genfs_vnops.c revision 1.93 1 /* $NetBSD: genfs_vnops.c,v 1.93 2005/01/25 09:50:31 drochner Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.93 2005/01/25 09:50:31 drochner Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73
74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2; /* # of page chunks to readahead */
77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78
79 int
80 genfs_poll(void *v)
81 {
82 struct vop_poll_args /* {
83 struct vnode *a_vp;
84 int a_events;
85 struct proc *a_p;
86 } */ *ap = v;
87
88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90
91 int
92 genfs_fsync(void *v)
93 {
94 struct vop_fsync_args /* {
95 struct vnode *a_vp;
96 struct ucred *a_cred;
97 int a_flags;
98 off_t offlo;
99 off_t offhi;
100 struct proc *a_p;
101 } */ *ap = v;
102 struct vnode *vp = ap->a_vp;
103 int wait;
104
105 wait = (ap->a_flags & FSYNC_WAIT) != 0;
106 vflushbuf(vp, wait);
107 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
108 return (0);
109 else
110 return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
111 }
112
113 int
114 genfs_seek(void *v)
115 {
116 struct vop_seek_args /* {
117 struct vnode *a_vp;
118 off_t a_oldoff;
119 off_t a_newoff;
120 struct ucred *a_ucred;
121 } */ *ap = v;
122
123 if (ap->a_newoff < 0)
124 return (EINVAL);
125
126 return (0);
127 }
128
129 int
130 genfs_abortop(void *v)
131 {
132 struct vop_abortop_args /* {
133 struct vnode *a_dvp;
134 struct componentname *a_cnp;
135 } */ *ap = v;
136
137 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
138 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
139 return (0);
140 }
141
142 int
143 genfs_fcntl(void *v)
144 {
145 struct vop_fcntl_args /* {
146 struct vnode *a_vp;
147 u_int a_command;
148 caddr_t a_data;
149 int a_fflag;
150 struct ucred *a_cred;
151 struct proc *a_p;
152 } */ *ap = v;
153
154 if (ap->a_command == F_SETFL)
155 return (0);
156 else
157 return (EOPNOTSUPP);
158 }
159
160 /*ARGSUSED*/
161 int
162 genfs_badop(void *v)
163 {
164
165 panic("genfs: bad op");
166 }
167
168 /*ARGSUSED*/
169 int
170 genfs_nullop(void *v)
171 {
172
173 return (0);
174 }
175
176 /*ARGSUSED*/
177 int
178 genfs_einval(void *v)
179 {
180
181 return (EINVAL);
182 }
183
184 /*
185 * Called when an fs doesn't support a particular vop.
186 * This takes care to vrele, vput, or vunlock passed in vnodes.
187 */
188 int
189 genfs_eopnotsupp(void *v)
190 {
191 struct vop_generic_args /*
192 struct vnodeop_desc *a_desc;
193 / * other random data follows, presumably * /
194 } */ *ap = v;
195 struct vnodeop_desc *desc = ap->a_desc;
196 struct vnode *vp, *vp_last = NULL;
197 int flags, i, j, offset;
198
199 flags = desc->vdesc_flags;
200 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
201 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
202 break; /* stop at end of list */
203 if ((j = flags & VDESC_VP0_WILLPUT)) {
204 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
205
206 /* Skip if NULL */
207 if (!vp)
208 continue;
209
210 switch (j) {
211 case VDESC_VP0_WILLPUT:
212 /* Check for dvp == vp cases */
213 if (vp == vp_last)
214 vrele(vp);
215 else {
216 vput(vp);
217 vp_last = vp;
218 }
219 break;
220 case VDESC_VP0_WILLUNLOCK:
221 VOP_UNLOCK(vp, 0);
222 break;
223 case VDESC_VP0_WILLRELE:
224 vrele(vp);
225 break;
226 }
227 }
228 }
229
230 return (EOPNOTSUPP);
231 }
232
233 /*ARGSUSED*/
234 int
235 genfs_ebadf(void *v)
236 {
237
238 return (EBADF);
239 }
240
241 /* ARGSUSED */
242 int
243 genfs_enoioctl(void *v)
244 {
245
246 return (EPASSTHROUGH);
247 }
248
249
250 /*
251 * Eliminate all activity associated with the requested vnode
252 * and with all vnodes aliased to the requested vnode.
253 */
254 int
255 genfs_revoke(void *v)
256 {
257 struct vop_revoke_args /* {
258 struct vnode *a_vp;
259 int a_flags;
260 } */ *ap = v;
261 struct vnode *vp, *vq;
262 struct proc *p = curproc; /* XXX */
263
264 #ifdef DIAGNOSTIC
265 if ((ap->a_flags & REVOKEALL) == 0)
266 panic("genfs_revoke: not revokeall");
267 #endif
268
269 vp = ap->a_vp;
270 simple_lock(&vp->v_interlock);
271
272 if (vp->v_flag & VALIASED) {
273 /*
274 * If a vgone (or vclean) is already in progress,
275 * wait until it is done and return.
276 */
277 if (vp->v_flag & VXLOCK) {
278 vp->v_flag |= VXWANT;
279 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
280 &vp->v_interlock);
281 return (0);
282 }
283 /*
284 * Ensure that vp will not be vgone'd while we
285 * are eliminating its aliases.
286 */
287 vp->v_flag |= VXLOCK;
288 simple_unlock(&vp->v_interlock);
289 while (vp->v_flag & VALIASED) {
290 simple_lock(&spechash_slock);
291 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
292 if (vq->v_rdev != vp->v_rdev ||
293 vq->v_type != vp->v_type || vp == vq)
294 continue;
295 simple_unlock(&spechash_slock);
296 vgone(vq);
297 break;
298 }
299 if (vq == NULLVP)
300 simple_unlock(&spechash_slock);
301 }
302 /*
303 * Remove the lock so that vgone below will
304 * really eliminate the vnode after which time
305 * vgone will awaken any sleepers.
306 */
307 simple_lock(&vp->v_interlock);
308 vp->v_flag &= ~VXLOCK;
309 }
310 vgonel(vp, p);
311 return (0);
312 }
313
314 /*
315 * Lock the node.
