genfs_vnops.c revision 1.95 1 /* $NetBSD: genfs_vnops.c,v 1.95 2005/02/16 15:25:33 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.95 2005/02/16 15:25:33 chs Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73
74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2; /* # of page chunks to readahead */
77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78
79 int
80 genfs_poll(void *v)
81 {
82 struct vop_poll_args /* {
83 struct vnode *a_vp;
84 int a_events;
85 struct proc *a_p;
86 } */ *ap = v;
87
88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90
91 int
92 genfs_fsync(void *v)
93 {
94 struct vop_fsync_args /* {
95 struct vnode *a_vp;
96 struct ucred *a_cred;
97 int a_flags;
98 off_t offlo;
99 off_t offhi;
100 struct proc *a_p;
101 } */ *ap = v;
102 struct vnode *vp = ap->a_vp, *dvp;
103 int wait;
104 int error;
105
106 wait = (ap->a_flags & FSYNC_WAIT) != 0;
107 vflushbuf(vp, wait);
108 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
109 error = 0;
110 else
111 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
112
113 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
114 int l = 0;
115 if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
116 error = ENXIO;
117 else
118 error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
119 ap->a_p->p_ucred, ap->a_p);
120 }
121
122 return (error);
123 }
124
125 int
126 genfs_seek(void *v)
127 {
128 struct vop_seek_args /* {
129 struct vnode *a_vp;
130 off_t a_oldoff;
131 off_t a_newoff;
132 struct ucred *a_ucred;
133 } */ *ap = v;
134
135 if (ap->a_newoff < 0)
136 return (EINVAL);
137
138 return (0);
139 }
140
141 int
142 genfs_abortop(void *v)
143 {
144 struct vop_abortop_args /* {
145 struct vnode *a_dvp;
146 struct componentname *a_cnp;
147 } */ *ap = v;
148
149 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
150 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
151 return (0);
152 }
153
154 int
155 genfs_fcntl(void *v)
156 {
157 struct vop_fcntl_args /* {
158 struct vnode *a_vp;
159 u_int a_command;
160 caddr_t a_data;
161 int a_fflag;
162 struct ucred *a_cred;
163 struct proc *a_p;
164 } */ *ap = v;
165
166 if (ap->a_command == F_SETFL)
167 return (0);
168 else
169 return (EOPNOTSUPP);
170 }
171
172 /*ARGSUSED*/
173 int
174 genfs_badop(void *v)
175 {
176
177 panic("genfs: bad op");
178 }
179
180 /*ARGSUSED*/
181 int
182 genfs_nullop(void *v)
183 {
184
185 return (0);
186 }
187
188 /*ARGSUSED*/
189 int
190 genfs_einval(void *v)
191 {
192
193 return (EINVAL);
194 }
195
196 /*
197 * Called when an fs doesn't support a particular vop.
198 * This takes care to vrele, vput, or vunlock passed in vnodes.
199 */
200 int
201 genfs_eopnotsupp(void *v)
202 {
203 struct vop_generic_args /*
204 struct vnodeop_desc *a_desc;
205 / * other random data follows, presumably * /
206 } */ *ap = v;
207 struct vnodeop_desc *desc = ap->a_desc;
208 struct vnode *vp, *vp_last = NULL;
209 int flags, i, j, offset;
210
211 flags = desc->vdesc_flags;
212 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
213 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
214 break; /* stop at end of list */
215 if ((j = flags & VDESC_VP0_WILLPUT)) {
216 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
217
218 /* Skip if NULL */
219 if (!vp)
220 continue;
221
222 switch (j) {
223 case VDESC_VP0_WILLPUT:
224 /* Check for dvp == vp cases */
225 if (vp == vp_last)
226 vrele(vp);
227 else {
228 vput(vp);
229 vp_last = vp;
230 }
231 break;
232 case VDESC_VP0_WILLUNLOCK:
233 VOP_UNLOCK(vp, 0);
234 break;
235 case VDESC_VP0_WILLRELE:
236 vrele(vp);
237 break;
238 }
239 }
240 }
241
242 return (EOPNOTSUPP);
243 }
244
245 /*ARGSUSED*/
246 int
247 genfs_ebadf(void *v)
248 {
249
250 return (EBADF);
251 }
252
253 /* ARGSUSED */
254 int
255 genfs_enoioctl(void *v)
256 {
257
258 return (EPASSTHROUGH);
259 }
260
261
262 /*
263 * Eliminate all activity associated with the requested vnode
264 * and with all vnodes aliased to the requested vnode.
265 */
266 int
267 genfs_revoke(void *v)
268 {
269 struct vop_revoke_args /* {
270 struct vnode *a_vp;
271 int a_flags;
272 } */ *ap = v;
273 struct vnode *vp, *vq;
274 struct proc *p = curproc; /* XXX */
275
276 #ifdef DIAGNOSTIC
277 if ((ap->a_flags & REVOKEALL) == 0)
278 panic("genfs_revoke: not revokeall");
279 #endif
280
281 vp = ap->a_vp;
282 simple_lock(&vp->v_interlock);
283
284 if (vp->v_flag & VALIASED) {
285 /*
286 * If a vgone (or vclean) is already in progress,
287 * wait until it is done and return.
288 */
289 if (vp->v_flag & VXLOCK) {
290 vp->v_flag |= VXWANT;
291 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
292 &vp->v_interlock);
293 return (0);
294 }
295 /*
296 * Ensure that vp will not be vgone'd while we
297 * are eliminating its aliases.
298 */
299 vp->v_flag |= VXLOCK;
300 simple_unlock(&vp->v_interlock);
301 while (vp->v_flag & VALIASED) {
302 simple_lock(&spechash_slock);
303 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
304 if (vq->v_rdev != vp->v_rdev ||
305 vq->v_type != vp->v_type || vp == vq)
306 continue;
307 simple_unlock(&spechash_slock);
308 vgone(vq);
309 break;
310 }
311 if (vq == NULLVP)
312 simple_unlock(&spechash_slock);
313 }
314 /*
315 * Remove the lock so that vgone below will
316 * really eliminate the vnode after which time
317 * vgone will awaken any sleepers.
318 */
319 simple_lock(&vp->v_interlock);
320 vp->v_flag &= ~VXLOCK;
321 }
322 vgonel(vp, p);
323 return (0);
324 }
325
326 /*
327 * Lock the node.
