Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.95
      1 /*	$NetBSD: genfs_vnops.c,v 1.95 2005/02/16 15:25:33 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.95 2005/02/16 15:25:33 chs Exp $");
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_nfsserver.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/kernel.h>
     44 #include <sys/mount.h>
     45 #include <sys/namei.h>
     46 #include <sys/vnode.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/malloc.h>
     49 #include <sys/poll.h>
     50 #include <sys/mman.h>
     51 #include <sys/file.h>
     52 
     53 #include <miscfs/genfs/genfs.h>
     54 #include <miscfs/genfs/genfs_node.h>
     55 #include <miscfs/specfs/specdev.h>
     56 
     57 #include <uvm/uvm.h>
     58 #include <uvm/uvm_pager.h>
     59 
     60 #ifdef NFSSERVER
     61 #include <nfs/rpcv2.h>
     62 #include <nfs/nfsproto.h>
     63 #include <nfs/nfs.h>
     64 #include <nfs/nqnfs.h>
     65 #include <nfs/nfs_var.h>
     66 #endif
     67 
     68 static __inline void genfs_rel_pages(struct vm_page **, int);
     69 static void filt_genfsdetach(struct knote *);
     70 static int filt_genfsread(struct knote *, long);
     71 static int filt_genfsvnode(struct knote *, long);
     72 
     73 
     74 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
     75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
     76 int genfs_racount = 2;		/* # of page chunks to readahead */
     77 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
     78 
     79 int
     80 genfs_poll(void *v)
     81 {
     82 	struct vop_poll_args /* {
     83 		struct vnode *a_vp;
     84 		int a_events;
     85 		struct proc *a_p;
     86 	} */ *ap = v;
     87 
     88 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     89 }
     90 
     91 int
     92 genfs_fsync(void *v)
     93 {
     94 	struct vop_fsync_args /* {
     95 		struct vnode *a_vp;
     96 		struct ucred *a_cred;
     97 		int a_flags;
     98 		off_t offlo;
     99 		off_t offhi;
    100 		struct proc *a_p;
    101 	} */ *ap = v;
    102 	struct vnode *vp = ap->a_vp, *dvp;
    103 	int wait;
    104 	int error;
    105 
    106 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
    107 	vflushbuf(vp, wait);
    108 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
    109 		error = 0;
    110 	else
    111 		error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    112 
    113 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    114 		int l = 0;
    115 		if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
    116 			error = ENXIO;
    117 		else
    118 			error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
    119 					  ap->a_p->p_ucred, ap->a_p);
    120 	}
    121 
    122 	return (error);
    123 }
    124 
    125 int
    126 genfs_seek(void *v)
    127 {
    128 	struct vop_seek_args /* {
    129 		struct vnode *a_vp;
    130 		off_t a_oldoff;
    131 		off_t a_newoff;
    132 		struct ucred *a_ucred;
    133 	} */ *ap = v;
    134 
    135 	if (ap->a_newoff < 0)
    136 		return (EINVAL);
    137 
    138 	return (0);
    139 }
    140 
    141 int
    142 genfs_abortop(void *v)
    143 {
    144 	struct vop_abortop_args /* {
    145 		struct vnode *a_dvp;
    146 		struct componentname *a_cnp;
    147 	} */ *ap = v;
    148 
    149 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    150 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    151 	return (0);
    152 }
    153 
    154 int
    155 genfs_fcntl(void *v)
    156 {
    157 	struct vop_fcntl_args /* {
    158 		struct vnode *a_vp;
    159 		u_int a_command;
    160 		caddr_t a_data;
    161 		int a_fflag;
    162 		struct ucred *a_cred;
    163 		struct proc *a_p;
    164 	} */ *ap = v;
    165 
    166 	if (ap->a_command == F_SETFL)
    167 		return (0);
    168 	else
    169 		return (EOPNOTSUPP);
    170 }
    171 
    172 /*ARGSUSED*/
    173 int
    174 genfs_badop(void *v)
    175 {
    176 
    177 	panic("genfs: bad op");
    178 }
    179 
    180 /*ARGSUSED*/
    181 int
    182 genfs_nullop(void *v)
    183 {
    184 
    185 	return (0);
    186 }
    187 
    188 /*ARGSUSED*/
    189 int
    190 genfs_einval(void *v)
    191 {
    192 
    193 	return (EINVAL);
    194 }
    195 
    196 /*
    197  * Called when an fs doesn't support a particular vop.
    198  * This takes care to vrele, vput, or vunlock passed in vnodes.
