i] == NULL) {
    910 				continue;
    911 			}
    912 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    913 			    pgs[i], pgs[i]->flags, 0,0);
    914 			if (pgs[i]->flags & PG_FAKE) {
    915 				pgs[i]->flags |= PG_RELEASED;
    916 			}
    917 		}
    918 		uvm_lock_pageq();
    919 		uvm_page_unbusy(pgs, npages);
    920 		uvm_unlock_pageq();
    921 		simple_unlock(&uobj->vmobjlock);
    922 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    923 		return (error);
    924 	}
    925 
    926 out:
    927 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    928 	uvm_lock_pageq();
    929 	for (i = 0; i < npages; i++) {
    930 		pg = pgs[i];
    931 		if (pg == NULL) {
    932 			continue;
    933 		}
    934 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    935 		    pg, pg->flags, 0,0);
    936 		if (pg->flags & PG_FAKE && !overwrite) {
    937 			pg->flags &= ~(PG_FAKE);
    938 			pmap_clear_modify(pgs[i]);
    939 		}
    940 		if (write) {
    941 			pg->flags &= ~(PG_RDONLY);
    942 		}
    943 		if (i < ridx || i >= ridx + orignpages || async) {
    944 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    945 			    pg, pg->offset,0,0);
    946 			if (pg->flags & PG_WANTED) {
    947 				wakeup(pg);
    948 			}
    949 			if (pg->flags & PG_FAKE) {
    950 				KASSERT(overwrite);
    951 				uvm_pagezero(pg);
    952 			}
    953 			if (pg->flags & PG_RELEASED) {
    954 				uvm_pagefree(pg);
    955 				continue;
    956 			}
    957 			uvm_pageactivate(pg);
    958 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    959 			UVM_PAGE_OWN(pg, NULL);
    960 		}
    961 	}
    962 	uvm_unlock_pageq();
    963 	simple_unlock(&uobj->vmobjlock);
    964 	if (ap->a_m != NULL) {
    965 		memcpy(ap->a_m, &pgs[ridx],
    966 		    orignpages * sizeof(struct vm_page *));
    967 	}
    968 	return (0);
    969 }
    970 
    971 /*
    972  * generic VM putpages routine.
    973  * Write the given range of pages to backing store.
    974  *
    975  * => "offhi == 0" means flush all pages at or after "offlo".
    976  * => object should be locked by caller.   we may _unlock_ the object
    977  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
    978  *	if PGO_SYNCIO is set and there are pages busy.
    979  *	we return with the object locked.
    980  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    981  *	thus, a caller might want to unlock higher level resources
    982  *	(e.g. vm_map) before calling flush.
    983  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
    984  *	unlock the object nor block.
    985  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    986  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    987  *	that new pages are inserted on the tail end of the list.   thus,
    988  *	we can make a complete pass through the object in one go by starting
    989  *	at the head and working towards the tail (new pages are put in
    990  *	front of us).
    991  * => NOTE: we are allowed to lock the page queues, so the caller
    992  *	must not be holding the page queue lock.
    993  *
    994  * note on "cleaning" object and PG_BUSY pages:
    995  *	this routine is holding the lock on the object.   the only time
    996  *	that it can run into a PG_BUSY page that it does not own is if
    997  *	some other process has started I/O on the page (e.g. either
    998  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    999  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1000  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1001  *	paged out then it means that someone else has already started
   1002  *	cleaning the page for us (how nice!).    in this case, if we
   1003  *	have syncio specified, then after we make our pass through the
   1004  *	object we need to wait for the other PG_BUSY pages to clear
   1005  *	off (i.e. we need to do an iosync).   also note that once a
   1006  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1007  *
   1008  * note on page traversal:
   1009  *	we can traverse the pages in an object either by going down the
   1010  *	linked list in "uobj->memq", or we can go over the address range
   1011  *	by page doing hash table lookups for each address.    depending
   1012  *	on how many pages are in the object it may be cheaper to do one
   1013  *	or the other.   we set "by_list" to true if we are using memq.