328 */
329 int
330 genfs_lock(void *v)
331 {
332 struct vop_lock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
339 }
340
341 /*
342 * Unlock the node.
343 */
344 int
345 genfs_unlock(void *v)
346 {
347 struct vop_unlock_args /* {
348 struct vnode *a_vp;
349 int a_flags;
350 } */ *ap = v;
351 struct vnode *vp = ap->a_vp;
352
353 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
354 &vp->v_interlock));
355 }
356
357 /*
358 * Return whether or not the node is locked.
359 */
360 int
361 genfs_islocked(void *v)
362 {
363 struct vop_islocked_args /* {
364 struct vnode *a_vp;
365 } */ *ap = v;
366 struct vnode *vp = ap->a_vp;
367
368 return (lockstatus(vp->v_vnlock));
369 }
370
371 /*
372 * Stubs to use when there is no locking to be done on the underlying object.
373 */
374 int
375 genfs_nolock(void *v)
376 {
377 struct vop_lock_args /* {
378 struct vnode *a_vp;
379 int a_flags;
380 struct proc *a_p;
381 } */ *ap = v;
382
383 /*
384 * Since we are not using the lock manager, we must clear
385 * the interlock here.
386 */
387 if (ap->a_flags & LK_INTERLOCK)
388 simple_unlock(&ap->a_vp->v_interlock);
389 return (0);
390 }
391
392 int
393 genfs_nounlock(void *v)
394 {
395
396 return (0);
397 }
398
399 int
400 genfs_noislocked(void *v)
401 {
402
403 return (0);
404 }
405
406 /*
407 * Local lease check for NFS servers. Just set up args and let
408 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
409 * this is a null operation.
410 */
411 int
412 genfs_lease_check(void *v)
413 {
414 #ifdef NFSSERVER
415 struct vop_lease_args /* {
416 struct vnode *a_vp;
417 struct proc *a_p;
418 struct ucred *a_cred;
419 int a_flag;
420 } */ *ap = v;
421 u_int32_t duration = 0;
422 int cache;
423 u_quad_t frev;
424
425 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
426 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
427 return (0);
428 #else
429 return (0);
430 #endif /* NFSSERVER */
431 }
432
433 int
434 genfs_mmap(void *v)
435 {
436
437 return (0);
438 }
439
440 static __inline void
441 genfs_rel_pages(struct vm_page **pgs, int npages)
442 {
443 int i;
444
445 for (i = 0; i < npages; i++) {
446 struct vm_page *pg = pgs[i];
447
448 if (pg == NULL)
449 continue;
450 if (pg->flags & PG_FAKE) {
451 pg->flags |= PG_RELEASED;
452 }
453 }
454 uvm_lock_pageq();
455 uvm_page_unbusy(pgs, npages);
456 uvm_unlock_pageq();
457 }
458
459 /*
460 * generic VM getpages routine.
461 * Return PG_BUSY pages for the given range,
462 * reading from backing store if necessary.
463 */
464
465 int
466 genfs_getpages(void *v)
467 {
468 struct vop_getpages_args /* {
469 struct vnode *a_vp;
470 voff_t a_offset;
471 struct vm_page **a_m;
472 int *a_count;
473 int a_centeridx;
474 vm_prot_t a_access_type;
475 int a_advice;
476 int a_flags;
477 } */ *ap = v;
478
479 off_t newsize, diskeof, memeof;
480 off_t offset, origoffset, startoffset, endoffset, raoffset;
481 daddr_t lbn, blkno;
482 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
483 int fs_bshift, fs_bsize, dev_bshift;
484 int flags = ap->a_flags;
485 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
486 vaddr_t kva;
487 struct buf *bp, *mbp;
488 struct vnode *vp = ap->a_vp;
489 struct vnode *devvp;
490 struct genfs_node *gp = VTOG(vp);
491 struct uvm_object *uobj = &vp->v_uobj;
492 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
493 int pgs_size;
494 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
495 boolean_t async = (flags & PGO_SYNCIO) == 0;
496 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
497 boolean_t sawhole = FALSE;
498 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
499 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
500
501 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
502 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
503
504 /* XXXUBC temp limit */
505 if (*ap->a_count > MAX_READ_AHEAD) {
506 panic("genfs_getpages: too many pages");
507 }
508
509 error = 0;
510 origoffset = ap->a_offset;
511 orignpages = *ap->a_count;
512 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
513 if (flags & PGO_PASTEOF) {
514 newsize = MAX(vp->v_size,
515 origoffset + (orignpages << PAGE_SHIFT));
516 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
517 } else {
518 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
519 }
520 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
521 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
522 KASSERT(orignpages > 0);
523
524 /*
525 * Bounds-check the request.
526 */
527
528 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
529 if ((flags & PGO_LOCKED) == 0) {
530 simple_unlock(&uobj->vmobjlock);
531 }
532 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
533 origoffset, *ap->a_count, memeof,0);
534 return (EINVAL);
535 }
536
537 /*
538 * For PGO_LOCKED requests, just return whatever's in memory.
539 */
540
541 if (flags & PGO_LOCKED) {
542 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
543 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
544
545 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
546 }
547
548 /* uobj is locked */
549
550 if (write && (vp->v_flag & VONWORKLST) == 0) {
551 vn_syncer_add_to_worklist(vp, filedelay);
552 }
553
554 /*
555 * find the requested pages and make some simple checks.
556 * leave space in the page array for a whole block.
557 */
558
559 if (vp->v_type == VREG) {
560 fs_bshift = vp->v_mount->mnt_fs_bshift;
561 dev_bshift = vp->v_mount->mnt_dev_bshift;
562 } else {
563 fs_bshift = DEV_BSHIFT;
564 dev_bshift = DEV_BSHIFT;
565 }
566 fs_bsize = 1 << fs_bshift;
567
568 orignpages = MIN(orignpages,
569 round_page(memeof - origoffset) >> PAGE_SHIFT);
570 npages = orignpages;
571 startoffset = origoffset & ~(fs_bsize - 1);
572 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
573 fs_bsize - 1) & ~(fs_bsize - 1));
574 endoffset = MIN(endoffset, round_page(memeof));
575 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
576
577 pgs_size = sizeof(struct vm_page *) *
578 ((endoffset - startoffset) >> PAGE_SHIFT);
579 if (pgs_size > sizeof(pgs_onstack)) {
580 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
581 if (pgs == NULL) {
582 simple_unlock(&uobj->vmobjlock);
583 return (ENOMEM);
584 }
585 } else {
586 pgs = pgs_onstack;
587 memset(pgs, 0, pgs_size);
588 }
589 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
590 ridx, npages, startoffset, endoffset);
591 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
592 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
593 KASSERT(async != 0);
594 genfs_rel_pages(&pgs[ridx], orignpages);
595 simple_unlock(&uobj->vmobjlock);
596 if (pgs != pgs_onstack)
597 free(pgs, M_DEVBUF);
598 return (EBUSY);
599 }
600
601 /*
602 * if the pages are already resident, just return them.