    199  */
    200 int
    201 genfs_eopnotsupp(void *v)
    202 {
    203 	struct vop_generic_args /*
    204 		struct vnodeop_desc *a_desc;
    205 		/ * other random data follows, presumably * /
    206 	} */ *ap = v;
    207 	struct vnodeop_desc *desc = ap->a_desc;
    208 	struct vnode *vp, *vp_last = NULL;
    209 	int flags, i, j, offset;
    210 
    211 	flags = desc->vdesc_flags;
    212 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    213 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    214 			break;	/* stop at end of list */
    215 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    216 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    217 
    218 			/* Skip if NULL */
    219 			if (!vp)
    220 				continue;
    221 
    222 			switch (j) {
    223 			case VDESC_VP0_WILLPUT:
    224 				/* Check for dvp == vp cases */
    225 				if (vp == vp_last)
    226 					vrele(vp);
    227 				else {
    228 					vput(vp);
    229 					vp_last = vp;
    230 				}
    231 				break;
    232 			case VDESC_VP0_WILLUNLOCK:
    233 				VOP_UNLOCK(vp, 0);
    234 				break;
    235 			case VDESC_VP0_WILLRELE:
    236 				vrele(vp);
    237 				break;
    238 			}
    239 		}
    240 	}
    241 
    242 	return (EOPNOTSUPP);
    243 }
    244 
    245 /*ARGSUSED*/
    246 int
    247 genfs_ebadf(void *v)
    248 {
    249 
    250 	return (EBADF);
    251 }
    252 
    253 /* ARGSUSED */
    254 int
    255 genfs_enoioctl(void *v)
    256 {
    257 
    258 	return (EPASSTHROUGH);
    259 }
    260 
    261 
    262 /*
    263  * Eliminate all activity associated with the requested vnode
    264  * and with all vnodes aliased to the requested vnode.
    265  */
    266 int
    267 genfs_revoke(void *v)
    268 {
    269 	struct vop_revoke_args /* {
    270 		struct vnode *a_vp;
    271 		int a_flags;
    272 	} */ *ap = v;
    273 	struct vnode *vp, *vq;
    274 	struct proc *p = curproc;	/* XXX */
    275 
    276 #ifdef DIAGNOSTIC
    277 	if ((ap->a_flags & REVOKEALL) == 0)
    278 		panic("genfs_revoke: not revokeall");
    279 #endif
    280 
    281 	vp = ap->a_vp;
    282 	simple_lock(&vp->v_interlock);
    283 
    284 	if (vp->v_flag & VALIASED) {
    285 		/*
    286 		 * If a vgone (or vclean) is already in progress,
    287 		 * wait until it is done and return.
    288 		 */
    289 		if (vp->v_flag & VXLOCK) {
    290 			vp->v_flag |= VXWANT;
    291 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    292 				&vp->v_interlock);
    293 			return (0);
    294 		}
    295 		/*
    296 		 * Ensure that vp will not be vgone'd while we
    297 		 * are eliminating its aliases.
    298 		 */
    299 		vp->v_flag |= VXLOCK;
    300 		simple_unlock(&vp->v_interlock);
    301 		while (vp->v_flag & VALIASED) {
    302 			simple_lock(&spechash_slock);
    303 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    304 				if (vq->v_rdev != vp->v_rdev ||
    305 				    vq->v_type != vp->v_type || vp == vq)
    306 					continue;
    307 				simple_unlock(&spechash_slock);
    308 				vgone(vq);
    309 				break;
    310 			}
    311 			if (vq == NULLVP)
    312 				simple_unlock(&spechash_slock);
    313 		}
    314 		/*
    315 		 * Remove the lock so that vgone below will
    316 		 * really eliminate the vnode after which time
    317 		 * vgone will awaken any sleepers.
    318 		 */
    319 		simple_lock(&vp->v_interlock);
    320 		vp->v_flag &= ~VXLOCK;
    321 	}
    322 	vgonel(vp, p);
    323 	return (0);
    324 }
    325 
    326 /*
    327  * Lock the node.
    328  */
    329 int
    330 genfs_lock(void *v)
    331 {
    332 	struct vop_lock_args /* {
    333 		struct vnode *a_vp;
    334 		int a_flags;
    335 	} */ *ap = v;
    336 	struct vnode *vp = ap->a_vp;
    337 
    338 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    339 }
    340 
    341 /*
    342  * Unlock the node.
    343  */
    344 int
    345 genfs_unlock(void *v)
    346 {
    347 	struct vop_unlock_args /* {
    348 		struct vnode *a_vp;
    349 		int a_flags;
    350 	} */ *ap = v;
    351 	struct vnode *vp = ap->a_vp;
    352 
    353 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    354 	    &vp->v_interlock));
    355 }
    356 
    357 /*
    358  * Return whether or not the node is locked.
    359  */
    360 int
    361 genfs_islocked(void *v)
    362 {
    363 	struct vop_islocked_args /* {
    364 		struct vnode *a_vp;
    365 	} */ *ap = v;
    366 	struct vnode *vp = ap->a_vp;
    367 
    368 	return (lockstatus(vp->v_vnlock));
    369 }
    370 
    371 /*
    372  * Stubs to use when there is no locking to be done on the underlying object.