   1014  *	if the cost of a hash lookup was equal to the cost of the list
   1015  *	traversal we could compare the number of pages in the start->stop
   1016  *	range to the total number of pages in the object.   however, it
   1017  *	seems that a hash table lookup is more expensive than the linked
   1018  *	list traversal, so we multiply the number of pages in the
   1019  *	range by an estimate of the relatively higher cost of the hash lookup.
   1020  */
   1021 
   1022 int
   1023 genfs_putpages(void *v)
   1024 {
   1025 	struct vop_putpages_args /* {
   1026 		struct vnode *a_vp;
   1027 		voff_t a_offlo;
   1028 		voff_t a_offhi;
   1029 		int a_flags;
   1030 	} */ *ap = v;
   1031 	struct vnode *vp = ap->a_vp;
   1032 	struct uvm_object *uobj = &vp->v_uobj;
   1033 	struct simplelock *slock = &uobj->vmobjlock;
   1034 	off_t startoff = ap->a_offlo;
   1035 	off_t endoff = ap->a_offhi;
   1036 	off_t off;
   1037 	int flags = ap->a_flags;
   1038 	const int maxpages = MAXBSIZE >> PAGE_SHIFT;
   1039 	int i, s, error, npages, nback;
   1040 	int freeflag;
   1041 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1042 	boolean_t wasclean, by_list, needs_clean, yield;
   1043 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1044 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1045 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1046 
   1047 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1048 
   1049 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1050 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1051 	KASSERT(startoff < endoff || endoff == 0);
   1052 
   1053 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1054 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1055 	if (uobj->uo_npages == 0) {
   1056 		s = splbio();
   1057 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1058 		    (vp->v_flag & VONWORKLST)) {
   1059 			vp->v_flag &= ~VONWORKLST;
   1060 			LIST_REMOVE(vp, v_synclist);
   1061 		}
   1062 		splx(s);
   1063 		simple_unlock(slock);
   1064 		return (0);
   1065 	}
   1066 
   1067 	/*
   1068 	 * the vnode has pages, set up to process the request.
   1069 	 */
   1070 
   1071 	error = 0;
   1072 	s = splbio();
   1073 	simple_lock(&global_v_numoutput_slock);
   1074 	wasclean = (vp->v_numoutput == 0);
   1075 	simple_unlock(&global_v_numoutput_slock);
   1076 	splx(s);
   1077 	off = startoff;
   1078 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1079 		endoff = trunc_page(LLONG_MAX);
   1080 	}
   1081 	by_list = (uobj->uo_npages <=
   1082 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1083 
   1084 	/*
   1085 	 * start the loop.  when scanning by list, hold the last page
   1086 	 * in the list before we start.  pages allocated after we start
   1087 	 * will be added to the end of the list, so we can stop at the
   1088 	 * current last page.
   1089 	 */
   1090 
   1091 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1092 	curmp.uobject = uobj;
   1093 	curmp.offset = (voff_t)-1;
   1094 	curmp.flags = PG_BUSY;
   1095 	endmp.uobject = uobj;
   1096 	endmp.offset = (voff_t)-1;
   1097 	endmp.flags = PG_BUSY;
   1098 	if (by_list) {
   1099 		pg = TAILQ_FIRST(&uobj->memq);
   1100 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1101 		PHOLD(l);
   1102 	} else {
   1103 		pg = uvm_pagelookup(uobj, off);
   1104 	}
   1105 	nextpg = NULL;
   1106 	while (by_list || off < endoff) {
   1107 
   1108 		/*
   1109 		 * if the current page is not interesting, move on to the next.
   1110 		 */
   1111 
   1112 		KASSERT(pg == NULL || pg->uobject == uobj);
   1113 		KASSERT(pg == NULL ||
   1114 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1115 		    (pg->flags & PG_BUSY) != 0);
   1116 		if (by_list) {
   1117 			if (pg == &endmp) {
   1118 				break;
   1119 			}
   1120 			if (pg->offset < startoff || pg->offset >= endoff ||
   1121 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1122 				pg = TAILQ_NEXT(pg, listq);
   1123 				continue;
   1124 			}
   1125 			off = pg->offset;
   1126 		} else if (pg == NULL ||
   1127 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1128 			off += PAGE_SIZE;
   1129 			if (off < endoff) {
   1130 				pg = uvm_pagelookup(uobj, off);
   1131 			}
   1132 			continue;
   1133 		}
   1134 
   1135 		/*
   1136 		 * if the current page needs to be cleaned and it's busy,
   1137 		 * wait for it to become unbusy.