603 */
604
605 for (i = 0; i < npages; i++) {
606 struct vm_page *pg = pgs[ridx + i];
607
608 if ((pg->flags & PG_FAKE) ||
609 (write && (pg->flags & PG_RDONLY))) {
610 break;
611 }
612 }
613 if (i == npages) {
614 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
615 raoffset = origoffset + (orignpages << PAGE_SHIFT);
616 npages += ridx;
617 goto raout;
618 }
619
620 /*
621 * if PGO_OVERWRITE is set, don't bother reading the pages.
622 */
623
624 if (flags & PGO_OVERWRITE) {
625 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
626
627 for (i = 0; i < npages; i++) {
628 struct vm_page *pg = pgs[ridx + i];
629
630 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
631 }
632 npages += ridx;
633 goto out;
634 }
635
636 /*
637 * the page wasn't resident and we're not overwriting,
638 * so we're going to have to do some i/o.
639 * find any additional pages needed to cover the expanded range.
640 */
641
642 npages = (endoffset - startoffset) >> PAGE_SHIFT;
643 if (startoffset != origoffset || npages != orignpages) {
644
645 /*
646 * we need to avoid deadlocks caused by locking
647 * additional pages at lower offsets than pages we
648 * already have locked. unlock them all and start over.
649 */
650
651 genfs_rel_pages(&pgs[ridx], orignpages);
652 memset(pgs, 0, pgs_size);
653
654 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
655 startoffset, endoffset, 0,0);
656 npgs = npages;
657 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
658 async ? UFP_NOWAIT : UFP_ALL) != npages) {
659 KASSERT(async != 0);
660 genfs_rel_pages(pgs, npages);
661 simple_unlock(&uobj->vmobjlock);
662 if (pgs != pgs_onstack)
663 free(pgs, M_DEVBUF);
664 return (EBUSY);
665 }
666 }
667 simple_unlock(&uobj->vmobjlock);
668
669 /*
670 * read the desired page(s).
671 */
672
673 totalbytes = npages << PAGE_SHIFT;
674 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
675 tailbytes = totalbytes - bytes;
676 skipbytes = 0;
677
678 kva = uvm_pagermapin(pgs, npages,
679 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
680
681 s = splbio();
682 mbp = pool_get(&bufpool, PR_WAITOK);
683 splx(s);
684 BUF_INIT(mbp);
685 mbp->b_bufsize = totalbytes;
686 mbp->b_data = (void *)kva;
687 mbp->b_resid = mbp->b_bcount = bytes;
688 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
689 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
690 mbp->b_vp = vp;
691
692 /*
693 * if EOF is in the middle of the range, zero the part past EOF.
694 * if the page including EOF is not PG_FAKE, skip over it since
695 * in that case it has valid data that we need to preserve.
696 */
697
698 if (tailbytes > 0) {
699 size_t tailstart = bytes;
700
701 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
702 tailstart = round_page(tailstart);
703 tailbytes -= tailstart - bytes;
704 }
705 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
706 kva, tailstart, tailbytes,0);
707 memset((void *)(kva + tailstart), 0, tailbytes);
708 }
709
710 /*
711 * now loop over the pages, reading as needed.
712 */
713
714 if (write) {
715 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
716 } else {
717 lockmgr(&gp->g_glock, LK_SHARED, NULL);
718 }
719
720 bp = NULL;
721 for (offset = startoffset;
722 bytes > 0;
723 offset += iobytes, bytes -= iobytes) {
724
725 /*
726 * skip pages which don't need to be read.
727 */
728
729 pidx = (offset - startoffset) >> PAGE_SHIFT;
730 while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
731 size_t b;
732
733 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
734 b = MIN(PAGE_SIZE, bytes);
735 offset += b;
736 bytes -= b;
737 skipbytes += b;
738 pidx++;
739 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
740 offset, 0,0,0);
741 if (bytes == 0) {
742 goto loopdone;
743 }
744 }
745
746 /*
747 * bmap the file to find out the blkno to read from and
748 * how much we can read in one i/o. if bmap returns an error,
749 * skip the rest of the top-level i/o.
750 */
751
752 lbn = offset >> fs_bshift;
753 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
754 if (error) {
755 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
756 lbn, error,0,0);
757 skipbytes += bytes;
758 goto loopdone;
759 }
760
761 /*
762 * see how many pages can be read with this i/o.
763 * reduce the i/o size if necessary to avoid
764 * overwriting pages with valid data.
765 */
766
767 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
768 bytes);
769 if (offset + iobytes > round_page(offset)) {
770 pcount = 1;
771 while (pidx + pcount < npages &&
772 pgs[pidx + pcount]->flags & PG_FAKE) {
773 pcount++;
774 }
775 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
776 (offset - trunc_page(offset)));
777 }
778
779 /*
780 * if this block isn't allocated, zero it instead of
781 * reading it. if this is a read access, mark the
782 * pages we zeroed PG_RDONLY.
783 */
784
785 if (blkno < 0) {
786 int holepages = (round_page(offset + iobytes) -
787 trunc_page(offset)) >> PAGE_SHIFT;
788 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
789
790 sawhole = TRUE;
791 memset((char *)kva + (offset - startoffset), 0,
792 iobytes);
793 skipbytes += iobytes;
794
795 for (i = 0; i < holepages; i++) {
796 if (write) {
797 pgs[pidx + i]->flags &= ~PG_CLEAN;
798 } else {
799 pgs[pidx + i]->flags |= PG_RDONLY;
800 }
801 }
802 continue;
803 }
804
805 /*
806 * allocate a sub-buf for this piece of the i/o
807 * (or just use mbp if there's only 1 piece),
808 * and start it going.