316 */
317 int
318 genfs_lock(void *v)
319 {
320 struct vop_lock_args /* {
321 struct vnode *a_vp;
322 int a_flags;
323 } */ *ap = v;
324 struct vnode *vp = ap->a_vp;
325
326 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
327 }
328
329 /*
330 * Unlock the node.
331 */
332 int
333 genfs_unlock(void *v)
334 {
335 struct vop_unlock_args /* {
336 struct vnode *a_vp;
337 int a_flags;
338 } */ *ap = v;
339 struct vnode *vp = ap->a_vp;
340
341 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
342 &vp->v_interlock));
343 }
344
345 /*
346 * Return whether or not the node is locked.
347 */
348 int
349 genfs_islocked(void *v)
350 {
351 struct vop_islocked_args /* {
352 struct vnode *a_vp;
353 } */ *ap = v;
354 struct vnode *vp = ap->a_vp;
355
356 return (lockstatus(vp->v_vnlock));
357 }
358
359 /*
360 * Stubs to use when there is no locking to be done on the underlying object.
361 */
362 int
363 genfs_nolock(void *v)
364 {
365 struct vop_lock_args /* {
366 struct vnode *a_vp;
367 int a_flags;
368 struct proc *a_p;
369 } */ *ap = v;
370
371 /*
372 * Since we are not using the lock manager, we must clear
373 * the interlock here.
374 */
375 if (ap->a_flags & LK_INTERLOCK)
376 simple_unlock(&ap->a_vp->v_interlock);
377 return (0);
378 }
379
380 int
381 genfs_nounlock(void *v)
382 {
383
384 return (0);
385 }
386
387 int
388 genfs_noislocked(void *v)
389 {
390
391 return (0);
392 }
393
394 /*
395 * Local lease check for NFS servers. Just set up args and let
396 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
397 * this is a null operation.
398 */
399 int
400 genfs_lease_check(void *v)
401 {
402 #ifdef NFSSERVER
403 struct vop_lease_args /* {
404 struct vnode *a_vp;
405 struct proc *a_p;
406 struct ucred *a_cred;
407 int a_flag;
408 } */ *ap = v;
409 u_int32_t duration = 0;
410 int cache;
411 u_quad_t frev;
412
413 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
414 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
415 return (0);
416 #else
417 return (0);
418 #endif /* NFSSERVER */
419 }
420
421 int
422 genfs_mmap(void *v)
423 {
424
425 return (0);
426 }
427
428 static __inline void
429 genfs_rel_pages(struct vm_page **pgs, int npages)
430 {
431 int i;
432
433 for (i = 0; i < npages; i++) {
434 struct vm_page *pg = pgs[i];
435
436 if (pg == NULL)
437 continue;
438 if (pg->flags & PG_FAKE) {
439 pg->flags |= PG_RELEASED;
440 }
441 }
442 uvm_lock_pageq();
443 uvm_page_unbusy(pgs, npages);
444 uvm_unlock_pageq();
445 }
446
447 /*
448 * generic VM getpages routine.
449 * Return PG_BUSY pages for the given range,
450 * reading from backing store if necessary.
451 */
452
453 int
454 genfs_getpages(void *v)
455 {
456 struct vop_getpages_args /* {
457 struct vnode *a_vp;
458 voff_t a_offset;
459 struct vm_page **a_m;
460 int *a_count;
461 int a_centeridx;
462 vm_prot_t a_access_type;
463 int a_advice;
464 int a_flags;
465 } */ *ap = v;
466
467 off_t newsize, diskeof, memeof;
468 off_t offset, origoffset, startoffset, endoffset, raoffset;
469 daddr_t lbn, blkno;
470 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
471 int fs_bshift, fs_bsize, dev_bshift;
472 int flags = ap->a_flags;
473 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
474 vaddr_t kva;
475 struct buf *bp, *mbp;
476 struct vnode *vp = ap->a_vp;
477 struct vnode *devvp;
478 struct genfs_node *gp = VTOG(vp);
479 struct uvm_object *uobj = &vp->v_uobj;
480 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
481 int pgs_size;
482 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
483 boolean_t async = (flags & PGO_SYNCIO) == 0;
484 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
485 boolean_t sawhole = FALSE;
486 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
487 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
488
489 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
490 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
491
492 /* XXXUBC temp limit */
493 if (*ap->a_count > MAX_READ_AHEAD) {
494 panic("genfs_getpages: too many pages");
495 }
496
497 error = 0;
498 origoffset = ap->a_offset;
499 orignpages = *ap->a_count;
500 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
501 if (flags & PGO_PASTEOF) {
502 newsize = MAX(vp->v_size,
503 origoffset + (orignpages << PAGE_SHIFT));
504 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
505 } else {
506 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
507 }
508 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
509 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
510 KASSERT(orignpages > 0);
511 KASSERT(origoffset + (ap->a_centeridx << PAGE_SHIFT) < memeof);
512
513 /*
514 * For PGO_LOCKED requests, just return whatever's in memory.
515 */
516
517 if (flags & PGO_LOCKED) {
518 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
519 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
520
521 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
522 }
523
524 /* uobj is locked */
525
526 if (write && (vp->v_flag & VONWORKLST) == 0) {
527 vn_syncer_add_to_worklist(vp, filedelay);
528 }
529
530 /*
531 * find the requested pages and make some simple checks.
532 * leave space in the page array for a whole block.
533 */
534
535 if (vp->v_type == VREG) {
536 fs_bshift = vp->v_mount->mnt_fs_bshift;
537 dev_bshift = vp->v_mount->mnt_dev_bshift;
538 } else {
539 fs_bshift = DEV_BSHIFT;
540 dev_bshift = DEV_BSHIFT;
541 }
542 fs_bsize = 1 << fs_bshift;
543
544 orignpages = MIN(orignpages,
545 round_page(memeof - origoffset) >> PAGE_SHIFT);
546 npages = orignpages;
547 startoffset = origoffset & ~(fs_bsize - 1);
548 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
549 fs_bsize - 1) & ~(fs_bsize - 1));
550 endoffset = MIN(endoffset, round_page(memeof));
551 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
552
553 pgs_size = sizeof(struct vm_page *) *
554 ((endoffset - startoffset) >> PAGE_SHIFT);
555 if (pgs_size > sizeof(pgs_onstack)) {
556 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
557 if (pgs == NULL) {
558 simple_unlock(&uobj->vmobjlock);
559 return (ENOMEM);
560 }
561 } else {
562 pgs = pgs_onstack;
563 memset(pgs, 0, pgs_size);
564 }
565 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
566 ridx, npages, startoffset, endoffset);
567 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
568 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
569 KASSERT(async != 0);
570 genfs_rel_pages(&pgs[ridx], orignpages);
571 simple_unlock(&uobj->vmobjlock);
572 if (pgs != pgs_onstack)
573 free(pgs, M_DEVBUF);
574 return (EBUSY);
575 }
576
577 /*
578 * if the pages are already resident, just return them.
