genfs_vnops.c revision 1.94 1 /* $NetBSD: genfs_vnops.c,v 1.94 2005/01/25 23:55:21 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.94 2005/01/25 23:55:21 wrstuden Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73
74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2; /* # of page chunks to readahead */
77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78
79 int
80 genfs_poll(void *v)
81 {
82 struct vop_poll_args /* {
83 struct vnode *a_vp;
84 int a_events;
85 struct proc *a_p;
86 } */ *ap = v;
87
88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90
91 int
92 genfs_fsync(void *v)
93 {
94 struct vop_fsync_args /* {
95 struct vnode *a_vp;
96 struct ucred *a_cred;
97 int a_flags;
98 off_t offlo;
99 off_t offhi;
100 struct proc *a_p;
101 } */ *ap = v;
102 struct vnode *vp = ap->a_vp, *dvp;
103 int wait;
104 int error;
105
106 wait = (ap->a_flags & FSYNC_WAIT) != 0;
107 vflushbuf(vp, wait);
108 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
109 error = 0;
110 else
111 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
112
113 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
114 int l = 0;
115 if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
116 error = ENXIO;
117 else
118 error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
119 ap->a_p->p_ucred, ap->a_p);
120 }
121
122 return (error);
123 }
124
125 int
126 genfs_seek(void *v)
127 {
128 struct vop_seek_args /* {
129 struct vnode *a_vp;
130 off_t a_oldoff;
131 off_t a_newoff;
132 struct ucred *a_ucred;
133 } */ *ap = v;
134
135 if (ap->a_newoff < 0)
136 return (EINVAL);
137
138 return (0);
139 }
140
141 int
142 genfs_abortop(void *v)
143 {
144 struct vop_abortop_args /* {
145 struct vnode *a_dvp;
146 struct componentname *a_cnp;
147 } */ *ap = v;
148
149 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
150 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
151 return (0);
152 }
153
154 int
155 genfs_fcntl(void *v)
156 {
157 struct vop_fcntl_args /* {
158 struct vnode *a_vp;
159 u_int a_command;
160 caddr_t a_data;
161 int a_fflag;
162 struct ucred *a_cred;
163 struct proc *a_p;
164 } */ *ap = v;
165
166 if (ap->a_command == F_SETFL)
167 return (0);
168 else
169 return (EOPNOTSUPP);
170 }
171
172 /*ARGSUSED*/
173 int
174 genfs_badop(void *v)
175 {
176
177 panic("genfs: bad op");
178 }
179
180 /*ARGSUSED*/
181 int
182 genfs_nullop(void *v)
183 {
184
185 return (0);
186 }
187
188 /*ARGSUSED*/
189 int
190 genfs_einval(void *v)
191 {
192
193 return (EINVAL);
194 }
195
196 /*
197 * Called when an fs doesn't support a particular vop.
198 * This takes care to vrele, vput, or vunlock passed in vnodes.
199 */
200 int
201 genfs_eopnotsupp(void *v)
202 {
203 struct vop_generic_args /*
204 struct vnodeop_desc *a_desc;
205 / * other random data follows, presumably * /
206 } */ *ap = v;
207 struct vnodeop_desc *desc = ap->a_desc;
208 struct vnode *vp, *vp_last = NULL;
209 int flags, i, j, offset;
210
211 flags = desc->vdesc_flags;
212 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
213 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
214 break; /* stop at end of list */
215 if ((j = flags & VDESC_VP0_WILLPUT)) {
216 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
217
218 /* Skip if NULL */
219 if (!vp)
220 continue;
221
222 switch (j) {
223 case VDESC_VP0_WILLPUT:
224 /* Check for dvp == vp cases */
225 if (vp == vp_last)
226 vrele(vp);
227 else {
228 vput(vp);
229 vp_last = vp;
230 }
231 break;
232 case VDESC_VP0_WILLUNLOCK:
233 VOP_UNLOCK(vp, 0);
234 break;
235 case VDESC_VP0_WILLRELE:
236 vrele(vp);
237 break;
238 }
239 }
240 }
241
242 return (EOPNOTSUPP);
243 }
244
245 /*ARGSUSED*/
246 int
247 genfs_ebadf(void *v)
248 {
249
250 return (EBADF);
251 }
252
253 /* ARGSUSED */
254 int
255 genfs_enoioctl(void *v)
256 {
257
258 return (EPASSTHROUGH);
259 }
260
261
262 /*
263 * Eliminate all activity associated with the requested vnode
264 * and with all vnodes aliased to the requested vnode.
265 */
266 int
267 genfs_revoke(void *v)
268 {
269 struct vop_revoke_args /* {
270 struct vnode *a_vp;
271 int a_flags;
272 } */ *ap = v;
273 struct vnode *vp, *vq;
274 struct proc *p = curproc; /* XXX */
275
276 #ifdef DIAGNOSTIC
277 if ((ap->a_flags & REVOKEALL) == 0)
278 panic("genfs_revoke: not revokeall");
279 #endif
280
281 vp = ap->a_vp;
282 simple_lock(&vp->v_interlock);
283
284 if (vp->v_flag & VALIASED) {
285 /*
286 * If a vgone (or vclean) is already in progress,
287 * wait until it is done and return.
288 */
289 if (vp->v_flag & VXLOCK) {
290 vp->v_flag |= VXWANT;
291 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
292 &vp->v_interlock);
293 return (0);
294 }
295 /*
296 * Ensure that vp will not be vgone'd while we
297 * are eliminating its aliases.
298 */
299 vp->v_flag |= VXLOCK;
300 simple_unlock(&vp->v_interlock);
301 while (vp->v_flag & VALIASED) {
302 simple_lock(&spechash_slock);
303 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
304 if (vq->v_rdev != vp->v_rdev ||
305 vq->v_type != vp->v_type || vp == vq)
306 continue;
307 simple_unlock(&spechash_slock);
308 vgone(vq);
309 break;
310 }
311 if (vq == NULLVP)
312 simple_unlock(&spechash_slock);
313 }
314 /*
315 * Remove the lock so that vgone below will
316 * really eliminate the vnode after which time
317 * vgone will awaken any sleepers.
318 */
319 simple_lock(&vp->v_interlock);
320 vp->v_flag &= ~VXLOCK;
321 }
322 vgonel(vp, p);
323 return (0);
324 }
325
326 /*
327 * Lock the node.