   1138 		 */
   1139 
   1140 		yield = (l->l_cpu->ci_schedstate.spc_flags &
   1141 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1142 		if (pg->flags & PG_BUSY || yield) {
   1143 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1144 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1145 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1146 				error = EDEADLK;
   1147 				break;
   1148 			}
   1149 			KASSERT(!pagedaemon);
   1150 			if (by_list) {
   1151 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1152 				UVMHIST_LOG(ubchist, "curmp next %p",
   1153 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1154 			}
   1155 			if (yield) {
   1156 				simple_unlock(slock);
   1157 				preempt(1);
   1158 				simple_lock(slock);
   1159 			} else {
   1160 				pg->flags |= PG_WANTED;
   1161 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1162 				simple_lock(slock);
   1163 			}
   1164 			if (by_list) {
   1165 				UVMHIST_LOG(ubchist, "after next %p",
   1166 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1167 				pg = TAILQ_NEXT(&curmp, listq);
   1168 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1169 			} else {
   1170 				pg = uvm_pagelookup(uobj, off);
   1171 			}
   1172 			continue;
   1173 		}
   1174 
   1175 		/*
   1176 		 * if we're freeing, remove all mappings of the page now.
   1177 		 * if we're cleaning, check if the page is needs to be cleaned.
   1178 		 */
   1179 
   1180 		if (flags & PGO_FREE) {
   1181 			pmap_page_protect(pg, VM_PROT_NONE);
   1182 		}
   1183 		if (flags & PGO_CLEANIT) {
   1184 			needs_clean = pmap_clear_modify(pg) ||
   1185 			    (pg->flags & PG_CLEAN) == 0;
   1186 			pg->flags |= PG_CLEAN;
   1187 		} else {
   1188 			needs_clean = FALSE;
   1189 		}
   1190 
   1191 		/*
   1192 		 * if we're cleaning, build a cluster.
   1193 		 * the cluster will consist of pages which are currently dirty,
   1194 		 * but they will be returned to us marked clean.
   1195 		 * if not cleaning, just operate on the one page.
   1196 		 */
   1197 
   1198 		if (needs_clean) {
   1199 			wasclean = FALSE;
   1200 			memset(pgs, 0, sizeof(pgs));
   1201 			pg->flags |= PG_BUSY;
   1202 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1203 
   1204 			/*
   1205 			 * first look backward.
   1206 			 */
   1207 
   1208 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1209 			nback = npages;
   1210 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1211 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1212 			if (nback) {
   1213 				memmove(&pgs[0], &pgs[npages - nback],
   1214 				    nback * sizeof(pgs[0]));
   1215 				if (npages - nback < nback)
   1216 					memset(&pgs[nback], 0,
   1217 					    (npages - nback) * sizeof(pgs[0]));
   1218 				else
   1219 					memset(&pgs[npages - nback], 0,
   1220 					    nback * sizeof(pgs[0]));
   1221 			}
   1222 
   1223 			/*
   1224 			 * then plug in our page of interest.
   1225 			 */
   1226 
   1227 			pgs[nback] = pg;
   1228 
   1229 			/*
   1230 			 * then look forward to fill in the remaining space in
   1231 			 * the array of pages.
   1232 			 */
   1233 
   1234 			npages = maxpages - nback - 1;
   1235 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1236 			    &pgs[nback + 1],
   1237 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1238 			npages += nback + 1;
   1239 		} else {
   1240 			pgs[0] = pg;
   1241 			npages = 1;
   1242 			nback = 0;
   1243 		}
   1244 
   1245 		/*
   1246 		 * apply FREE or DEACTIVATE options if requested.