809 */
810
811 if (offset == startoffset && iobytes == bytes) {
812 bp = mbp;
813 } else {
814 s = splbio();
815 bp = pool_get(&bufpool, PR_WAITOK);
816 splx(s);
817 BUF_INIT(bp);
818 bp->b_data = (char *)kva + offset - startoffset;
819 bp->b_resid = bp->b_bcount = iobytes;
820 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
821 bp->b_iodone = uvm_aio_biodone1;
822 bp->b_vp = vp;
823 bp->b_proc = NULL;
824 }
825 bp->b_lblkno = 0;
826 bp->b_private = mbp;
827 if (devvp->v_type == VBLK) {
828 bp->b_dev = devvp->v_rdev;
829 }
830
831 /* adjust physical blkno for partial blocks */
832 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
833 dev_bshift);
834
835 UVMHIST_LOG(ubchist,
836 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
837 bp, offset, iobytes, bp->b_blkno);
838
839 if (async)
840 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
841 else
842 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
843 VOP_STRATEGY(bp->b_vp, bp);
844 }
845
846 loopdone:
847 if (skipbytes) {
848 s = splbio();
849 if (error) {
850 mbp->b_flags |= B_ERROR;
851 mbp->b_error = error;
852 }
853 mbp->b_resid -= skipbytes;
854 if (mbp->b_resid == 0) {
855 biodone(mbp);
856 }
857 splx(s);
858 }
859
860 if (async) {
861 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
862 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
863 if (pgs != pgs_onstack)
864 free(pgs, M_DEVBUF);
865 return (0);
866 }
867 if (bp != NULL) {
868 error = biowait(mbp);
869 }
870 s = splbio();
871 pool_put(&bufpool, mbp);
872 splx(s);
873 uvm_pagermapout(kva, npages);
874 raoffset = startoffset + totalbytes;
875
876 /*
877 * if this we encountered a hole then we have to do a little more work.
878 * for read faults, we marked the page PG_RDONLY so that future
879 * write accesses to the page will fault again.
880 * for write faults, we must make sure that the backing store for
881 * the page is completely allocated while the pages are locked.
882 */
883
884 if (!error && sawhole && write) {
885 for (i = 0; i < npages; i++) {
886 if (pgs[i] == NULL) {
887 continue;
888 }
889 pgs[i]->flags &= ~PG_CLEAN;
890 UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
891 }
892 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
893 cred);
894 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
895 startoffset, npages << PAGE_SHIFT, error,0);
896 }
897 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
898 simple_lock(&uobj->vmobjlock);
899
900 /*
901 * see if we want to start any readahead.
902 * XXXUBC for now, just read the next 128k on 64k boundaries.
903 * this is pretty nonsensical, but it is 50% faster than reading
904 * just the next 64k.
905 */
906
907 raout:
908 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
909 PAGE_SHIFT <= 16) {
910 off_t rasize;
911 int rapages, err, i, skipped;
912
913 /* XXXUBC temp limit, from above */
914 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
915 genfs_rapages);
916 rasize = rapages << PAGE_SHIFT;
917 for (i = skipped = 0; i < genfs_racount; i++) {
918
919 if (raoffset >= memeof)
920 break;
921
922 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
923 VM_PROT_READ, 0, 0);
924 simple_lock(&uobj->vmobjlock);
925 if (err) {
926 if (err != EBUSY ||
927 skipped++ == genfs_raskip)
928 break;
929 }
930 raoffset += rasize;
931 rapages = rasize >> PAGE_SHIFT;
932 }
933 }
934
935 /*
936 * we're almost done! release the pages...
937 * for errors, we free the pages.
938 * otherwise we activate them and mark them as valid and clean.
939 * also, unbusy pages that were not actually requested.
940 */
941
942 if (error) {
943 for (i = 0; i < npages; i++) {
944 if (pgs[i] == NULL) {
945 continue;
946 }
947 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
948 pgs[i], pgs[i]->flags, 0,0);
949 if (pgs[i]->flags & PG_FAKE) {
950 pgs[i]->flags |= PG_RELEASED;
951 }
952 }
953 uvm_lock_pageq();
954 uvm_page_unbusy(pgs, npages);
955 uvm_unlock_pageq();
956 simple_unlock(&uobj->vmobjlock);
957 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
958 if (pgs != pgs_onstack)
959 free(pgs, M_DEVBUF);
960 return (error);
961 }
962
963 out:
964 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
965 uvm_lock_pageq();
966 for (i = 0; i < npages; i++) {
967 pg = pgs[i];
968 if (pg == NULL) {
969 continue;
970 }
971 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
972 pg, pg->flags, 0,0);
973 if (pg->flags & PG_FAKE && !overwrite) {
974 pg->flags &= ~(PG_FAKE);
975 pmap_clear_modify(pgs[i]);
976 }
977 if (write) {
978 pg->flags &= ~(PG_RDONLY);
979 }
980 if (i < ridx || i >= ridx + orignpages || async) {
981 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
982 pg, pg->offset,0,0);
983 if (pg->flags & PG_WANTED) {
984 wakeup(pg);
985 }
986 if (pg->flags & PG_FAKE) {
987 KASSERT(overwrite);
988 uvm_pagezero(pg);
989 }
990 if (pg->flags & PG_RELEASED) {
991 uvm_pagefree(pg);
992 continue;
993 }
994 uvm_pageactivate(pg);
995 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
996 UVM_PAGE_OWN(pg, NULL);
997 }
998 }
999 uvm_unlock_pageq();
1000 simple_unlock(&uobj->vmobjlock);
1001 if (ap->a_m != NULL) {
1002 memcpy(ap->a_m, &pgs[ridx],
1003 orignpages * sizeof(struct vm_page *));
1004 }
1005 if (pgs != pgs_onstack)
1006 free(pgs, M_DEVBUF);
1007 return (0);
1008 }
1009
1010 /*
1011 * generic VM putpages routine.
1012 * Write the given range of pages to backing store.
1013 *
1014 * => "offhi == 0" means flush all pages at or after "offlo".