328 */
329 int
330 genfs_lock(void *v)
331 {
332 struct vop_lock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
339 }
340
341 /*
342 * Unlock the node.
343 */
344 int
345 genfs_unlock(void *v)
346 {
347 struct vop_unlock_args /* {
348 struct vnode *a_vp;
349 int a_flags;
350 } */ *ap = v;
351 struct vnode *vp = ap->a_vp;
352
353 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
354 &vp->v_interlock));
355 }
356
357 /*
358 * Return whether or not the node is locked.
359 */
360 int
361 genfs_islocked(void *v)
362 {
363 struct vop_islocked_args /* {
364 struct vnode *a_vp;
365 } */ *ap = v;
366 struct vnode *vp = ap->a_vp;
367
368 return (lockstatus(vp->v_vnlock));
369 }
370
371 /*
372 * Stubs to use when there is no locking to be done on the underlying object.
373 */
374 int
375 genfs_nolock(void *v)
376 {
377 struct vop_lock_args /* {
378 struct vnode *a_vp;
379 int a_flags;
380 struct proc *a_p;
381 } */ *ap = v;
382
383 /*
384 * Since we are not using the lock manager, we must clear
385 * the interlock here.
386 */
387 if (ap->a_flags & LK_INTERLOCK)
388 simple_unlock(&ap->a_vp->v_interlock);
389 return (0);
390 }
391
392 int
393 genfs_nounlock(void *v)
394 {
395
396 return (0);
397 }
398
399 int
400 genfs_noislocked(void *v)
401 {
402
403 return (0);
404 }
405
406 /*
407 * Local lease check for NFS servers. Just set up args and let
408 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
409 * this is a null operation.
410 */
411 int
412 genfs_lease_check(void *v)
413 {
414 #ifdef NFSSERVER
415 struct vop_lease_args /* {
416 struct vnode *a_vp;
417 struct proc *a_p;
418 struct ucred *a_cred;
419 int a_flag;
420 } */ *ap = v;
421 u_int32_t duration = 0;
422 int cache;
423 u_quad_t frev;
424
425 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
426 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
427 return (0);
428 #else
429 return (0);
430 #endif /* NFSSERVER */
431 }
432
433 int
434 genfs_mmap(void *v)
435 {
436
437 return (0);
438 }
439
440 static __inline void
441 genfs_rel_pages(struct vm_page **pgs, int npages)
442 {
443 int i;
444
445 for (i = 0; i < npages; i++) {
446 struct vm_page *pg = pgs[i];
447
448 if (pg == NULL)
449 continue;
450 if (pg->flags & PG_FAKE) {
451 pg->flags |= PG_RELEASED;
452 }
453 }
454 uvm_lock_pageq();
455 uvm_page_unbusy(pgs, npages);
456 uvm_unlock_pageq();
457 }
458
459 /*
460 * generic VM getpages routine.
461 * Return PG_BUSY pages for the given range,
462 * reading from backing store if necessary.
463 */
464
465 int
466 genfs_getpages(void *v)
467 {
468 struct vop_getpages_args /* {
469 struct vnode *a_vp;
470 voff_t a_offset;
471 struct vm_page **a_m;
472 int *a_count;
473 int a_centeridx;
474 vm_prot_t a_access_type;
475 int a_advice;
476 int a_flags;
477 } */ *ap = v;
478
479 off_t newsize, diskeof, memeof;
480 off_t offset, origoffset, startoffset, endoffset, raoffset;
481 daddr_t lbn, blkno;
482 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
483 int fs_bshift, fs_bsize, dev_bshift;
484 int flags = ap->a_flags;
485 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
486 vaddr_t kva;
487 struct buf *bp, *mbp;
488 struct vnode *vp = ap->a_vp;
489 struct vnode *devvp;
490 struct genfs_node *gp = VTOG(vp);
491 struct uvm_object *uobj = &vp->v_uobj;
492 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
493 int pgs_size;
494 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
495 boolean_t async = (flags & PGO_SYNCIO) == 0;
496 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
497 boolean_t sawhole = FALSE;
498 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
499 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
500
501 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
502 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
503
504 /* XXXUBC temp limit */
505 if (*ap->a_count > MAX_READ_AHEAD) {
506 panic("genfs_getpages: too many pages");
507 }
508
509 error = 0;
510 origoffset = ap->a_offset;
511 orignpages = *ap->a_count;
512 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
513 if (flags & PGO_PASTEOF) {
514 newsize = MAX(vp->v_size,
515 origoffset + (orignpages << PAGE_SHIFT));
516 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
517 } else {
518 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
519 }
520 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
521 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
522 KASSERT(orignpages > 0);
523 KASSERT(origoffset + (ap->a_centeridx << PAGE_SHIFT) < memeof);
524
525 /*
526 * For PGO_LOCKED requests, just return whatever's in memory.
527 */
528
529 if (flags & PGO_LOCKED) {
530 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
531 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
532
533 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
534 }
535
536 /* uobj is locked */
537
538 if (write && (vp->v_flag & VONWORKLST) == 0) {
539 vn_syncer_add_to_worklist(vp, filedelay);
540 }
541
542 /*
543 * find the requested pages and make some simple checks.
544 * leave space in the page array for a whole block.
545 */
546
547 if (vp->v_type == VREG) {
548 fs_bshift = vp->v_mount->mnt_fs_bshift;
549 dev_bshift = vp->v_mount->mnt_dev_bshift;
550 } else {
551 fs_bshift = DEV_BSHIFT;
552 dev_bshift = DEV_BSHIFT;
553 }
554 fs_bsize = 1 << fs_bshift;
555
556 orignpages = MIN(orignpages,
557 round_page(memeof - origoffset) >> PAGE_SHIFT);
558 npages = orignpages;
559 startoffset = origoffset & ~(fs_bsize - 1);
560 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
561 fs_bsize - 1) & ~(fs_bsize - 1));
562 endoffset = MIN(endoffset, round_page(memeof));
563 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
564
565 pgs_size = sizeof(struct vm_page *) *
566 ((endoffset - startoffset) >> PAGE_SHIFT);
567 if (pgs_size > sizeof(pgs_onstack)) {
568 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
569 if (pgs == NULL) {
570 simple_unlock(&uobj->vmobjlock);
571 return (ENOMEM);
572 }
573 } else {
574 pgs = pgs_onstack;
575 memset(pgs, 0, pgs_size);
576 }
577 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
578 ridx, npages, startoffset, endoffset);
579 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
580 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
581 KASSERT(async != 0);
582 genfs_rel_pages(&pgs[ridx], orignpages);
583 simple_unlock(&uobj->vmobjlock);
584 if (pgs != pgs_onstack)
585 free(pgs, M_DEVBUF);
586 return (EBUSY);
587 }
588
589 /*
590 * if the pages are already resident, just return them.