   1247 		 */
   1248 
   1249 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1250 			uvm_lock_pageq();
   1251 		}
   1252 		for (i = 0; i < npages; i++) {
   1253 			tpg = pgs[i];
   1254 			KASSERT(tpg->uobject == uobj);
   1255 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1256 				pg = tpg;
   1257 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1258 				continue;
   1259 			if (flags & PGO_DEACTIVATE &&
   1260 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1261 			    tpg->wire_count == 0) {
   1262 				(void) pmap_clear_reference(tpg);
   1263 				uvm_pagedeactivate(tpg);
   1264 			} else if (flags & PGO_FREE) {
   1265 				pmap_page_protect(tpg, VM_PROT_NONE);
   1266 				if (tpg->flags & PG_BUSY) {
   1267 					tpg->flags |= freeflag;
   1268 					if (pagedaemon) {
   1269 						uvmexp.paging++;
   1270 						uvm_pagedequeue(tpg);
   1271 					}
   1272 				} else {
   1273 
   1274 					/*
   1275 					 * ``page is not busy''
   1276 					 * implies that npages is 1
   1277 					 * and needs_clean is false.
   1278 					 */
   1279 
   1280 					nextpg = TAILQ_NEXT(tpg, listq);
   1281 					uvm_pagefree(tpg);
   1282 				}
   1283 			}
   1284 		}
   1285 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1286 			uvm_unlock_pageq();
   1287 		}
   1288 		if (needs_clean) {
   1289 
   1290 			/*
   1291 			 * start the i/o.  if we're traversing by list,
   1292 			 * keep our place in the list with a marker page.
   1293 			 */
   1294 
   1295 			if (by_list) {
   1296 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1297 				    listq);
   1298 			}
   1299 			simple_unlock(slock);
   1300 			error = GOP_WRITE(vp, pgs, npages, flags);
   1301 			simple_lock(slock);
   1302 			if (by_list) {
   1303 				pg = TAILQ_NEXT(&curmp, listq);
   1304 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1305 			}
   1306 			if (error) {
   1307 				break;
   1308 			}
   1309 			if (by_list) {
   1310 				continue;
   1311 			}
   1312 		}
   1313 
   1314 		/*
   1315 		 * find the next page and continue if there was no error.
   1316 		 */
   1317 
   1318 		if (by_list) {
   1319 			if (nextpg) {
   1320 				pg = nextpg;
   1321 				nextpg = NULL;
   1322 			} else {
   1323 				pg = TAILQ_NEXT(pg, listq);
   1324 			}
   1325 		} else {
   1326 			off += (npages - nback) << PAGE_SHIFT;
   1327 			if (off < endoff) {
   1328 				pg = uvm_pagelookup(uobj, off);
   1329 			}
   1330 		}
   1331 	}
   1332 	if (by_list) {
   1333 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1334 		PRELE(l);
   1335 	}
   1336 
   1337 	/*
   1338 	 * if we're cleaning and there was nothing to clean,
   1339 	 * take us off the syncer list.  if we started any i/o
   1340 	 * and we're doing sync i/o, wait for all writes to finish.
   1341 	 */
   1342 
   1343 	s = splbio();
   1344 	if ((flags & PGO_CLEANIT) && wasclean &&
   1345 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1346 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1347 	    (vp->v_flag & VONWORKLST)) {
   1348 		vp->v_flag &= ~VONWORKLST;
   1349 		LIST_REMOVE(vp, v_synclist);
   1350 	}
   1351 	splx(s);
   1352 	if (!wasclean && !async) {
   1353 		s = splbio();
   1354 		/*
   1355 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1356 		 *	 but the slot in ltsleep() is taken!
   1357 		 * XXX - try to recover from missed wakeups with a timeout..
   1358 		 *	 must think of something better.