1015 * => object should be locked by caller. we may _unlock_ the object
1016 * if (and only if) we need to clean a page (PGO_CLEANIT), or
1017 * if PGO_SYNCIO is set and there are pages busy.
1018 * we return with the object locked.
1019 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1020 * thus, a caller might want to unlock higher level resources
1021 * (e.g. vm_map) before calling flush.
1022 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1023 * unlock the object nor block.
1024 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1025 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1026 * that new pages are inserted on the tail end of the list. thus,
1027 * we can make a complete pass through the object in one go by starting
1028 * at the head and working towards the tail (new pages are put in
1029 * front of us).
1030 * => NOTE: we are allowed to lock the page queues, so the caller
1031 * must not be holding the page queue lock.
1032 *
1033 * note on "cleaning" object and PG_BUSY pages:
1034 * this routine is holding the lock on the object. the only time
1035 * that it can run into a PG_BUSY page that it does not own is if
1036 * some other process has started I/O on the page (e.g. either
1037 * a pagein, or a pageout). if the PG_BUSY page is being paged
1038 * in, then it can not be dirty (!PG_CLEAN) because no one has
1039 * had a chance to modify it yet. if the PG_BUSY page is being
1040 * paged out then it means that someone else has already started
1041 * cleaning the page for us (how nice!). in this case, if we
1042 * have syncio specified, then after we make our pass through the
1043 * object we need to wait for the other PG_BUSY pages to clear
1044 * off (i.e. we need to do an iosync). also note that once a
1045 * page is PG_BUSY it must stay in its object until it is un-busyed.
1046 *
1047 * note on page traversal:
1048 * we can traverse the pages in an object either by going down the
1049 * linked list in "uobj->memq", or we can go over the address range
1050 * by page doing hash table lookups for each address. depending
1051 * on how many pages are in the object it may be cheaper to do one
1052 * or the other. we set "by_list" to true if we are using memq.
1053 * if the cost of a hash lookup was equal to the cost of the list
1054 * traversal we could compare the number of pages in the start->stop
1055 * range to the total number of pages in the object. however, it
1056 * seems that a hash table lookup is more expensive than the linked
1057 * list traversal, so we multiply the number of pages in the
1058 * range by an estimate of the relatively higher cost of the hash lookup.
1059 */
1060
1061 int
1062 genfs_putpages(void *v)
1063 {
1064 struct vop_putpages_args /* {
1065 struct vnode *a_vp;
1066 voff_t a_offlo;
1067 voff_t a_offhi;
1068 int a_flags;
1069 } */ *ap = v;
1070 struct vnode *vp = ap->a_vp;
1071 struct uvm_object *uobj = &vp->v_uobj;
1072 struct simplelock *slock = &uobj->vmobjlock;
1073 off_t startoff = ap->a_offlo;
1074 off_t endoff = ap->a_offhi;
1075 off_t off;
1076 int flags = ap->a_flags;
1077 /* Even for strange MAXPHYS, the shift rounds down to a page */
1078 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1079 int i, s, error, npages, nback;
1080 int freeflag;
1081 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1082 boolean_t wasclean, by_list, needs_clean, yield;
1083 boolean_t async = (flags & PGO_SYNCIO) == 0;
1084 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1085 struct lwp *l = curlwp ? curlwp : &lwp0;
1086
1087 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1088
1089 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1090 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1091 KASSERT(startoff < endoff || endoff == 0);
1092
1093 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1094 vp, uobj->uo_npages, startoff, endoff - startoff);
1095 if (uobj->uo_npages == 0) {
1096 s = splbio();
1097 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1098 (vp->v_flag & VONWORKLST)) {
1099 vp->v_flag &= ~VONWORKLST;
1100 LIST_REMOVE(vp, v_synclist);
1101 }
1102 splx(s);
1103 simple_unlock(slock);
1104 return (0);
1105 }
1106
1107 /*
1108 * the vnode has pages, set up to process the request.
1109 */
1110
1111 error = 0;
1112 s = splbio();
1113 simple_lock(&global_v_numoutput_slock);
1114 wasclean = (vp->v_numoutput == 0);
1115 simple_unlock(&global_v_numoutput_slock);
1116 splx(s);
1117 off = startoff;
1118 if (endoff == 0 || flags & PGO_ALLPAGES) {
1119 endoff = trunc_page(LLONG_MAX);
1120 }
1121 by_list = (uobj->uo_npages <=
1122 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1123
1124 /*
1125 * start the loop. when scanning by list, hold the last page
1126 * in the list before we start. pages allocated after we start
1127 * will be added to the end of the list, so we can stop at the
1128 * current last page.
1129 */
1130
1131 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1132 curmp.uobject = uobj;
1133 curmp.offset = (voff_t)-1;
1134 curmp.flags = PG_BUSY;
1135 endmp.uobject = uobj;
1136 endmp.offset = (voff_t)-1;
1137 endmp.flags = PG_BUSY;
1138 if (by_list) {
1139 pg = TAILQ_FIRST(&uobj->memq);
1140 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1141 PHOLD(l);
1142 } else {
1143 pg = uvm_pagelookup(uobj, off);
1144 }
1145 nextpg = NULL;
1146 while (by_list || off < endoff) {
1147
1148 /*
1149 * if the current page is not interesting, move on to the next.
1150 */
1151
1152 KASSERT(pg == NULL || pg->uobject == uobj);
1153 KASSERT(pg == NULL ||
1154 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1155 (pg->flags & PG_BUSY) != 0);
1156 if (by_list) {
1157 if (pg == &endmp) {
1158 break;
1159 }
1160 if (pg->offset < startoff || pg->offset >= endoff ||
1161 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1162 pg = TAILQ_NEXT(pg, listq);
1163 continue;
1164 }
1165 off = pg->offset;
1166 } else if (pg == NULL ||
1167 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 off += PAGE_SIZE;
1169 if (off < endoff) {
1170 pg = uvm_pagelookup(uobj, off);
1171 }
1172 continue;
1173 }
1174
1175 /*
1176 * if the current page needs to be cleaned and it's busy,
1177 * wait for it to become unbusy.