591 */
592
593 for (i = 0; i < npages; i++) {
594 struct vm_page *pg = pgs[ridx + i];
595
596 if ((pg->flags & PG_FAKE) ||
597 (write && (pg->flags & PG_RDONLY))) {
598 break;
599 }
600 }
601 if (i == npages) {
602 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
603 raoffset = origoffset + (orignpages << PAGE_SHIFT);
604 npages += ridx;
605 goto raout;
606 }
607
608 /*
609 * if PGO_OVERWRITE is set, don't bother reading the pages.
610 */
611
612 if (flags & PGO_OVERWRITE) {
613 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
614
615 for (i = 0; i < npages; i++) {
616 struct vm_page *pg = pgs[ridx + i];
617
618 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
619 }
620 npages += ridx;
621 goto out;
622 }
623
624 /*
625 * the page wasn't resident and we're not overwriting,
626 * so we're going to have to do some i/o.
627 * find any additional pages needed to cover the expanded range.
628 */
629
630 npages = (endoffset - startoffset) >> PAGE_SHIFT;
631 if (startoffset != origoffset || npages != orignpages) {
632
633 /*
634 * we need to avoid deadlocks caused by locking
635 * additional pages at lower offsets than pages we
636 * already have locked. unlock them all and start over.
637 */
638
639 genfs_rel_pages(&pgs[ridx], orignpages);
640 memset(pgs, 0, pgs_size);
641
642 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
643 startoffset, endoffset, 0,0);
644 npgs = npages;
645 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
646 async ? UFP_NOWAIT : UFP_ALL) != npages) {
647 KASSERT(async != 0);
648 genfs_rel_pages(pgs, npages);
649 simple_unlock(&uobj->vmobjlock);
650 if (pgs != pgs_onstack)
651 free(pgs, M_DEVBUF);
652 return (EBUSY);
653 }
654 }
655 simple_unlock(&uobj->vmobjlock);
656
657 /*
658 * read the desired page(s).
659 */
660
661 totalbytes = npages << PAGE_SHIFT;
662 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
663 tailbytes = totalbytes - bytes;
664 skipbytes = 0;
665
666 kva = uvm_pagermapin(pgs, npages,
667 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
668
669 s = splbio();
670 mbp = pool_get(&bufpool, PR_WAITOK);
671 splx(s);
672 BUF_INIT(mbp);
673 mbp->b_bufsize = totalbytes;
674 mbp->b_data = (void *)kva;
675 mbp->b_resid = mbp->b_bcount = bytes;
676 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
677 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
678 mbp->b_vp = vp;
679
680 /*
681 * if EOF is in the middle of the range, zero the part past EOF.
682 * if the page including EOF is not PG_FAKE, skip over it since
683 * in that case it has valid data that we need to preserve.
684 */
685
686 if (tailbytes > 0) {
687 size_t tailstart = bytes;
688
689 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
690 tailstart = round_page(tailstart);
691 tailbytes -= tailstart - bytes;
692 }
693 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
694 kva, tailstart, tailbytes,0);
695 memset((void *)(kva + tailstart), 0, tailbytes);
696 }
697
698 /*
699 * now loop over the pages, reading as needed.
700 */
701
702 if (write) {
703 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
704 } else {
705 lockmgr(&gp->g_glock, LK_SHARED, NULL);
706 }
707
708 bp = NULL;
709 for (offset = startoffset;
710 bytes > 0;
711 offset += iobytes, bytes -= iobytes) {
712
713 /*
714 * skip pages which don't need to be read.
715 */
716
717 pidx = (offset - startoffset) >> PAGE_SHIFT;
718 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
719 size_t b;
720
721 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
722 b = MIN(PAGE_SIZE, bytes);
723 offset += b;
724 bytes -= b;
725 skipbytes += b;
726 pidx++;
727 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
728 offset, 0,0,0);
729 if (bytes == 0) {
730 goto loopdone;
731 }
732 }
733
734 /*
735 * bmap the file to find out the blkno to read from and
736 * how much we can read in one i/o. if bmap returns an error,
737 * skip the rest of the top-level i/o.
738 */
739
740 lbn = offset >> fs_bshift;
741 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
742 if (error) {
743 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
744 lbn, error,0,0);
745 skipbytes += bytes;
746 goto loopdone;
747 }
748
749 /*
750 * see how many pages can be read with this i/o.
751 * reduce the i/o size if necessary to avoid
752 * overwriting pages with valid data.
753 */
754
755 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
756 bytes);
757 if (offset + iobytes > round_page(offset)) {
758 pcount = 1;
759 while (pidx + pcount < npages &&
760 pgs[pidx + pcount]->flags & PG_FAKE) {
761 pcount++;
762 }
763 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
764 (offset - trunc_page(offset)));
765 }
766
767 /*
768 * if this block isn't allocated, zero it instead of
769 * reading it. if this is a read access, mark the
770 * pages we zeroed PG_RDONLY.
771 */
772
773 if (blkno < 0) {
774 int holepages = (round_page(offset + iobytes) -
775 trunc_page(offset)) >> PAGE_SHIFT;
776 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
777
778 sawhole = TRUE;
779 memset((char *)kva + (offset - startoffset), 0,
780 iobytes);
781 skipbytes += iobytes;
782
783 for (i = 0; i < holepages; i++) {
784 if (write) {
785 pgs[pidx + i]->flags &= ~PG_CLEAN;
786 } else {
787 pgs[pidx + i]->flags |= PG_RDONLY;
788 }
789 }
790 continue;
791 }
792
793 /*
794 * allocate a sub-buf for this piece of the i/o
795 * (or just use mbp if there's only 1 piece),
796 * and start it going.