579 */
580
581 for (i = 0; i < npages; i++) {
582 struct vm_page *pg = pgs[ridx + i];
583
584 if ((pg->flags & PG_FAKE) ||
585 (write && (pg->flags & PG_RDONLY))) {
586 break;
587 }
588 }
589 if (i == npages) {
590 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
591 raoffset = origoffset + (orignpages << PAGE_SHIFT);
592 npages += ridx;
593 goto raout;
594 }
595
596 /*
597 * if PGO_OVERWRITE is set, don't bother reading the pages.
598 */
599
600 if (flags & PGO_OVERWRITE) {
601 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
602
603 for (i = 0; i < npages; i++) {
604 struct vm_page *pg = pgs[ridx + i];
605
606 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
607 }
608 npages += ridx;
609 goto out;
610 }
611
612 /*
613 * the page wasn't resident and we're not overwriting,
614 * so we're going to have to do some i/o.
615 * find any additional pages needed to cover the expanded range.
616 */
617
618 npages = (endoffset - startoffset) >> PAGE_SHIFT;
619 if (startoffset != origoffset || npages != orignpages) {
620
621 /*
622 * we need to avoid deadlocks caused by locking
623 * additional pages at lower offsets than pages we
624 * already have locked. unlock them all and start over.
625 */
626
627 genfs_rel_pages(&pgs[ridx], orignpages);
628 memset(pgs, 0, pgs_size);
629
630 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
631 startoffset, endoffset, 0,0);
632 npgs = npages;
633 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
634 async ? UFP_NOWAIT : UFP_ALL) != npages) {
635 KASSERT(async != 0);
636 genfs_rel_pages(pgs, npages);
637 simple_unlock(&uobj->vmobjlock);
638 if (pgs != pgs_onstack)
639 free(pgs, M_DEVBUF);
640 return (EBUSY);
641 }
642 }
643 simple_unlock(&uobj->vmobjlock);
644
645 /*
646 * read the desired page(s).
647 */
648
649 totalbytes = npages << PAGE_SHIFT;
650 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
651 tailbytes = totalbytes - bytes;
652 skipbytes = 0;
653
654 kva = uvm_pagermapin(pgs, npages,
655 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
656
657 s = splbio();
658 mbp = pool_get(&bufpool, PR_WAITOK);
659 splx(s);
660 BUF_INIT(mbp);
661 mbp->b_bufsize = totalbytes;
662 mbp->b_data = (void *)kva;
663 mbp->b_resid = mbp->b_bcount = bytes;
664 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
665 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
666 mbp->b_vp = vp;
667
668 /*
669 * if EOF is in the middle of the range, zero the part past EOF.
670 * if the page including EOF is not PG_FAKE, skip over it since
671 * in that case it has valid data that we need to preserve.
672 */
673
674 if (tailbytes > 0) {
675 size_t tailstart = bytes;
676
677 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
678 tailstart = round_page(tailstart);
679 tailbytes -= tailstart - bytes;
680 }
681 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
682 kva, tailstart, tailbytes,0);
683 memset((void *)(kva + tailstart), 0, tailbytes);
684 }
685
686 /*
687 * now loop over the pages, reading as needed.
688 */
689
690 if (write) {
691 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
692 } else {
693 lockmgr(&gp->g_glock, LK_SHARED, NULL);
694 }
695
696 bp = NULL;
697 for (offset = startoffset;
698 bytes > 0;
699 offset += iobytes, bytes -= iobytes) {
700
701 /*
702 * skip pages which don't need to be read.
703 */
704
705 pidx = (offset - startoffset) >> PAGE_SHIFT;
706 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
707 size_t b;
708
709 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
710 b = MIN(PAGE_SIZE, bytes);
711 offset += b;
712 bytes -= b;
713 skipbytes += b;
714 pidx++;
715 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
716 offset, 0,0,0);
717 if (bytes == 0) {
718 goto loopdone;
719 }
720 }
721
722 /*
723 * bmap the file to find out the blkno to read from and
724 * how much we can read in one i/o. if bmap returns an error,
725 * skip the rest of the top-level i/o.
726 */
727
728 lbn = offset >> fs_bshift;
729 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
730 if (error) {
731 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
732 lbn, error,0,0);
733 skipbytes += bytes;
734 goto loopdone;
735 }
736
737 /*
738 * see how many pages can be read with this i/o.
739 * reduce the i/o size if necessary to avoid
740 * overwriting pages with valid data.
741 */
742
743 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
744 bytes);
745 if (offset + iobytes > round_page(offset)) {
746 pcount = 1;
747 while (pidx + pcount < npages &&
748 pgs[pidx + pcount]->flags & PG_FAKE) {
749 pcount++;
750 }
751 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
752 (offset - trunc_page(offset)));
753 }
754
755 /*
756 * if this block isn't allocated, zero it instead of
757 * reading it. if this is a read access, mark the
758 * pages we zeroed PG_RDONLY.
759 */
760
761 if (blkno < 0) {
762 int holepages = (round_page(offset + iobytes) -
763 trunc_page(offset)) >> PAGE_SHIFT;
764 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
765
766 sawhole = TRUE;
767 memset((char *)kva + (offset - startoffset), 0,
768 iobytes);
769 skipbytes += iobytes;
770
771 for (i = 0; i < holepages; i++) {
772 if (write) {
773 pgs[pidx + i]->flags &= ~PG_CLEAN;
774 } else {
775 pgs[pidx + i]->flags |= PG_RDONLY;
776 }
777 }
778 continue;
779 }
780
781 /*
782 * allocate a sub-buf for this piece of the i/o
783 * (or just use mbp if there's only 1 piece),
784 * and start it going.