   1359 		 */
   1360 		while (vp->v_numoutput != 0) {
   1361 			vp->v_flag |= VBWAIT;
   1362 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1363 			    "genput2", hz);
   1364 			simple_lock(slock);
   1365 		}
   1366 		splx(s);
   1367 	}
   1368 	simple_unlock(&uobj->vmobjlock);
   1369 	return (error);
   1370 }
   1371 
   1372 int
   1373 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1374 {
   1375 	int s, error, run;
   1376 	int fs_bshift, dev_bshift;
   1377 	vaddr_t kva;
   1378 	off_t eof, offset, startoffset;
   1379 	size_t bytes, iobytes, skipbytes;
   1380 	daddr_t lbn, blkno;
   1381 	struct vm_page *pg;
   1382 	struct buf *mbp, *bp;
   1383 	struct vnode *devvp;
   1384 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1385 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1386 
   1387 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1388 	    vp, pgs, npages, flags);
   1389 
   1390 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
   1391 	if (vp->v_type == VREG) {
   1392 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1393 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1394 	} else {
   1395 		fs_bshift = DEV_BSHIFT;
   1396 		dev_bshift = DEV_BSHIFT;
   1397 	}
   1398 	error = 0;
   1399 	pg = pgs[0];
   1400 	startoffset = pg->offset;
   1401 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1402 	skipbytes = 0;
   1403 	KASSERT(bytes != 0);
   1404 
   1405 	kva = uvm_pagermapin(pgs, npages,
   1406 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1407 
   1408 	s = splbio();
   1409 	simple_lock(&global_v_numoutput_slock);
   1410 	vp->v_numoutput += 2;
   1411 	simple_unlock(&global_v_numoutput_slock);
   1412 	mbp = pool_get(&bufpool, PR_WAITOK);
   1413 	BUF_INIT(mbp);
   1414 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1415 	    vp, mbp, vp->v_numoutput, bytes);
   1416 	splx(s);
   1417 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1418 	mbp->b_data = (void *)kva;
   1419 	mbp->b_resid = mbp->b_bcount = bytes;
   1420 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
   1421 	mbp->b_iodone = uvm_aio_biodone;
   1422 	mbp->b_vp = vp;
   1423 
   1424 	bp = NULL;
   1425 	for (offset = startoffset;
   1426 	    bytes > 0;
   1427 	    offset += iobytes, bytes -= iobytes) {
   1428 		lbn = offset >> fs_bshift;
   1429 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1430 		if (error) {
   1431 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1432 			skipbytes += bytes;
   1433 			bytes = 0;
   1434 			break;
   1435 		}
   1436 
   1437 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1438 		    bytes);
   1439 		if (blkno == (daddr_t)-1) {
   1440 			skipbytes += iobytes;
   1441 			continue;
   1442 		}
   1443 
   1444 		/* if it's really one i/o, don't make a second buf */
   1445 		if (offset == startoffset && iobytes == bytes) {
   1446 			bp = mbp;
   1447 		} else {
   1448 			s = splbio();
   1449 			V_INCR_NUMOUTPUT(vp);
   1450 			bp = pool_get(&bufpool, PR_WAITOK);
   1451 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1452 			    vp, bp, vp->v_numoutput, 0);
   1453 			splx(s);
   1454 			BUF_INIT(bp);
   1455 			bp->b_data = (char *)kva +
   1456 			    (vaddr_t)(offset - pg->offset);
   1457 			bp->b_resid = bp->b_bcount = iobytes;
   1458 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
   1459 			bp->b_iodone = uvm_aio_biodone1;
   1460 			bp->b_vp = vp;
   1461 		}
   1462 		bp->b_lblkno = 0;
   1463 		bp->b_private = mbp;
   1464 		if (devvp->v_type == VBLK) {
   1465 			bp->b_dev = devvp->v_rdev;
   1466 		}
   1467 
   1468 		/* adjust physical blkno for partial blocks */
   1469 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1470 		    dev_bshift);
   1471 		UVMHIST_LOG(ubchist,
   1472 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1473 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1474 		VOP_STRATEGY(bp);
   1475 	}
   1476 	if (skipbytes) {
   1477 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1478 		s = splbio();
   1479 		if (error) {
   1480 			mbp->b_flags |= B_ERROR;
   1481 			mbp->b_error = error;
   1482 		}
   1483 		mbp->b_resid -= skipbytes;
   1484 		if (mbp->b_resid == 0) {
   1485 			biodone(mbp);
   1486 		}
   1487 		splx(s);
   1488 	}
   1489 	if (async) {
   1490 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1491 		return (0);
   1492 	}
   1493 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1494 	error = biowait(mbp);
   1495 	uvm_aio_aiodone(mbp);
   1496 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1497 	return (error);
   1498 }
   1499 
   1500 /*
   1501  * VOP_PUTPAGES() for vnodes which never have pages.