1178 */
1179
1180 yield = (l->l_cpu->ci_schedstate.spc_flags &
1181 SPCF_SHOULDYIELD) && !pagedaemon;
1182 if (pg->flags & PG_BUSY || yield) {
1183 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1184 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1185 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1186 error = EDEADLK;
1187 break;
1188 }
1189 KASSERT(!pagedaemon);
1190 if (by_list) {
1191 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1192 UVMHIST_LOG(ubchist, "curmp next %p",
1193 TAILQ_NEXT(&curmp, listq), 0,0,0);
1194 }
1195 if (yield) {
1196 simple_unlock(slock);
1197 preempt(1);
1198 simple_lock(slock);
1199 } else {
1200 pg->flags |= PG_WANTED;
1201 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1202 simple_lock(slock);
1203 }
1204 if (by_list) {
1205 UVMHIST_LOG(ubchist, "after next %p",
1206 TAILQ_NEXT(&curmp, listq), 0,0,0);
1207 pg = TAILQ_NEXT(&curmp, listq);
1208 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1209 } else {
1210 pg = uvm_pagelookup(uobj, off);
1211 }
1212 continue;
1213 }
1214
1215 /*
1216 * if we're freeing, remove all mappings of the page now.
1217 * if we're cleaning, check if the page is needs to be cleaned.
1218 */
1219
1220 if (flags & PGO_FREE) {
1221 pmap_page_protect(pg, VM_PROT_NONE);
1222 }
1223 if (flags & PGO_CLEANIT) {
1224 needs_clean = pmap_clear_modify(pg) ||
1225 (pg->flags & PG_CLEAN) == 0;
1226 pg->flags |= PG_CLEAN;
1227 } else {
1228 needs_clean = FALSE;
1229 }
1230
1231 /*
1232 * if we're cleaning, build a cluster.
1233 * the cluster will consist of pages which are currently dirty,
1234 * but they will be returned to us marked clean.
1235 * if not cleaning, just operate on the one page.
1236 */
1237
1238 if (needs_clean) {
1239 wasclean = FALSE;
1240 memset(pgs, 0, sizeof(pgs));
1241 pg->flags |= PG_BUSY;
1242 UVM_PAGE_OWN(pg, "genfs_putpages");
1243
1244 /*
1245 * first look backward.
1246 */
1247
1248 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1249 nback = npages;
1250 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1251 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1252 if (nback) {
1253 memmove(&pgs[0], &pgs[npages - nback],
1254 nback * sizeof(pgs[0]));
1255 if (npages - nback < nback)
1256 memset(&pgs[nback], 0,
1257 (npages - nback) * sizeof(pgs[0]));
1258 else
1259 memset(&pgs[npages - nback], 0,
1260 nback * sizeof(pgs[0]));
1261 }
1262
1263 /*
1264 * then plug in our page of interest.
1265 */
1266
1267 pgs[nback] = pg;
1268
1269 /*
1270 * then look forward to fill in the remaining space in
1271 * the array of pages.
1272 */
1273
1274 npages = maxpages - nback - 1;
1275 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1276 &pgs[nback + 1],
1277 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1278 npages += nback + 1;
1279 } else {
1280 pgs[0] = pg;
1281 npages = 1;
1282 nback = 0;
1283 }
1284
1285 /*
1286 * apply FREE or DEACTIVATE options if requested.
1287 */
1288
1289 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1290 uvm_lock_pageq();
1291 }
1292 for (i = 0; i < npages; i++) {
1293 tpg = pgs[i];
1294 KASSERT(tpg->uobject == uobj);
1295 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1296 pg = tpg;
1297 if (tpg->offset < startoff || tpg->offset >= endoff)
1298 continue;
1299 if (flags & PGO_DEACTIVATE &&
1300 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1301 tpg->wire_count == 0) {
1302 (void) pmap_clear_reference(tpg);
1303 uvm_pagedeactivate(tpg);
1304 } else if (flags & PGO_FREE) {
1305 pmap_page_protect(tpg, VM_PROT_NONE);
1306 if (tpg->flags & PG_BUSY) {
1307 tpg->flags |= freeflag;
1308 if (pagedaemon) {
1309 uvmexp.paging++;
1310 uvm_pagedequeue(tpg);
1311 }
1312 } else {
1313
1314 /*
1315 * ``page is not busy''
1316 * implies that npages is 1
1317 * and needs_clean is false.
1318 */
1319
1320 nextpg = TAILQ_NEXT(tpg, listq);
1321 uvm_pagefree(tpg);
1322 if (pagedaemon)
1323 uvmexp.pdfreed++;
1324 }
1325 }
1326 }
1327 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1328 uvm_unlock_pageq();
1329 }
1330 if (needs_clean) {
1331
1332 /*
1333 * start the i/o. if we're traversing by list,
1334 * keep our place in the list with a marker page.
1335 */
1336
1337 if (by_list) {
1338 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1339 listq);
1340 }
1341 simple_unlock(slock);
1342 error = GOP_WRITE(vp, pgs, npages, flags);
1343 simple_lock(slock);
1344 if (by_list) {
1345 pg = TAILQ_NEXT(&curmp, listq);
1346 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1347 }
1348 if (error) {
1349 break;
1350 }
1351 if (by_list) {
1352 continue;
1353 }
1354 }
1355
1356 /*
1357 * find the next page and continue if there was no error.
1358 */
1359
1360 if (by_list) {
1361 if (nextpg) {
1362 pg = nextpg;
1363 nextpg = NULL;
1364 } else {
1365 pg = TAILQ_NEXT(pg, listq);
1366 }
1367 } else {
1368 off += (npages - nback) << PAGE_SHIFT;
1369 if (off < endoff) {
1370 pg = uvm_pagelookup(uobj, off);
1371 }
1372 }
1373 }
1374 if (by_list) {
1375 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1376 PRELE(l);
1377 }
1378
1379 /*
1380 * if we're cleaning and there was nothing to clean,
1381 * take us off the syncer list. if we started any i/o
1382 * and we're doing sync i/o, wait for all writes to finish.
1383 */
1384
1385 s = splbio();
1386 if ((flags & PGO_CLEANIT) && wasclean &&
1387 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1388 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1389 (vp->v_flag & VONWORKLST)) {
1390 vp->v_flag &= ~VONWORKLST;
1391 LIST_REMOVE(vp, v_synclist);
1392 }
1393 splx(s);
1394 if (!wasclean && !async) {
1395 s = splbio();
1396 /*
1397 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1398 * but the slot in ltsleep() is taken!