785 */
786
787 if (offset == startoffset && iobytes == bytes) {
788 bp = mbp;
789 } else {
790 s = splbio();
791 bp = pool_get(&bufpool, PR_WAITOK);
792 splx(s);
793 BUF_INIT(bp);
794 bp->b_data = (char *)kva + offset - startoffset;
795 bp->b_resid = bp->b_bcount = iobytes;
796 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
797 bp->b_iodone = uvm_aio_biodone1;
798 bp->b_vp = vp;
799 bp->b_proc = NULL;
800 }
801 bp->b_lblkno = 0;
802 bp->b_private = mbp;
803 if (devvp->v_type == VBLK) {
804 bp->b_dev = devvp->v_rdev;
805 }
806
807 /* adjust physical blkno for partial blocks */
808 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
809 dev_bshift);
810
811 UVMHIST_LOG(ubchist,
812 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
813 bp, offset, iobytes, bp->b_blkno);
814
815 if (async)
816 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
817 else
818 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
819 VOP_STRATEGY(bp->b_vp, bp);
820 }
821
822 loopdone:
823 if (skipbytes) {
824 s = splbio();
825 if (error) {
826 mbp->b_flags |= B_ERROR;
827 mbp->b_error = error;
828 }
829 mbp->b_resid -= skipbytes;
830 if (mbp->b_resid == 0) {
831 biodone(mbp);
832 }
833 splx(s);
834 }
835
836 if (async) {
837 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
838 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
839 if (pgs != pgs_onstack)
840 free(pgs, M_DEVBUF);
841 return (0);
842 }
843 if (bp != NULL) {
844 error = biowait(mbp);
845 }
846 s = splbio();
847 pool_put(&bufpool, mbp);
848 splx(s);
849 uvm_pagermapout(kva, npages);
850 raoffset = startoffset + totalbytes;
851
852 /*
853 * if this we encountered a hole then we have to do a little more work.
854 * for read faults, we marked the page PG_RDONLY so that future
855 * write accesses to the page will fault again.
856 * for write faults, we must make sure that the backing store for
857 * the page is completely allocated while the pages are locked.
858 */
859
860 if (!error && sawhole && write) {
861 for (i = 0; i < npages; i++) {
862 if (pgs[i] == NULL) {
863 continue;
864 }
865 pgs[i]->flags &= ~PG_CLEAN;
866 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
867 }
868 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
869 cred);
870 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
871 startoffset, npages << PAGE_SHIFT, error,0);
872 }
873 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
874 simple_lock(&uobj->vmobjlock);
875
876 /*
877 * see if we want to start any readahead.
878 * XXXUBC for now, just read the next 128k on 64k boundaries.
879 * this is pretty nonsensical, but it is 50% faster than reading
880 * just the next 64k.
881 */
882
883 raout:
884 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
885 PAGE_SHIFT <= 16) {
886 off_t rasize;
887 int rapages, err, i, skipped;
888
889 /* XXXUBC temp limit, from above */
890 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
891 genfs_rapages);
892 rasize = rapages << PAGE_SHIFT;
893 for (i = skipped = 0; i < genfs_racount; i++) {
894
895 if (raoffset >= memeof)
896 break;
897
898 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
899 VM_PROT_READ, 0, 0);
900 simple_lock(&uobj->vmobjlock);
901 if (err) {
902 if (err != EBUSY ||
903 skipped++ == genfs_raskip)
904 break;
905 }
906 raoffset += rasize;
907 rapages = rasize >> PAGE_SHIFT;
908 }
909 }
910
911 /*
912 * we're almost done! release the pages...
913 * for errors, we free the pages.
914 * otherwise we activate them and mark them as valid and clean.
915 * also, unbusy pages that were not actually requested.
916 */
917
918 if (error) {
919 for (i = 0; i < npages; i++) {
920 if (pgs[i] == NULL) {
921 continue;
922 }
923 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
924 pgs[i], pgs[i]->flags, 0,0);
925 if (pgs[i]->flags & PG_FAKE) {
926 pgs[i]->flags |= PG_RELEASED;
927 }
928 }
929 uvm_lock_pageq();
930 uvm_page_unbusy(pgs, npages);
931 uvm_unlock_pageq();
932 simple_unlock(&uobj->vmobjlock);
933 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
934 if (pgs != pgs_onstack)
935 free(pgs, M_DEVBUF);
936 return (error);
937 }
938
939 out:
940 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
941 uvm_lock_pageq();
942 for (i = 0; i < npages; i++) {
943 pg = pgs[i];
944 if (pg == NULL) {
945 continue;
946 }
947 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
948 pg, pg->flags, 0,0);
949 if (pg->flags & PG_FAKE && !overwrite) {
950 pg->flags &= ~(PG_FAKE);
951 pmap_clear_modify(pgs[i]);
952 }
953 if (write) {
954 pg->flags &= ~(PG_RDONLY);
955 }
956 if (i < ridx || i >= ridx + orignpages || async) {
957 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
958 pg, pg->offset,0,0);
959 if (pg->flags & PG_WANTED) {
960 wakeup(pg);
961 }
962 if (pg->flags & PG_FAKE) {
963 KASSERT(overwrite);
964 uvm_pagezero(pg);
965 }
966 if (pg->flags & PG_RELEASED) {
967 uvm_pagefree(pg);
968 continue;
969 }
970 uvm_pageactivate(pg);
971 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
972 UVM_PAGE_OWN(pg, NULL);
973 }
974 }
975 uvm_unlock_pageq();
976 simple_unlock(&uobj->vmobjlock);
977 if (ap->a_m != NULL) {
978 memcpy(ap->a_m, &pgs[ridx],
979 orignpages * sizeof(struct vm_page *));
980 }
981 if (pgs != pgs_onstack)
982 free(pgs, M_DEVBUF);
983 return (0);
984 }
985
986 /*
987 * generic VM putpages routine.
988 * Write the given range of pages to backing store.
989 *
990 * => "offhi == 0" means flush all pages at or after "offlo".
991 * => object should be locked by caller. we may _unlock_ the object
992 * if (and only if) we need to clean a page (PGO_CLEANIT), or
993 * if PGO_SYNCIO is set and there are pages busy.
994 * we return with the object locked.