   1502  */
   1503 
   1504 int
   1505 genfs_null_putpages(void *v)
   1506 {
   1507 	struct vop_putpages_args /* {
   1508 		struct vnode *a_vp;
   1509 		voff_t a_offlo;
   1510 		voff_t a_offhi;
   1511 		int a_flags;
   1512 	} */ *ap = v;
   1513 	struct vnode *vp = ap->a_vp;
   1514 
   1515 	KASSERT(vp->v_uobj.uo_npages == 0);
   1516 	simple_unlock(&vp->v_interlock);
   1517 	return (0);
   1518 }
   1519 
   1520 void
   1521 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
   1522 {
   1523 	struct genfs_node *gp = VTOG(vp);
   1524 
   1525 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1526 	gp->g_op = ops;
   1527 }
   1528 
   1529 void
   1530 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1531 {
   1532 	int bsize;
   1533 
   1534 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1535 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1536 }
   1537 
   1538 int
   1539 genfs_compat_getpages(void *v)
   1540 {
   1541 	struct vop_getpages_args /* {
   1542 		struct vnode *a_vp;
   1543 		voff_t a_offset;
   1544 		struct vm_page **a_m;
   1545 		int *a_count;
   1546 		int a_centeridx;
   1547 		vm_prot_t a_access_type;
   1548 		int a_advice;
   1549 		int a_flags;
   1550 	} */ *ap = v;
   1551 
   1552 	off_t origoffset;
   1553 	struct vnode *vp = ap->a_vp;
   1554 	struct uvm_object *uobj = &vp->v_uobj;
   1555 	struct vm_page *pg, **pgs;
   1556 	vaddr_t kva;
   1557 	int i, error, orignpages, npages;
   1558 	struct iovec iov;
   1559 	struct uio uio;
   1560 	struct ucred *cred = curproc->p_ucred;
   1561 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1562 
   1563 	error = 0;
   1564 	origoffset = ap->a_offset;
   1565 	orignpages = *ap->a_count;
   1566 	pgs = ap->a_m;
   1567 
   1568 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1569 		vn_syncer_add_to_worklist(vp, filedelay);
   1570 	}
   1571 	if (ap->a_flags & PGO_LOCKED) {
   1572 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1573 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1574 
   1575 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1576 	}
   1577 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1578 		simple_unlock(&uobj->vmobjlock);
   1579 		return (EINVAL);
   1580 	}
   1581 	npages = orignpages;
   1582 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1583 	simple_unlock(&uobj->vmobjlock);
   1584 	kva = uvm_pagermapin(pgs, npages,
   1585 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1586 	for (i = 0; i < npages; i++) {
   1587 		pg = pgs[i];
   1588 		if ((pg->flags & PG_FAKE) == 0) {
   1589 			continue;
   1590 		}
   1591 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1592 		iov.iov_len = PAGE_SIZE;
   1593 		uio.uio_iov = &iov;
   1594 		uio.uio_iovcnt = 1;
   1595 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1596 		uio.uio_segflg = UIO_SYSSPACE;
   1597 		uio.uio_rw = UIO_READ;
   1598 		uio.uio_resid = PAGE_SIZE;
   1599 		uio.uio_procp = curproc;
   1600 		error = VOP_READ(vp, &uio, 0, cred);
   1601 		if (error) {
   1602 			break;
   1603 		}
   1604 		if (uio.uio_resid) {
   1605 			memset(iov.iov_base, 0, uio.uio_resid);
   1606 		}
   1607 	}
   1608 	uvm_pagermapout(kva, npages);
   1609 	simple_lock(&uobj->vmobjlock);
   1610 	uvm_lock_pageq();
   1611 	for (i = 0; i < npages; i++) {
   1612 		pg = pgs[i];
   1613 		if (error && (pg->flags & PG_FAKE) != 0) {
   1614 			pg->flags |= PG_RELEASED;
   1615 		} else {
   1616 			pmap_clear_modify(pg);
   1617 			uvm_pageactivate(pg);
   1618 		}
   1619 	}
   1620 	if (error) {
   1621 		uvm_page_unbusy(pgs, npages);
   1622 	}
   1623 	uvm_unlock_pageq();