797 */
798
799 if (offset == startoffset && iobytes == bytes) {
800 bp = mbp;
801 } else {
802 s = splbio();
803 bp = pool_get(&bufpool, PR_WAITOK);
804 splx(s);
805 BUF_INIT(bp);
806 bp->b_data = (char *)kva + offset - startoffset;
807 bp->b_resid = bp->b_bcount = iobytes;
808 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
809 bp->b_iodone = uvm_aio_biodone1;
810 bp->b_vp = vp;
811 bp->b_proc = NULL;
812 }
813 bp->b_lblkno = 0;
814 bp->b_private = mbp;
815 if (devvp->v_type == VBLK) {
816 bp->b_dev = devvp->v_rdev;
817 }
818
819 /* adjust physical blkno for partial blocks */
820 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
821 dev_bshift);
822
823 UVMHIST_LOG(ubchist,
824 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
825 bp, offset, iobytes, bp->b_blkno);
826
827 if (async)
828 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
829 else
830 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
831 VOP_STRATEGY(bp->b_vp, bp);
832 }
833
834 loopdone:
835 if (skipbytes) {
836 s = splbio();
837 if (error) {
838 mbp->b_flags |= B_ERROR;
839 mbp->b_error = error;
840 }
841 mbp->b_resid -= skipbytes;
842 if (mbp->b_resid == 0) {
843 biodone(mbp);
844 }
845 splx(s);
846 }
847
848 if (async) {
849 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
850 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
851 if (pgs != pgs_onstack)
852 free(pgs, M_DEVBUF);
853 return (0);
854 }
855 if (bp != NULL) {
856 error = biowait(mbp);
857 }
858 s = splbio();
859 pool_put(&bufpool, mbp);
860 splx(s);
861 uvm_pagermapout(kva, npages);
862 raoffset = startoffset + totalbytes;
863
864 /*
865 * if this we encountered a hole then we have to do a little more work.
866 * for read faults, we marked the page PG_RDONLY so that future
867 * write accesses to the page will fault again.
868 * for write faults, we must make sure that the backing store for
869 * the page is completely allocated while the pages are locked.
870 */
871
872 if (!error && sawhole && write) {
873 for (i = 0; i < npages; i++) {
874 if (pgs[i] == NULL) {
875 continue;
876 }
877 pgs[i]->flags &= ~PG_CLEAN;
878 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
879 }
880 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
881 cred);
882 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
883 startoffset, npages << PAGE_SHIFT, error,0);
884 }
885 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
886 simple_lock(&uobj->vmobjlock);
887
888 /*
889 * see if we want to start any readahead.
890 * XXXUBC for now, just read the next 128k on 64k boundaries.
891 * this is pretty nonsensical, but it is 50% faster than reading
892 * just the next 64k.
893 */
894
895 raout:
896 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
897 PAGE_SHIFT <= 16) {
898 off_t rasize;
899 int rapages, err, i, skipped;
900
901 /* XXXUBC temp limit, from above */
902 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
903 genfs_rapages);
904 rasize = rapages << PAGE_SHIFT;
905 for (i = skipped = 0; i < genfs_racount; i++) {
906
907 if (raoffset >= memeof)
908 break;
909
910 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
911 VM_PROT_READ, 0, 0);
912 simple_lock(&uobj->vmobjlock);
913 if (err) {
914 if (err != EBUSY ||
915 skipped++ == genfs_raskip)
916 break;
917 }
918 raoffset += rasize;
919 rapages = rasize >> PAGE_SHIFT;
920 }
921 }
922
923 /*
924 * we're almost done! release the pages...
925 * for errors, we free the pages.
926 * otherwise we activate them and mark them as valid and clean.
927 * also, unbusy pages that were not actually requested.
928 */
929
930 if (error) {
931 for (i = 0; i < npages; i++) {
932 if (pgs[i] == NULL) {
933 continue;
934 }
935 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
936 pgs[i], pgs[i]->flags, 0,0);
937 if (pgs[i]->flags & PG_FAKE) {
938 pgs[i]->flags |= PG_RELEASED;
939 }
940 }
941 uvm_lock_pageq();
942 uvm_page_unbusy(pgs, npages);
943 uvm_unlock_pageq();
944 simple_unlock(&uobj->vmobjlock);
945 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
946 if (pgs != pgs_onstack)
947 free(pgs, M_DEVBUF);
948 return (error);
949 }
950
951 out:
952 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
953 uvm_lock_pageq();
954 for (i = 0; i < npages; i++) {
955 pg = pgs[i];
956 if (pg == NULL) {
957 continue;
958 }
959 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
960 pg, pg->flags, 0,0);
961 if (pg->flags & PG_FAKE && !overwrite) {
962 pg->flags &= ~(PG_FAKE);
963 pmap_clear_modify(pgs[i]);
964 }
965 if (write) {
966 pg->flags &= ~(PG_RDONLY);
967 }
968 if (i < ridx || i >= ridx + orignpages || async) {
969 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
970 pg, pg->offset,0,0);
971 if (pg->flags & PG_WANTED) {
972 wakeup(pg);
973 }
974 if (pg->flags & PG_FAKE) {
975 KASSERT(overwrite);
976 uvm_pagezero(pg);
977 }
978 if (pg->flags & PG_RELEASED) {
979 uvm_pagefree(pg);
980 continue;
981 }
982 uvm_pageactivate(pg);
983 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
984 UVM_PAGE_OWN(pg, NULL);
985 }
986 }
987 uvm_unlock_pageq();
988 simple_unlock(&uobj->vmobjlock);
989 if (ap->a_m != NULL) {
990 memcpy(ap->a_m, &pgs[ridx],
991 orignpages * sizeof(struct vm_page *));
992 }
993 if (pgs != pgs_onstack)
994 free(pgs, M_DEVBUF);
995 return (0);
996 }
997
998 /*
999 * generic VM putpages routine.
1000 * Write the given range of pages to backing store.
1001 *
1002 * => "offhi == 0" means flush all pages at or after "offlo".
1003 * => object should be locked by caller. we may _unlock_ the object
1004 * if (and only if) we need to clean a page (PGO_CLEANIT), or
1005 * if PGO_SYNCIO is set and there are pages busy.