995 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
996 * thus, a caller might want to unlock higher level resources
997 * (e.g. vm_map) before calling flush.
998 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
999 * unlock the object nor block.
1000 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1001 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1002 * that new pages are inserted on the tail end of the list. thus,
1003 * we can make a complete pass through the object in one go by starting
1004 * at the head and working towards the tail (new pages are put in
1005 * front of us).
1006 * => NOTE: we are allowed to lock the page queues, so the caller
1007 * must not be holding the page queue lock.
1008 *
1009 * note on "cleaning" object and PG_BUSY pages:
1010 * this routine is holding the lock on the object. the only time
1011 * that it can run into a PG_BUSY page that it does not own is if
1012 * some other process has started I/O on the page (e.g. either
1013 * a pagein, or a pageout). if the PG_BUSY page is being paged
1014 * in, then it can not be dirty (!PG_CLEAN) because no one has
1015 * had a chance to modify it yet. if the PG_BUSY page is being
1016 * paged out then it means that someone else has already started
1017 * cleaning the page for us (how nice!). in this case, if we
1018 * have syncio specified, then after we make our pass through the
1019 * object we need to wait for the other PG_BUSY pages to clear
1020 * off (i.e. we need to do an iosync). also note that once a
1021 * page is PG_BUSY it must stay in its object until it is un-busyed.
1022 *
1023 * note on page traversal:
1024 * we can traverse the pages in an object either by going down the
1025 * linked list in "uobj->memq", or we can go over the address range
1026 * by page doing hash table lookups for each address. depending
1027 * on how many pages are in the object it may be cheaper to do one
1028 * or the other. we set "by_list" to true if we are using memq.
1029 * if the cost of a hash lookup was equal to the cost of the list
1030 * traversal we could compare the number of pages in the start->stop
1031 * range to the total number of pages in the object. however, it
1032 * seems that a hash table lookup is more expensive than the linked
1033 * list traversal, so we multiply the number of pages in the
1034 * range by an estimate of the relatively higher cost of the hash lookup.
1035 */
1036
1037 int
1038 genfs_putpages(void *v)
1039 {
1040 struct vop_putpages_args /* {
1041 struct vnode *a_vp;
1042 voff_t a_offlo;
1043 voff_t a_offhi;
1044 int a_flags;
1045 } */ *ap = v;
1046 struct vnode *vp = ap->a_vp;
1047 struct uvm_object *uobj = &vp->v_uobj;
1048 struct simplelock *slock = &uobj->vmobjlock;
1049 off_t startoff = ap->a_offlo;
1050 off_t endoff = ap->a_offhi;
1051 off_t off;
1052 int flags = ap->a_flags;
1053 /* Even for strange MAXPHYS, the shift rounds down to a page */
1054 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1055 int i, s, error, npages, nback;
1056 int freeflag;
1057 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1058 boolean_t wasclean, by_list, needs_clean, yield;
1059 boolean_t async = (flags & PGO_SYNCIO) == 0;
1060 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1061 struct lwp *l = curlwp ? curlwp : &lwp0;
1062
1063 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1064
1065 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1066 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1067 KASSERT(startoff < endoff || endoff == 0);
1068
1069 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1070 vp, uobj->uo_npages, startoff, endoff - startoff);
1071 if (uobj->uo_npages == 0) {
1072 s = splbio();
1073 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1074 (vp->v_flag & VONWORKLST)) {
1075 vp->v_flag &= ~VONWORKLST;
1076 LIST_REMOVE(vp, v_synclist);
1077 }
1078 splx(s);
1079 simple_unlock(slock);
1080 return (0);
1081 }
1082
1083 /*
1084 * the vnode has pages, set up to process the request.
1085 */
1086
1087 error = 0;
1088 s = splbio();
1089 simple_lock(&global_v_numoutput_slock);
1090 wasclean = (vp->v_numoutput == 0);
1091 simple_unlock(&global_v_numoutput_slock);
1092 splx(s);
1093 off = startoff;
1094 if (endoff == 0 || flags & PGO_ALLPAGES) {
1095 endoff = trunc_page(LLONG_MAX);
1096 }
1097 by_list = (uobj->uo_npages <=
1098 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1099
1100 /*
1101 * start the loop. when scanning by list, hold the last page
1102 * in the list before we start. pages allocated after we start
1103 * will be added to the end of the list, so we can stop at the
1104 * current last page.
1105 */
1106
1107 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1108 curmp.uobject = uobj;
1109 curmp.offset = (voff_t)-1;
1110 curmp.flags = PG_BUSY;
1111 endmp.uobject = uobj;
1112 endmp.offset = (voff_t)-1;
1113 endmp.flags = PG_BUSY;
1114 if (by_list) {
1115 pg = TAILQ_FIRST(&uobj->memq);
1116 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1117 PHOLD(l);
1118 } else {
1119 pg = uvm_pagelookup(uobj, off);
1120 }
1121 nextpg = NULL;
1122 while (by_list || off < endoff) {
1123
1124 /*
1125 * if the current page is not interesting, move on to the next.
1126 */
1127
1128 KASSERT(pg == NULL || pg->uobject == uobj);
1129 KASSERT(pg == NULL ||
1130 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1131 (pg->flags & PG_BUSY) != 0);
1132 if (by_list) {
1133 if (pg == &endmp) {
1134 break;
1135 }
1136 if (pg->offset < startoff || pg->offset >= endoff ||
1137 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1138 pg = TAILQ_NEXT(pg, listq);
1139 continue;
1140 }
1141 off = pg->offset;
1142 } else if (pg == NULL ||
1143 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1144 off += PAGE_SIZE;
1145 if (off < endoff) {
1146 pg = uvm_pagelookup(uobj, off);
1147 }
1148 continue;
1149 }
1150
1151 /*
1152 * if the current page needs to be cleaned and it's busy,
1153 * wait for it to become unbusy.