1399 * XXX - try to recover from missed wakeups with a timeout..
1400 * must think of something better.
1401 */
1402 while (vp->v_numoutput != 0) {
1403 vp->v_flag |= VBWAIT;
1404 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1405 "genput2", hz);
1406 simple_lock(slock);
1407 }
1408 splx(s);
1409 }
1410 simple_unlock(&uobj->vmobjlock);
1411 return (error);
1412 }
1413
1414 int
1415 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1416 {
1417 int s, error, run;
1418 int fs_bshift, dev_bshift;
1419 vaddr_t kva;
1420 off_t eof, offset, startoffset;
1421 size_t bytes, iobytes, skipbytes;
1422 daddr_t lbn, blkno;
1423 struct vm_page *pg;
1424 struct buf *mbp, *bp;
1425 struct vnode *devvp;
1426 boolean_t async = (flags & PGO_SYNCIO) == 0;
1427 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1428
1429 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1430 vp, pgs, npages, flags);
1431
1432 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1433 if (vp->v_type == VREG) {
1434 fs_bshift = vp->v_mount->mnt_fs_bshift;
1435 dev_bshift = vp->v_mount->mnt_dev_bshift;
1436 } else {
1437 fs_bshift = DEV_BSHIFT;
1438 dev_bshift = DEV_BSHIFT;
1439 }
1440 error = 0;
1441 pg = pgs[0];
1442 startoffset = pg->offset;
1443 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1444 skipbytes = 0;
1445 KASSERT(bytes != 0);
1446
1447 kva = uvm_pagermapin(pgs, npages,
1448 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1449
1450 s = splbio();
1451 simple_lock(&global_v_numoutput_slock);
1452 vp->v_numoutput += 2;
1453 simple_unlock(&global_v_numoutput_slock);
1454 mbp = pool_get(&bufpool, PR_WAITOK);
1455 BUF_INIT(mbp);
1456 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1457 vp, mbp, vp->v_numoutput, bytes);
1458 splx(s);
1459 mbp->b_bufsize = npages << PAGE_SHIFT;
1460 mbp->b_data = (void *)kva;
1461 mbp->b_resid = mbp->b_bcount = bytes;
1462 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1463 mbp->b_iodone = uvm_aio_biodone;
1464 mbp->b_vp = vp;
1465
1466 bp = NULL;
1467 for (offset = startoffset;
1468 bytes > 0;
1469 offset += iobytes, bytes -= iobytes) {
1470 lbn = offset >> fs_bshift;
1471 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1472 if (error) {
1473 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1474 skipbytes += bytes;
1475 bytes = 0;
1476 break;
1477 }
1478
1479 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1480 bytes);
1481 if (blkno == (daddr_t)-1) {
1482 skipbytes += iobytes;
1483 continue;
1484 }
1485
1486 /* if it's really one i/o, don't make a second buf */
1487 if (offset == startoffset && iobytes == bytes) {
1488 bp = mbp;
1489 } else {
1490 s = splbio();
1491 V_INCR_NUMOUTPUT(vp);
1492 bp = pool_get(&bufpool, PR_WAITOK);
1493 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1494 vp, bp, vp->v_numoutput, 0);
1495 splx(s);
1496 BUF_INIT(bp);
1497 bp->b_data = (char *)kva +
1498 (vaddr_t)(offset - pg->offset);
1499 bp->b_resid = bp->b_bcount = iobytes;
1500 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1501 bp->b_iodone = uvm_aio_biodone1;
1502 bp->b_vp = vp;
1503 }
1504 bp->b_lblkno = 0;
1505 bp->b_private = mbp;
1506 if (devvp->v_type == VBLK) {
1507 bp->b_dev = devvp->v_rdev;
1508 }
1509
1510 /* adjust physical blkno for partial blocks */
1511 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1512 dev_bshift);
1513 UVMHIST_LOG(ubchist,
1514 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1515 vp, offset, bp->b_bcount, bp->b_blkno);
1516 if (curproc == uvm.pagedaemon_proc)
1517 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1518 else if (async)
1519 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1520 else
1521 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1522 VOP_STRATEGY(bp->b_vp, bp);
1523 }
1524 if (skipbytes) {
1525 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1526 s = splbio();
1527 if (error) {
1528 mbp->b_flags |= B_ERROR;
1529 mbp->b_error = error;
1530 }
1531 mbp->b_resid -= skipbytes;
1532 if (mbp->b_resid == 0) {
1533 biodone(mbp);
1534 }
1535 splx(s);
1536 }
1537 if (async) {
1538 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1539 return (0);
1540 }
1541 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1542 error = biowait(mbp);
1543 uvm_aio_aiodone(mbp);
1544 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1545 return (error);
1546 }
1547
1548 /*
1549 * VOP_PUTPAGES() for vnodes which never have pages.