1006 * we return with the object locked.
1007 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1008 * thus, a caller might want to unlock higher level resources
1009 * (e.g. vm_map) before calling flush.
1010 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1011 * unlock the object nor block.
1012 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1013 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1014 * that new pages are inserted on the tail end of the list. thus,
1015 * we can make a complete pass through the object in one go by starting
1016 * at the head and working towards the tail (new pages are put in
1017 * front of us).
1018 * => NOTE: we are allowed to lock the page queues, so the caller
1019 * must not be holding the page queue lock.
1020 *
1021 * note on "cleaning" object and PG_BUSY pages:
1022 * this routine is holding the lock on the object. the only time
1023 * that it can run into a PG_BUSY page that it does not own is if
1024 * some other process has started I/O on the page (e.g. either
1025 * a pagein, or a pageout). if the PG_BUSY page is being paged
1026 * in, then it can not be dirty (!PG_CLEAN) because no one has
1027 * had a chance to modify it yet. if the PG_BUSY page is being
1028 * paged out then it means that someone else has already started
1029 * cleaning the page for us (how nice!). in this case, if we
1030 * have syncio specified, then after we make our pass through the
1031 * object we need to wait for the other PG_BUSY pages to clear
1032 * off (i.e. we need to do an iosync). also note that once a
1033 * page is PG_BUSY it must stay in its object until it is un-busyed.
1034 *
1035 * note on page traversal:
1036 * we can traverse the pages in an object either by going down the
1037 * linked list in "uobj->memq", or we can go over the address range
1038 * by page doing hash table lookups for each address. depending
1039 * on how many pages are in the object it may be cheaper to do one
1040 * or the other. we set "by_list" to true if we are using memq.
1041 * if the cost of a hash lookup was equal to the cost of the list
1042 * traversal we could compare the number of pages in the start->stop
1043 * range to the total number of pages in the object. however, it
1044 * seems that a hash table lookup is more expensive than the linked
1045 * list traversal, so we multiply the number of pages in the
1046 * range by an estimate of the relatively higher cost of the hash lookup.
1047 */
1048
1049 int
1050 genfs_putpages(void *v)
1051 {
1052 struct vop_putpages_args /* {
1053 struct vnode *a_vp;
1054 voff_t a_offlo;
1055 voff_t a_offhi;
1056 int a_flags;
1057 } */ *ap = v;
1058 struct vnode *vp = ap->a_vp;
1059 struct uvm_object *uobj = &vp->v_uobj;
1060 struct simplelock *slock = &uobj->vmobjlock;
1061 off_t startoff = ap->a_offlo;
1062 off_t endoff = ap->a_offhi;
1063 off_t off;
1064 int flags = ap->a_flags;
1065 /* Even for strange MAXPHYS, the shift rounds down to a page */
1066 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1067 int i, s, error, npages, nback;
1068 int freeflag;
1069 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1070 boolean_t wasclean, by_list, needs_clean, yield;
1071 boolean_t async = (flags & PGO_SYNCIO) == 0;
1072 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1073 struct lwp *l = curlwp ? curlwp : &lwp0;
1074
1075 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1076
1077 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1078 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1079 KASSERT(startoff < endoff || endoff == 0);
1080
1081 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1082 vp, uobj->uo_npages, startoff, endoff - startoff);
1083 if (uobj->uo_npages == 0) {
1084 s = splbio();
1085 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1086 (vp->v_flag & VONWORKLST)) {
1087 vp->v_flag &= ~VONWORKLST;
1088 LIST_REMOVE(vp, v_synclist);
1089 }
1090 splx(s);
1091 simple_unlock(slock);
1092 return (0);
1093 }
1094
1095 /*
1096 * the vnode has pages, set up to process the request.
1097 */
1098
1099 error = 0;
1100 s = splbio();
1101 simple_lock(&global_v_numoutput_slock);
1102 wasclean = (vp->v_numoutput == 0);
1103 simple_unlock(&global_v_numoutput_slock);
1104 splx(s);
1105 off = startoff;
1106 if (endoff == 0 || flags & PGO_ALLPAGES) {
1107 endoff = trunc_page(LLONG_MAX);
1108 }
1109 by_list = (uobj->uo_npages <=
1110 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1111
1112 /*
1113 * start the loop. when scanning by list, hold the last page
1114 * in the list before we start. pages allocated after we start
1115 * will be added to the end of the list, so we can stop at the
1116 * current last page.
1117 */
1118
1119 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1120 curmp.uobject = uobj;
1121 curmp.offset = (voff_t)-1;
1122 curmp.flags = PG_BUSY;
1123 endmp.uobject = uobj;
1124 endmp.offset = (voff_t)-1;
1125 endmp.flags = PG_BUSY;
1126 if (by_list) {
1127 pg = TAILQ_FIRST(&uobj->memq);
1128 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1129 PHOLD(l);
1130 } else {
1131 pg = uvm_pagelookup(uobj, off);
1132 }
1133 nextpg = NULL;
1134 while (by_list || off < endoff) {
1135
1136 /*
1137 * if the current page is not interesting, move on to the next.
1138 */
1139
1140 KASSERT(pg == NULL || pg->uobject == uobj);
1141 KASSERT(pg == NULL ||
1142 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1143 (pg->flags & PG_BUSY) != 0);
1144 if (by_list) {
1145 if (pg == &endmp) {
1146 break;
1147 }
1148 if (pg->offset < startoff || pg->offset >= endoff ||
1149 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1150 pg = TAILQ_NEXT(pg, listq);
1151 continue;
1152 }
1153 off = pg->offset;
1154 } else if (pg == NULL ||
1155 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1156 off += PAGE_SIZE;
1157 if (off < endoff) {
1158 pg = uvm_pagelookup(uobj, off);
1159 }
1160 continue;
1161 }
1162
1163 /*
1164 * if the current page needs to be cleaned and it's busy,
1165 * wait for it to become unbusy.