1154 */
1155
1156 yield = (l->l_cpu->ci_schedstate.spc_flags &
1157 SPCF_SHOULDYIELD) && !pagedaemon;
1158 if (pg->flags & PG_BUSY || yield) {
1159 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1160 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1161 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1162 error = EDEADLK;
1163 break;
1164 }
1165 KASSERT(!pagedaemon);
1166 if (by_list) {
1167 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1168 UVMHIST_LOG(ubchist, "curmp next %p",
1169 TAILQ_NEXT(&curmp, listq), 0,0,0);
1170 }
1171 if (yield) {
1172 simple_unlock(slock);
1173 preempt(1);
1174 simple_lock(slock);
1175 } else {
1176 pg->flags |= PG_WANTED;
1177 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1178 simple_lock(slock);
1179 }
1180 if (by_list) {
1181 UVMHIST_LOG(ubchist, "after next %p",
1182 TAILQ_NEXT(&curmp, listq), 0,0,0);
1183 pg = TAILQ_NEXT(&curmp, listq);
1184 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1185 } else {
1186 pg = uvm_pagelookup(uobj, off);
1187 }
1188 continue;
1189 }
1190
1191 /*
1192 * if we're freeing, remove all mappings of the page now.
1193 * if we're cleaning, check if the page is needs to be cleaned.
1194 */
1195
1196 if (flags & PGO_FREE) {
1197 pmap_page_protect(pg, VM_PROT_NONE);
1198 }
1199 if (flags & PGO_CLEANIT) {
1200 needs_clean = pmap_clear_modify(pg) ||
1201 (pg->flags & PG_CLEAN) == 0;
1202 pg->flags |= PG_CLEAN;
1203 } else {
1204 needs_clean = FALSE;
1205 }
1206
1207 /*
1208 * if we're cleaning, build a cluster.
1209 * the cluster will consist of pages which are currently dirty,
1210 * but they will be returned to us marked clean.
1211 * if not cleaning, just operate on the one page.
1212 */
1213
1214 if (needs_clean) {
1215 wasclean = FALSE;
1216 memset(pgs, 0, sizeof(pgs));
1217 pg->flags |= PG_BUSY;
1218 UVM_PAGE_OWN(pg, "genfs_putpages");
1219
1220 /*
1221 * first look backward.
1222 */
1223
1224 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1225 nback = npages;
1226 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1227 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1228 if (nback) {
1229 memmove(&pgs[0], &pgs[npages - nback],
1230 nback * sizeof(pgs[0]));
1231 if (npages - nback < nback)
1232 memset(&pgs[nback], 0,
1233 (npages - nback) * sizeof(pgs[0]));
1234 else
1235 memset(&pgs[npages - nback], 0,
1236 nback * sizeof(pgs[0]));
1237 }
1238
1239 /*
1240 * then plug in our page of interest.
1241 */
1242
1243 pgs[nback] = pg;
1244
1245 /*
1246 * then look forward to fill in the remaining space in
1247 * the array of pages.
1248 */
1249
1250 npages = maxpages - nback - 1;
1251 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1252 &pgs[nback + 1],
1253 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1254 npages += nback + 1;
1255 } else {
1256 pgs[0] = pg;
1257 npages = 1;
1258 nback = 0;
1259 }
1260
1261 /*
1262 * apply FREE or DEACTIVATE options if requested.
1263 */
1264
1265 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1266 uvm_lock_pageq();
1267 }
1268 for (i = 0; i < npages; i++) {
1269 tpg = pgs[i];
1270 KASSERT(tpg->uobject == uobj);
1271 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1272 pg = tpg;
1273 if (tpg->offset < startoff || tpg->offset >= endoff)
1274 continue;
1275 if (flags & PGO_DEACTIVATE &&
1276 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1277 tpg->wire_count == 0) {
1278 (void) pmap_clear_reference(tpg);
1279 uvm_pagedeactivate(tpg);
1280 } else if (flags & PGO_FREE) {
1281 pmap_page_protect(tpg, VM_PROT_NONE);
1282 if (tpg->flags & PG_BUSY) {
1283 tpg->flags |= freeflag;
1284 if (pagedaemon) {
1285 uvmexp.paging++;
1286 uvm_pagedequeue(tpg);
1287 }
1288 } else {
1289
1290 /*
1291 * ``page is not busy''
1292 * implies that npages is 1
1293 * and needs_clean is false.
1294 */
1295
1296 nextpg = TAILQ_NEXT(tpg, listq);
1297 uvm_pagefree(tpg);
1298 if (pagedaemon)
1299 uvmexp.pdfreed++;
1300 }
1301 }
1302 }
1303 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1304 uvm_unlock_pageq();
1305 }
1306 if (needs_clean) {
1307
1308 /*
1309 * start the i/o. if we're traversing by list,
1310 * keep our place in the list with a marker page.
1311 */
1312
1313 if (by_list) {
1314 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1315 listq);
1316 }
1317 simple_unlock(slock);
1318 error = GOP_WRITE(vp, pgs, npages, flags);
1319 simple_lock(slock);
1320 if (by_list) {
1321 pg = TAILQ_NEXT(&curmp, listq);
1322 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1323 }
1324 if (error) {
1325 break;
1326 }
1327 if (by_list) {
1328 continue;
1329 }
1330 }
1331
1332 /*
1333 * find the next page and continue if there was no error.
1334 */
1335
1336 if (by_list) {
1337 if (nextpg) {
1338 pg = nextpg;
1339 nextpg = NULL;
1340 } else {
1341 pg = TAILQ_NEXT(pg, listq);
1342 }
1343 } else {
1344 off += (npages - nback) << PAGE_SHIFT;
1345 if (off < endoff) {
1346 pg = uvm_pagelookup(uobj, off);
1347 }
1348 }
1349 }
1350 if (by_list) {
1351 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1352 PRELE(l);
1353 }
1354
1355 /*
1356 * if we're cleaning and there was nothing to clean,
1357 * take us off the syncer list. if we started any i/o
1358 * and we're doing sync i/o, wait for all writes to finish.
1359 */
1360
1361 s = splbio();
1362 if ((flags & PGO_CLEANIT) && wasclean &&
1363 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1364 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1365 (vp->v_flag & VONWORKLST)) {
1366 vp->v_flag &= ~VONWORKLST;
1367 LIST_REMOVE(vp, v_synclist);
1368 }
1369 splx(s);
1370 if (!wasclean && !async) {
1371 s = splbio();
1372 /*
1373 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1374 * but the slot in ltsleep() is taken!
1375 * XXX - try to recover from missed wakeups with a timeout..
1376 * must think of something better.