   1624 	simple_unlock(&uobj->vmobjlock);
   1625 	return (error);
   1626 }
   1627 
   1628 int
   1629 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1630     int flags)
   1631 {
   1632 	off_t offset;
   1633 	struct iovec iov;
   1634 	struct uio uio;
   1635 	struct ucred *cred = curproc->p_ucred;
   1636 	struct buf *bp;
   1637 	vaddr_t kva;
   1638 	int s, error;
   1639 
   1640 	offset = pgs[0]->offset;
   1641 	kva = uvm_pagermapin(pgs, npages,
   1642 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1643 
   1644 	iov.iov_base = (void *)kva;
   1645 	iov.iov_len = npages << PAGE_SHIFT;
   1646 	uio.uio_iov = &iov;
   1647 	uio.uio_iovcnt = 1;
   1648 	uio.uio_offset = offset;
   1649 	uio.uio_segflg = UIO_SYSSPACE;
   1650 	uio.uio_rw = UIO_WRITE;
   1651 	uio.uio_resid = npages << PAGE_SHIFT;
   1652 	uio.uio_procp = curproc;
   1653 	error = VOP_WRITE(vp, &uio, 0, cred);
   1654 
   1655 	s = splbio();
   1656 	V_INCR_NUMOUTPUT(vp);
   1657 	bp = pool_get(&bufpool, PR_WAITOK);
   1658 	splx(s);
   1659 
   1660 	BUF_INIT(bp);
   1661 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1662 	bp->b_vp = vp;
   1663 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1664 	bp->b_data = (char *)kva;
   1665 	bp->b_bcount = npages << PAGE_SHIFT;
   1666 	bp->b_bufsize = npages << PAGE_SHIFT;
   1667 	bp->b_resid = 0;
   1668 	if (error) {
   1669 		bp->b_flags |= B_ERROR;
   1670 		bp->b_error = error;
   1671 	}
   1672 	uvm_aio_aiodone(bp);
   1673 	return (error);
   1674 }
   1675 
   1676 static void
   1677 filt_genfsdetach(struct knote *kn)
   1678 {
   1679 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1680 
   1681 	/* XXXLUKEM lock the struct? */
   1682 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   1683 }
   1684 
   1685 static int
   1686 filt_genfsread(struct knote *kn, long hint)
   1687 {
   1688 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1689 
   1690 	/*
   1691 	 * filesystem is gone, so set the EOF flag and schedule
   1692 	 * the knote for deletion.
   1693 	 */
   1694 	if (hint == NOTE_REVOKE) {
   1695 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1696 		return (1);
   1697 	}
   1698 
   1699 	/* XXXLUKEM lock the struct? */
   1700 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   1701         return (kn->kn_data != 0);
   1702 }
   1703 
   1704 static int
   1705 filt_genfsvnode(struct knote *kn, long hint)
   1706 {
   1707 
   1708 	if (kn->kn_sfflags & hint)
   1709 		kn->kn_fflags |= hint;
   1710 	if (hint == NOTE_REVOKE) {
   1711 		kn->kn_flags |= EV_EOF;
   1712 		return (1);
   1713 	}
   1714 	return (kn->kn_fflags != 0);
   1715 }
   1716 
   1717 static const struct filterops genfsread_filtops =
   1718 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   1719 static const struct filterops genfsvnode_filtops =
   1720 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   1721 
   1722 int
   1723 genfs_kqfilter(void *v)
   1724 {
   1725 	struct vop_kqfilter_args /* {
   1726 		struct vnode	*a_vp;
   1727 		struct knote	*a_kn;
   1728 	} */ *ap = v;
   1729 	struct vnode *vp;
   1730 	struct knote *kn;
   1731 
   1732 	vp = ap->a_vp;
   1733 	kn = ap->a_kn;
   1734 	switch (kn->kn_filter) {
   1735 	case EVFILT_READ:
   1736 		kn->kn_fop = &genfsread_filtops;
   1737 		break;
   1738 	case EVFILT_VNODE:
   1739 		kn->kn_fop = &genfsvnode_filtops;
   1740 		break;
   1741 	default:
   1742 		return (1);
   1743 	}
   1744 
   1745 	kn->kn_hook = vp;
   1746 
   1747 	/* XXXLUKEM lock the struct? */
   1748 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   1749 
   1750 	return (0);
   1751 }
   1752