1166 */
1167
1168 yield = (l->l_cpu->ci_schedstate.spc_flags &
1169 SPCF_SHOULDYIELD) && !pagedaemon;
1170 if (pg->flags & PG_BUSY || yield) {
1171 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1172 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1173 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1174 error = EDEADLK;
1175 break;
1176 }
1177 KASSERT(!pagedaemon);
1178 if (by_list) {
1179 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1180 UVMHIST_LOG(ubchist, "curmp next %p",
1181 TAILQ_NEXT(&curmp, listq), 0,0,0);
1182 }
1183 if (yield) {
1184 simple_unlock(slock);
1185 preempt(1);
1186 simple_lock(slock);
1187 } else {
1188 pg->flags |= PG_WANTED;
1189 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1190 simple_lock(slock);
1191 }
1192 if (by_list) {
1193 UVMHIST_LOG(ubchist, "after next %p",
1194 TAILQ_NEXT(&curmp, listq), 0,0,0);
1195 pg = TAILQ_NEXT(&curmp, listq);
1196 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1197 } else {
1198 pg = uvm_pagelookup(uobj, off);
1199 }
1200 continue;
1201 }
1202
1203 /*
1204 * if we're freeing, remove all mappings of the page now.
1205 * if we're cleaning, check if the page is needs to be cleaned.
1206 */
1207
1208 if (flags & PGO_FREE) {
1209 pmap_page_protect(pg, VM_PROT_NONE);
1210 }
1211 if (flags & PGO_CLEANIT) {
1212 needs_clean = pmap_clear_modify(pg) ||
1213 (pg->flags & PG_CLEAN) == 0;
1214 pg->flags |= PG_CLEAN;
1215 } else {
1216 needs_clean = FALSE;
1217 }
1218
1219 /*
1220 * if we're cleaning, build a cluster.
1221 * the cluster will consist of pages which are currently dirty,
1222 * but they will be returned to us marked clean.
1223 * if not cleaning, just operate on the one page.
1224 */
1225
1226 if (needs_clean) {
1227 wasclean = FALSE;
1228 memset(pgs, 0, sizeof(pgs));
1229 pg->flags |= PG_BUSY;
1230 UVM_PAGE_OWN(pg, "genfs_putpages");
1231
1232 /*
1233 * first look backward.
1234 */
1235
1236 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1237 nback = npages;
1238 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1239 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1240 if (nback) {
1241 memmove(&pgs[0], &pgs[npages - nback],
1242 nback * sizeof(pgs[0]));
1243 if (npages - nback < nback)
1244 memset(&pgs[nback], 0,
1245 (npages - nback) * sizeof(pgs[0]));
1246 else
1247 memset(&pgs[npages - nback], 0,
1248 nback * sizeof(pgs[0]));
1249 }
1250
1251 /*
1252 * then plug in our page of interest.
1253 */
1254
1255 pgs[nback] = pg;
1256
1257 /*
1258 * then look forward to fill in the remaining space in
1259 * the array of pages.
1260 */
1261
1262 npages = maxpages - nback - 1;
1263 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1264 &pgs[nback + 1],
1265 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1266 npages += nback + 1;
1267 } else {
1268 pgs[0] = pg;
1269 npages = 1;
1270 nback = 0;
1271 }
1272
1273 /*
1274 * apply FREE or DEACTIVATE options if requested.
1275 */
1276
1277 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1278 uvm_lock_pageq();
1279 }
1280 for (i = 0; i < npages; i++) {
1281 tpg = pgs[i];
1282 KASSERT(tpg->uobject == uobj);
1283 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1284 pg = tpg;
1285 if (tpg->offset < startoff || tpg->offset >= endoff)
1286 continue;
1287 if (flags & PGO_DEACTIVATE &&
1288 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1289 tpg->wire_count == 0) {
1290 (void) pmap_clear_reference(tpg);
1291 uvm_pagedeactivate(tpg);
1292 } else if (flags & PGO_FREE) {
1293 pmap_page_protect(tpg, VM_PROT_NONE);
1294 if (tpg->flags & PG_BUSY) {
1295 tpg->flags |= freeflag;
1296 if (pagedaemon) {
1297 uvmexp.paging++;
1298 uvm_pagedequeue(tpg);
1299 }
1300 } else {
1301
1302 /*
1303 * ``page is not busy''
1304 * implies that npages is 1
1305 * and needs_clean is false.
1306 */
1307
1308 nextpg = TAILQ_NEXT(tpg, listq);
1309 uvm_pagefree(tpg);
1310 if (pagedaemon)
1311 uvmexp.pdfreed++;
1312 }
1313 }
1314 }
1315 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1316 uvm_unlock_pageq();
1317 }
1318 if (needs_clean) {
1319
1320 /*
1321 * start the i/o. if we're traversing by list,
1322 * keep our place in the list with a marker page.
1323 */
1324
1325 if (by_list) {
1326 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1327 listq);
1328 }
1329 simple_unlock(slock);
1330 error = GOP_WRITE(vp, pgs, npages, flags);
1331 simple_lock(slock);
1332 if (by_list) {
1333 pg = TAILQ_NEXT(&curmp, listq);
1334 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1335 }
1336 if (error) {
1337 break;
1338 }
1339 if (by_list) {
1340 continue;
1341 }
1342 }
1343
1344 /*
1345 * find the next page and continue if there was no error.
1346 */
1347
1348 if (by_list) {
1349 if (nextpg) {
1350 pg = nextpg;
1351 nextpg = NULL;
1352 } else {
1353 pg = TAILQ_NEXT(pg, listq);
1354 }
1355 } else {
1356 off += (npages - nback) << PAGE_SHIFT;
1357 if (off < endoff) {
1358 pg = uvm_pagelookup(uobj, off);
1359 }
1360 }
1361 }
1362 if (by_list) {
1363 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1364 PRELE(l);
1365 }
1366
1367 /*
1368 * if we're cleaning and there was nothing to clean,
1369 * take us off the syncer list. if we started any i/o
1370 * and we're doing sync i/o, wait for all writes to finish.
1371 */
1372
1373 s = splbio();
1374 if ((flags & PGO_CLEANIT) && wasclean &&
1375 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1376 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1377 (vp->v_flag & VONWORKLST)) {
1378 vp->v_flag &= ~VONWORKLST;
1379 LIST_REMOVE(vp, v_synclist);
1380 }
1381 splx(s);
1382 if (!wasclean && !async) {
1383 s = splbio();
1384 /*
1385 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1386 * but the slot in ltsleep() is taken!
1387 * XXX - try to recover from missed wakeups with a timeout..