1377 */
1378 while (vp->v_numoutput != 0) {
1379 vp->v_flag |= VBWAIT;
1380 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1381 "genput2", hz);
1382 simple_lock(slock);
1383 }
1384 splx(s);
1385 }
1386 simple_unlock(&uobj->vmobjlock);
1387 return (error);
1388 }
1389
1390 int
1391 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1392 {
1393 int s, error, run;
1394 int fs_bshift, dev_bshift;
1395 vaddr_t kva;
1396 off_t eof, offset, startoffset;
1397 size_t bytes, iobytes, skipbytes;
1398 daddr_t lbn, blkno;
1399 struct vm_page *pg;
1400 struct buf *mbp, *bp;
1401 struct vnode *devvp;
1402 boolean_t async = (flags & PGO_SYNCIO) == 0;
1403 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1404
1405 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1406 vp, pgs, npages, flags);
1407
1408 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1409 if (vp->v_type == VREG) {
1410 fs_bshift = vp->v_mount->mnt_fs_bshift;
1411 dev_bshift = vp->v_mount->mnt_dev_bshift;
1412 } else {
1413 fs_bshift = DEV_BSHIFT;
1414 dev_bshift = DEV_BSHIFT;
1415 }
1416 error = 0;
1417 pg = pgs[0];
1418 startoffset = pg->offset;
1419 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1420 skipbytes = 0;
1421 KASSERT(bytes != 0);
1422
1423 kva = uvm_pagermapin(pgs, npages,
1424 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1425
1426 s = splbio();
1427 simple_lock(&global_v_numoutput_slock);
1428 vp->v_numoutput += 2;
1429 simple_unlock(&global_v_numoutput_slock);
1430 mbp = pool_get(&bufpool, PR_WAITOK);
1431 BUF_INIT(mbp);
1432 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1433 vp, mbp, vp->v_numoutput, bytes);
1434 splx(s);
1435 mbp->b_bufsize = npages << PAGE_SHIFT;
1436 mbp->b_data = (void *)kva;
1437 mbp->b_resid = mbp->b_bcount = bytes;
1438 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1439 mbp->b_iodone = uvm_aio_biodone;
1440 mbp->b_vp = vp;
1441
1442 bp = NULL;
1443 for (offset = startoffset;
1444 bytes > 0;
1445 offset += iobytes, bytes -= iobytes) {
1446 lbn = offset >> fs_bshift;
1447 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1448 if (error) {
1449 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1450 skipbytes += bytes;
1451 bytes = 0;
1452 break;
1453 }
1454
1455 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1456 bytes);
1457 if (blkno == (daddr_t)-1) {
1458 skipbytes += iobytes;
1459 continue;
1460 }
1461
1462 /* if it's really one i/o, don't make a second buf */
1463 if (offset == startoffset && iobytes == bytes) {
1464 bp = mbp;
1465 } else {
1466 s = splbio();
1467 V_INCR_NUMOUTPUT(vp);
1468 bp = pool_get(&bufpool, PR_WAITOK);
1469 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1470 vp, bp, vp->v_numoutput, 0);
1471 splx(s);
1472 BUF_INIT(bp);
1473 bp->b_data = (char *)kva +
1474 (vaddr_t)(offset - pg->offset);
1475 bp->b_resid = bp->b_bcount = iobytes;
1476 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1477 bp->b_iodone = uvm_aio_biodone1;
1478 bp->b_vp = vp;
1479 }
1480 bp->b_lblkno = 0;
1481 bp->b_private = mbp;
1482 if (devvp->v_type == VBLK) {
1483 bp->b_dev = devvp->v_rdev;
1484 }
1485
1486 /* adjust physical blkno for partial blocks */
1487 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1488 dev_bshift);
1489 UVMHIST_LOG(ubchist,
1490 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1491 vp, offset, bp->b_bcount, bp->b_blkno);
1492 if (curproc == uvm.pagedaemon_proc)
1493 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1494 else if (async)
1495 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1496 else
1497 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1498 VOP_STRATEGY(bp->b_vp, bp);
1499 }
1500 if (skipbytes) {
1501 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1502 s = splbio();
1503 if (error) {
1504 mbp->b_flags |= B_ERROR;
1505 mbp->b_error = error;
1506 }
1507 mbp->b_resid -= skipbytes;
1508 if (mbp->b_resid == 0) {
1509 biodone(mbp);
1510 }
1511 splx(s);
1512 }
1513 if (async) {
1514 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1515 return (0);
1516 }
1517 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1518 error = biowait(mbp);
1519 uvm_aio_aiodone(mbp);
1520 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1521 return (error);
1522 }
1523
1524 /*
1525 * VOP_PUTPAGES() for vnodes which never have pages.