1550 */
1551
1552 int
1553 genfs_null_putpages(void *v)
1554 {
1555 struct vop_putpages_args /* {
1556 struct vnode *a_vp;
1557 voff_t a_offlo;
1558 voff_t a_offhi;
1559 int a_flags;
1560 } */ *ap = v;
1561 struct vnode *vp = ap->a_vp;
1562
1563 KASSERT(vp->v_uobj.uo_npages == 0);
1564 simple_unlock(&vp->v_interlock);
1565 return (0);
1566 }
1567
1568 void
1569 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1570 {
1571 struct genfs_node *gp = VTOG(vp);
1572
1573 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1574 gp->g_op = ops;
1575 }
1576
1577 void
1578 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1579 {
1580 int bsize;
1581
1582 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1583 *eobp = (size + bsize - 1) & ~(bsize - 1);
1584 }
1585
1586 int
1587 genfs_compat_getpages(void *v)
1588 {
1589 struct vop_getpages_args /* {
1590 struct vnode *a_vp;
1591 voff_t a_offset;
1592 struct vm_page **a_m;
1593 int *a_count;
1594 int a_centeridx;
1595 vm_prot_t a_access_type;
1596 int a_advice;
1597 int a_flags;
1598 } */ *ap = v;
1599
1600 off_t origoffset;
1601 struct vnode *vp = ap->a_vp;
1602 struct uvm_object *uobj = &vp->v_uobj;
1603 struct vm_page *pg, **pgs;
1604 vaddr_t kva;
1605 int i, error, orignpages, npages;
1606 struct iovec iov;
1607 struct uio uio;
1608 struct ucred *cred = curproc->p_ucred;
1609 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1610
1611 error = 0;
1612 origoffset = ap->a_offset;
1613 orignpages = *ap->a_count;
1614 pgs = ap->a_m;
1615
1616 if (write && (vp->v_flag & VONWORKLST) == 0) {
1617 vn_syncer_add_to_worklist(vp, filedelay);
1618 }
1619 if (ap->a_flags & PGO_LOCKED) {
1620 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1621 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1622
1623 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1624 }
1625 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1626 simple_unlock(&uobj->vmobjlock);
1627 return (EINVAL);
1628 }
1629 npages = orignpages;
1630 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1631 simple_unlock(&uobj->vmobjlock);
1632 kva = uvm_pagermapin(pgs, npages,
1633 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1634 for (i = 0; i < npages; i++) {
1635 pg = pgs[i];
1636 if ((pg->flags & PG_FAKE) == 0) {
1637 continue;
1638 }
1639 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1640 iov.iov_len = PAGE_SIZE;
1641 uio.uio_iov = &iov;
1642 uio.uio_iovcnt = 1;
1643 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1644 uio.uio_segflg = UIO_SYSSPACE;
1645 uio.uio_rw = UIO_READ;
1646 uio.uio_resid = PAGE_SIZE;
1647 uio.uio_procp = NULL;
1648 /* XXX vn_lock */
1649 error = VOP_READ(vp, &uio, 0, cred);
1650 if (error) {
1651 break;
1652 }
1653 if (uio.uio_resid) {
1654 memset(iov.iov_base, 0, uio.uio_resid);
1655 }
1656 }
1657 uvm_pagermapout(kva, npages);
1658 simple_lock(&uobj->vmobjlock);
1659 uvm_lock_pageq();
1660 for (i = 0; i < npages; i++) {
1661 pg = pgs[i];
1662 if (error && (pg->flags & PG_FAKE) != 0) {
1663 pg->flags |= PG_RELEASED;
1664 } else {
1665 pmap_clear_modify(pg);
1666 uvm_pageactivate(pg);
1667 }
1668 }
1669 if (error) {
1670 uvm_page_unbusy(pgs, npages);
1671 }
1672 uvm_unlock_pageq();
1673 simple_unlock(&uobj->vmobjlock);
1674 return (error);
1675 }
1676
1677 int
1678 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1679 int flags)
1680 {
1681 off_t offset;
1682 struct iovec iov;
1683 struct uio uio;
1684 struct ucred *cred = curproc->p_ucred;
1685 struct buf *bp;
1686 vaddr_t kva;
1687 int s, error;
1688
1689 offset = pgs[0]->offset;
1690 kva = uvm_pagermapin(pgs, npages,
1691 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1692
1693 iov.iov_base = (void *)kva;
1694 iov.iov_len = npages << PAGE_SHIFT;
1695 uio.uio_iov = &iov;
1696 uio.uio_iovcnt = 1;
1697 uio.uio_offset = offset;
1698 uio.uio_segflg = UIO_SYSSPACE;
1699 uio.uio_rw = UIO_WRITE;
1700 uio.uio_resid = npages << PAGE_SHIFT;
1701 uio.uio_procp = NULL;
1702 /* XXX vn_lock */
1703 error = VOP_WRITE(vp, &uio, 0, cred);
1704
1705 s = splbio();
1706 V_INCR_NUMOUTPUT(vp);
1707 bp = pool_get(&bufpool, PR_WAITOK);
1708 splx(s);
1709
1710 BUF_INIT(bp);
1711 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1712 bp->b_vp = vp;
1713 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1714 bp->b_data = (char *)kva;
1715 bp->b_bcount = npages << PAGE_SHIFT;
1716 bp->b_bufsize = npages << PAGE_SHIFT;
1717 bp->b_resid = 0;
1718 if (error) {
1719 bp->b_flags |= B_ERROR;
1720 bp->b_error = error;
1721 }
1722 uvm_aio_aiodone(bp);
1723 return (error);
1724 }
1725
1726 static void
1727 filt_genfsdetach(struct knote *kn)
1728 {
1729 struct vnode *vp = (struct vnode *)kn->kn_hook;
1730
1731 /* XXXLUKEM lock the struct? */
1732 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1733 }
1734
1735 static int
1736 filt_genfsread(struct knote *kn, long hint)
1737 {
1738 struct vnode *vp = (struct vnode *)kn->kn_hook;
1739
1740 /*
1741 * filesystem is gone, so set the EOF flag and schedule
1742 * the knote for deletion.
1743 */
1744 if (hint == NOTE_REVOKE) {
1745 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1746 return (1);
1747 }
1748
1749 /* XXXLUKEM lock the struct? */
1750 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1751 return (kn->kn_data != 0);
1752 }
1753
1754 static int
1755 filt_genfsvnode(struct knote *kn, long hint)
1756 {
1757
1758 if (kn->kn_sfflags & hint)
1759 kn->kn_fflags |= hint;
1760 if (hint == NOTE_REVOKE) {
1761 kn->kn_flags |= EV_EOF;
1762 return (1);
1763 }
1764 return (kn->kn_fflags != 0);
1765 }
1766
1767 static const struct filterops genfsread_filtops =
1768 { 1, NULL, filt_genfsdetach, filt_genfsread };
1769 static const struct filterops genfsvnode_filtops =
1770 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1771
1772 int
1773 genfs_kqfilter(void *v)
1774 {
1775 struct vop_kqfilter_args /* {
1776 struct vnode *a_vp;
1777 struct knote *a_kn;
1778 } */ *ap = v;
1779 struct vnode *vp;
1780 struct knote *kn;
1781
1782 vp = ap->a_vp;
1783 kn = ap->a_kn;
1784 switch (kn->kn_filter) {
1785 case EVFILT_READ:
1786 kn->kn_fop = &genfsread_filtops;
1787 break;
1788 case EVFILT_VNODE:
1789 kn->kn_fop = &genfsvnode_filtops;
1790 break;
1791 default:
1792 return (1);
1793 }
1794
1795 kn->kn_hook = vp;
1796
1797 /* XXXLUKEM lock the struct? */
1798 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1799
1800 return (0);
1801 }
1802