1388 * must think of something better.
1389 */
1390 while (vp->v_numoutput != 0) {
1391 vp->v_flag |= VBWAIT;
1392 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1393 "genput2", hz);
1394 simple_lock(slock);
1395 }
1396 splx(s);
1397 }
1398 simple_unlock(&uobj->vmobjlock);
1399 return (error);
1400 }
1401
1402 int
1403 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1404 {
1405 int s, error, run;
1406 int fs_bshift, dev_bshift;
1407 vaddr_t kva;
1408 off_t eof, offset, startoffset;
1409 size_t bytes, iobytes, skipbytes;
1410 daddr_t lbn, blkno;
1411 struct vm_page *pg;
1412 struct buf *mbp, *bp;
1413 struct vnode *devvp;
1414 boolean_t async = (flags & PGO_SYNCIO) == 0;
1415 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1416
1417 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1418 vp, pgs, npages, flags);
1419
1420 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1421 if (vp->v_type == VREG) {
1422 fs_bshift = vp->v_mount->mnt_fs_bshift;
1423 dev_bshift = vp->v_mount->mnt_dev_bshift;
1424 } else {
1425 fs_bshift = DEV_BSHIFT;
1426 dev_bshift = DEV_BSHIFT;
1427 }
1428 error = 0;
1429 pg = pgs[0];
1430 startoffset = pg->offset;
1431 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1432 skipbytes = 0;
1433 KASSERT(bytes != 0);
1434
1435 kva = uvm_pagermapin(pgs, npages,
1436 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1437
1438 s = splbio();
1439 simple_lock(&global_v_numoutput_slock);
1440 vp->v_numoutput += 2;
1441 simple_unlock(&global_v_numoutput_slock);
1442 mbp = pool_get(&bufpool, PR_WAITOK);
1443 BUF_INIT(mbp);
1444 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1445 vp, mbp, vp->v_numoutput, bytes);
1446 splx(s);
1447 mbp->b_bufsize = npages << PAGE_SHIFT;
1448 mbp->b_data = (void *)kva;
1449 mbp->b_resid = mbp->b_bcount = bytes;
1450 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1451 mbp->b_iodone = uvm_aio_biodone;
1452 mbp->b_vp = vp;
1453
1454 bp = NULL;
1455 for (offset = startoffset;
1456 bytes > 0;
1457 offset += iobytes, bytes -= iobytes) {
1458 lbn = offset >> fs_bshift;
1459 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1460 if (error) {
1461 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1462 skipbytes += bytes;
1463 bytes = 0;
1464 break;
1465 }
1466
1467 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1468 bytes);
1469 if (blkno == (daddr_t)-1) {
1470 skipbytes += iobytes;
1471 continue;
1472 }
1473
1474 /* if it's really one i/o, don't make a second buf */
1475 if (offset == startoffset && iobytes == bytes) {
1476 bp = mbp;
1477 } else {
1478 s = splbio();
1479 V_INCR_NUMOUTPUT(vp);
1480 bp = pool_get(&bufpool, PR_WAITOK);
1481 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1482 vp, bp, vp->v_numoutput, 0);
1483 splx(s);
1484 BUF_INIT(bp);
1485 bp->b_data = (char *)kva +
1486 (vaddr_t)(offset - pg->offset);
1487 bp->b_resid = bp->b_bcount = iobytes;
1488 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1489 bp->b_iodone = uvm_aio_biodone1;
1490 bp->b_vp = vp;
1491 }
1492 bp->b_lblkno = 0;
1493 bp->b_private = mbp;
1494 if (devvp->v_type == VBLK) {
1495 bp->b_dev = devvp->v_rdev;
1496 }
1497
1498 /* adjust physical blkno for partial blocks */
1499 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1500 dev_bshift);
1501 UVMHIST_LOG(ubchist,
1502 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1503 vp, offset, bp->b_bcount, bp->b_blkno);
1504 if (curproc == uvm.pagedaemon_proc)
1505 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1506 else if (async)
1507 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1508 else
1509 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1510 VOP_STRATEGY(bp->b_vp, bp);
1511 }
1512 if (skipbytes) {
1513 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1514 s = splbio();
1515 if (error) {
1516 mbp->b_flags |= B_ERROR;
1517 mbp->b_error = error;
1518 }
1519 mbp->b_resid -= skipbytes;
1520 if (mbp->b_resid == 0) {
1521 biodone(mbp);
1522 }
1523 splx(s);
1524 }
1525 if (async) {
1526 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1527 return (0);
1528 }
1529 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1530 error = biowait(mbp);
1531 uvm_aio_aiodone(mbp);
1532 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1533 return (error);
1534 }
1535
1536 /*
1537 * VOP_PUTPAGES() for vnodes which never have pages.