1526 */
1527
1528 int
1529 genfs_null_putpages(void *v)
1530 {
1531 struct vop_putpages_args /* {
1532 struct vnode *a_vp;
1533 voff_t a_offlo;
1534 voff_t a_offhi;
1535 int a_flags;
1536 } */ *ap = v;
1537 struct vnode *vp = ap->a_vp;
1538
1539 KASSERT(vp->v_uobj.uo_npages == 0);
1540 simple_unlock(&vp->v_interlock);
1541 return (0);
1542 }
1543
1544 void
1545 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1546 {
1547 struct genfs_node *gp = VTOG(vp);
1548
1549 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1550 gp->g_op = ops;
1551 }
1552
1553 void
1554 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1555 {
1556 int bsize;
1557
1558 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1559 *eobp = (size + bsize - 1) & ~(bsize - 1);
1560 }
1561
1562 int
1563 genfs_compat_getpages(void *v)
1564 {
1565 struct vop_getpages_args /* {
1566 struct vnode *a_vp;
1567 voff_t a_offset;
1568 struct vm_page **a_m;
1569 int *a_count;
1570 int a_centeridx;
1571 vm_prot_t a_access_type;
1572 int a_advice;
1573 int a_flags;
1574 } */ *ap = v;
1575
1576 off_t origoffset;
1577 struct vnode *vp = ap->a_vp;
1578 struct uvm_object *uobj = &vp->v_uobj;
1579 struct vm_page *pg, **pgs;
1580 vaddr_t kva;
1581 int i, error, orignpages, npages;
1582 struct iovec iov;
1583 struct uio uio;
1584 struct ucred *cred = curproc->p_ucred;
1585 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1586
1587 error = 0;
1588 origoffset = ap->a_offset;
1589 orignpages = *ap->a_count;
1590 pgs = ap->a_m;
1591
1592 if (write && (vp->v_flag & VONWORKLST) == 0) {
1593 vn_syncer_add_to_worklist(vp, filedelay);
1594 }
1595 if (ap->a_flags & PGO_LOCKED) {
1596 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1597 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1598
1599 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1600 }
1601 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1602 simple_unlock(&uobj->vmobjlock);
1603 return (EINVAL);
1604 }
1605 npages = orignpages;
1606 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1607 simple_unlock(&uobj->vmobjlock);
1608 kva = uvm_pagermapin(pgs, npages,
1609 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1610 for (i = 0; i < npages; i++) {
1611 pg = pgs[i];
1612 if ((pg->flags & PG_FAKE) == 0) {
1613 continue;
1614 }
1615 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1616 iov.iov_len = PAGE_SIZE;
1617 uio.uio_iov = &iov;
1618 uio.uio_iovcnt = 1;
1619 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1620 uio.uio_segflg = UIO_SYSSPACE;
1621 uio.uio_rw = UIO_READ;
1622 uio.uio_resid = PAGE_SIZE;
1623 uio.uio_procp = NULL;
1624 /* XXX vn_lock */
1625 error = VOP_READ(vp, &uio, 0, cred);
1626 if (error) {
1627 break;
1628 }
1629 if (uio.uio_resid) {
1630 memset(iov.iov_base, 0, uio.uio_resid);
1631 }
1632 }
1633 uvm_pagermapout(kva, npages);
1634 simple_lock(&uobj->vmobjlock);
1635 uvm_lock_pageq();
1636 for (i = 0; i < npages; i++) {
1637 pg = pgs[i];
1638 if (error && (pg->flags & PG_FAKE) != 0) {
1639 pg->flags |= PG_RELEASED;
1640 } else {
1641 pmap_clear_modify(pg);
1642 uvm_pageactivate(pg);
1643 }
1644 }
1645 if (error) {
1646 uvm_page_unbusy(pgs, npages);
1647 }
1648 uvm_unlock_pageq();
1649 simple_unlock(&uobj->vmobjlock);
1650 return (error);
1651 }
1652
1653 int
1654 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1655 int flags)
1656 {
1657 off_t offset;
1658 struct iovec iov;
1659 struct uio uio;
1660 struct ucred *cred = curproc->p_ucred;
1661 struct buf *bp;
1662 vaddr_t kva;
1663 int s, error;
1664
1665 offset = pgs[0]->offset;
1666 kva = uvm_pagermapin(pgs, npages,
1667 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1668
1669 iov.iov_base = (void *)kva;
1670 iov.iov_len = npages << PAGE_SHIFT;
1671 uio.uio_iov = &iov;
1672 uio.uio_iovcnt = 1;
1673 uio.uio_offset = offset;
1674 uio.uio_segflg = UIO_SYSSPACE;
1675 uio.uio_rw = UIO_WRITE;
1676 uio.uio_resid = npages << PAGE_SHIFT;
1677 uio.uio_procp = NULL;
1678 /* XXX vn_lock */
1679 error = VOP_WRITE(vp, &uio, 0, cred);
1680
1681 s = splbio();
1682 V_INCR_NUMOUTPUT(vp);
1683 bp = pool_get(&bufpool, PR_WAITOK);
1684 splx(s);
1685
1686 BUF_INIT(bp);
1687 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1688 bp->b_vp = vp;
1689 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1690 bp->b_data = (char *)kva;
1691 bp->b_bcount = npages << PAGE_SHIFT;
1692 bp->b_bufsize = npages << PAGE_SHIFT;
1693 bp->b_resid = 0;
1694 if (error) {
1695 bp->b_flags |= B_ERROR;
1696 bp->b_error = error;
1697 }
1698 uvm_aio_aiodone(bp);
1699 return (error);
1700 }
1701
1702 static void
1703 filt_genfsdetach(struct knote *kn)
1704 {
1705 struct vnode *vp = (struct vnode *)kn->kn_hook;
1706
1707 /* XXXLUKEM lock the struct? */
1708 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1709 }
1710
1711 static int
1712 filt_genfsread(struct knote *kn, long hint)
1713 {
1714 struct vnode *vp = (struct vnode *)kn->kn_hook;
1715
1716 /*
1717 * filesystem is gone, so set the EOF flag and schedule
1718 * the knote for deletion.
1719 */
1720 if (hint == NOTE_REVOKE) {
1721 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1722 return (1);
1723 }
1724
1725 /* XXXLUKEM lock the struct? */
1726 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1727 return (kn->kn_data != 0);
1728 }
1729
1730 static int
1731 filt_genfsvnode(struct knote *kn, long hint)
1732 {
1733
1734 if (kn->kn_sfflags & hint)
1735 kn->kn_fflags |= hint;
1736 if (hint == NOTE_REVOKE) {
1737 kn->kn_flags |= EV_EOF;
1738 return (1);
1739 }
1740 return (kn->kn_fflags != 0);
1741 }
1742
1743 static const struct filterops genfsread_filtops =
1744 { 1, NULL, filt_genfsdetach, filt_genfsread };
1745 static const struct filterops genfsvnode_filtops =
1746 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1747
1748 int
1749 genfs_kqfilter(void *v)
1750 {
1751 struct vop_kqfilter_args /* {
1752 struct vnode *a_vp;
1753 struct knote *a_kn;
1754 } */ *ap = v;
1755 struct vnode *vp;
1756 struct knote *kn;
1757
1758 vp = ap->a_vp;
1759 kn = ap->a_kn;
1760 switch (kn->kn_filter) {
1761 case EVFILT_READ:
1762 kn->kn_fop = &genfsread_filtops;
1763 break;
1764 case EVFILT_VNODE:
1765 kn->kn_fop = &genfsvnode_filtops;
1766 break;
1767 default:
1768 return (1);
1769 }
1770
1771 kn->kn_hook = vp;
1772
1773 /* XXXLUKEM lock the struct? */
1774 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1775
1776 return (0);
1777 }
1778