1538 */
1539
1540 int
1541 genfs_null_putpages(void *v)
1542 {
1543 struct vop_putpages_args /* {
1544 struct vnode *a_vp;
1545 voff_t a_offlo;
1546 voff_t a_offhi;
1547 int a_flags;
1548 } */ *ap = v;
1549 struct vnode *vp = ap->a_vp;
1550
1551 KASSERT(vp->v_uobj.uo_npages == 0);
1552 simple_unlock(&vp->v_interlock);
1553 return (0);
1554 }
1555
1556 void
1557 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1558 {
1559 struct genfs_node *gp = VTOG(vp);
1560
1561 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1562 gp->g_op = ops;
1563 }
1564
1565 void
1566 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1567 {
1568 int bsize;
1569
1570 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1571 *eobp = (size + bsize - 1) & ~(bsize - 1);
1572 }
1573
1574 int
1575 genfs_compat_getpages(void *v)
1576 {
1577 struct vop_getpages_args /* {
1578 struct vnode *a_vp;
1579 voff_t a_offset;
1580 struct vm_page **a_m;
1581 int *a_count;
1582 int a_centeridx;
1583 vm_prot_t a_access_type;
1584 int a_advice;
1585 int a_flags;
1586 } */ *ap = v;
1587
1588 off_t origoffset;
1589 struct vnode *vp = ap->a_vp;
1590 struct uvm_object *uobj = &vp->v_uobj;
1591 struct vm_page *pg, **pgs;
1592 vaddr_t kva;
1593 int i, error, orignpages, npages;
1594 struct iovec iov;
1595 struct uio uio;
1596 struct ucred *cred = curproc->p_ucred;
1597 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1598
1599 error = 0;
1600 origoffset = ap->a_offset;
1601 orignpages = *ap->a_count;
1602 pgs = ap->a_m;
1603
1604 if (write && (vp->v_flag & VONWORKLST) == 0) {
1605 vn_syncer_add_to_worklist(vp, filedelay);
1606 }
1607 if (ap->a_flags & PGO_LOCKED) {
1608 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1609 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1610
1611 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1612 }
1613 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1614 simple_unlock(&uobj->vmobjlock);
1615 return (EINVAL);
1616 }
1617 npages = orignpages;
1618 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1619 simple_unlock(&uobj->vmobjlock);
1620 kva = uvm_pagermapin(pgs, npages,
1621 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1622 for (i = 0; i < npages; i++) {
1623 pg = pgs[i];
1624 if ((pg->flags & PG_FAKE) == 0) {
1625 continue;
1626 }
1627 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1628 iov.iov_len = PAGE_SIZE;
1629 uio.uio_iov = &iov;
1630 uio.uio_iovcnt = 1;
1631 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1632 uio.uio_segflg = UIO_SYSSPACE;
1633 uio.uio_rw = UIO_READ;
1634 uio.uio_resid = PAGE_SIZE;
1635 uio.uio_procp = NULL;
1636 /* XXX vn_lock */
1637 error = VOP_READ(vp, &uio, 0, cred);
1638 if (error) {
1639 break;
1640 }
1641 if (uio.uio_resid) {
1642 memset(iov.iov_base, 0, uio.uio_resid);
1643 }
1644 }
1645 uvm_pagermapout(kva, npages);
1646 simple_lock(&uobj->vmobjlock);
1647 uvm_lock_pageq();
1648 for (i = 0; i < npages; i++) {
1649 pg = pgs[i];
1650 if (error && (pg->flags & PG_FAKE) != 0) {
1651 pg->flags |= PG_RELEASED;
1652 } else {
1653 pmap_clear_modify(pg);
1654 uvm_pageactivate(pg);
1655 }
1656 }
1657 if (error) {
1658 uvm_page_unbusy(pgs, npages);
1659 }
1660 uvm_unlock_pageq();
1661 simple_unlock(&uobj->vmobjlock);
1662 return (error);
1663 }
1664
1665 int
1666 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1667 int flags)
1668 {
1669 off_t offset;
1670 struct iovec iov;
1671 struct uio uio;
1672 struct ucred *cred = curproc->p_ucred;
1673 struct buf *bp;
1674 vaddr_t kva;
1675 int s, error;
1676
1677 offset = pgs[0]->offset;
1678 kva = uvm_pagermapin(pgs, npages,
1679 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1680
1681 iov.iov_base = (void *)kva;
1682 iov.iov_len = npages << PAGE_SHIFT;
1683 uio.uio_iov = &iov;
1684 uio.uio_iovcnt = 1;
1685 uio.uio_offset = offset;
1686 uio.uio_segflg = UIO_SYSSPACE;
1687 uio.uio_rw = UIO_WRITE;
1688 uio.uio_resid = npages << PAGE_SHIFT;
1689 uio.uio_procp = NULL;
1690 /* XXX vn_lock */
1691 error = VOP_WRITE(vp, &uio, 0, cred);
1692
1693 s = splbio();
1694 V_INCR_NUMOUTPUT(vp);
1695 bp = pool_get(&bufpool, PR_WAITOK);
1696 splx(s);
1697
1698 BUF_INIT(bp);
1699 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1700 bp->b_vp = vp;
1701 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1702 bp->b_data = (char *)kva;
1703 bp->b_bcount = npages << PAGE_SHIFT;
1704 bp->b_bufsize = npages << PAGE_SHIFT;
1705 bp->b_resid = 0;
1706 if (error) {
1707 bp->b_flags |= B_ERROR;
1708 bp->b_error = error;
1709 }
1710 uvm_aio_aiodone(bp);
1711 return (error);
1712 }
1713
1714 static void
1715 filt_genfsdetach(struct knote *kn)
1716 {
1717 struct vnode *vp = (struct vnode *)kn->kn_hook;
1718
1719 /* XXXLUKEM lock the struct? */
1720 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1721 }
1722
1723 static int
1724 filt_genfsread(struct knote *kn, long hint)
1725 {
1726 struct vnode *vp = (struct vnode *)kn->kn_hook;
1727
1728 /*
1729 * filesystem is gone, so set the EOF flag and schedule
1730 * the knote for deletion.
1731 */
1732 if (hint == NOTE_REVOKE) {
1733 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1734 return (1);
1735 }
1736
1737 /* XXXLUKEM lock the struct? */
1738 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1739 return (kn->kn_data != 0);
1740 }
1741
1742 static int
1743 filt_genfsvnode(struct knote *kn, long hint)
1744 {
1745
1746 if (kn->kn_sfflags & hint)
1747 kn->kn_fflags |= hint;
1748 if (hint == NOTE_REVOKE) {
1749 kn->kn_flags |= EV_EOF;
1750 return (1);
1751 }
1752 return (kn->kn_fflags != 0);
1753 }
1754
1755 static const struct filterops genfsread_filtops =
1756 { 1, NULL, filt_genfsdetach, filt_genfsread };
1757 static const struct filterops genfsvnode_filtops =
1758 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1759
1760 int
1761 genfs_kqfilter(void *v)
1762 {
1763 struct vop_kqfilter_args /* {
1764 struct vnode *a_vp;
1765 struct knote *a_kn;
1766 } */ *ap = v;
1767 struct vnode *vp;
1768 struct knote *kn;
1769
1770 vp = ap->a_vp;
1771 kn = ap->a_kn;
1772 switch (kn->kn_filter) {
1773 case EVFILT_READ:
1774 kn->kn_fop = &genfsread_filtops;
1775 break;
1776 case EVFILT_VNODE:
1777 kn->kn_fop = &genfsvnode_filtops;
1778 break;
1779 default:
1780 return (1);
1781 }
1782
1783 kn->kn_hook = vp;
1784
1785 /* XXXLUKEM lock the struct? */
1786 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1787
1788 return (0);
1789 }
1790