    373  */
    374 int
    375 genfs_nolock(void *v)
    376 {
    377 	struct vop_lock_args /* {
    378 		struct vnode *a_vp;
    379 		int a_flags;
    380 		struct proc *a_p;
    381 	} */ *ap = v;
    382 
    383 	/*
    384 	 * Since we are not using the lock manager, we must clear
    385 	 * the interlock here.
    386 	 */
    387 	if (ap->a_flags & LK_INTERLOCK)
    388 		simple_unlock(&ap->a_vp->v_interlock);
    389 	return (0);
    390 }
    391 
    392 int
    393 genfs_nounlock(void *v)
    394 {
    395 
    396 	return (0);
    397 }
    398 
    399 int
    400 genfs_noislocked(void *v)
    401 {
    402 
    403 	return (0);
    404 }
    405 
    406 /*
    407  * Local lease check for NFS servers.  Just set up args and let
    408  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    409  * this is a null operation.
    410  */
    411 int
    412 genfs_lease_check(void *v)
    413 {
    414 #ifdef NFSSERVER
    415 	struct vop_lease_args /* {
    416 		struct vnode *a_vp;
    417 		struct proc *a_p;
    418 		struct ucred *a_cred;
    419 		int a_flag;
    420 	} */ *ap = v;
    421 	u_int32_t duration = 0;
    422 	int cache;
    423 	u_quad_t frev;
    424 
    425 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    426 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    427 	return (0);
    428 #else
    429 	return (0);
    430 #endif /* NFSSERVER */
    431 }
    432 
    433 int
    434 genfs_mmap(void *v)
    435 {
    436 
    437 	return (0);
    438 }
    439 
    440 static __inline void
    441 genfs_rel_pages(struct vm_page **pgs, int npages)
    442 {
    443 	int i;
    444 
    445 	for (i = 0; i < npages; i++) {
    446 		struct vm_page *pg = pgs[i];
    447 
    448 		if (pg == NULL)
    449 			continue;
    450 		if (pg->flags & PG_FAKE) {
    451 			pg->flags |= PG_RELEASED;
    452 		}
    453 	}
    454 	uvm_lock_pageq();
    455 	uvm_page_unbusy(pgs, npages);
    456 	uvm_unlock_pageq();
    457 }
    458 
    459 /*
    460  * generic VM getpages routine.
    461  * Return PG_BUSY pages for the given range,
    462  * reading from backing store if necessary.
    463  */
    464 
    465 int
    466 genfs_getpages(void *v)
    467 {
    468 	struct vop_getpages_args /* {
    469 		struct vnode *a_vp;
    470 		voff_t a_offset;
    471 		struct vm_page **a_m;
    472 		int *a_count;
    473 		int a_centeridx;
    474 		vm_prot_t a_access_type;
    475 		int a_advice;
    476 		int a_flags;
    477 	} */ *ap = v;
    478 
    479 	off_t newsize, diskeof, memeof;
    480 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    481 	daddr_t lbn, blkno;
    482 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    483 	int fs_bshift, fs_bsize, dev_bshift;
    484 	int flags = ap->a_flags;
    485 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    486 	vaddr_t kva;
    487 	struct buf *bp, *mbp;
    488 	struct vnode *vp = ap->a_vp;
    489 	struct vnode *devvp;
    490 	struct genfs_node *gp = VTOG(vp);
    491 	struct uvm_object *uobj = &vp->v_uobj;
    492 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
    493 	int pgs_size;
    494 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
    495 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    496 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    497 	boolean_t sawhole = FALSE;
    498 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    499 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    500 
    501 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    502 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    503 
    504 	/* XXXUBC temp limit */
    505 	if (*ap->a_count > MAX_READ_AHEAD) {
    506 		panic("genfs_getpages: too many pages");
    507 	}
    508 
    509 	error = 0;
    510 	origoffset = ap->a_offset;
    511 	orignpages = *ap->a_count;
    512 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
    513 	if (flags & PGO_PASTEOF) {
    514 		newsize = MAX(vp->v_size,
    515 		    origoffset + (orignpages << PAGE_SHIFT));
    516 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    517 	} else {
    518 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    519 	}
    520 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    521 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    522 	KASSERT(orignpages > 0);
    523 
    524 	/*
    525 	 * Bounds-check the request.
    526 	 */
    527 
    528 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    529 		if ((flags & PGO_LOCKED) == 0) {
    530 			simple_unlock(&uobj->vmobjlock);
    531 		}
    532 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    533 		    origoffset, *ap->a_count, memeof,0);
    534 		return (EINVAL);
    535 	}
    536 
    537 	/*
    538 	 * For PGO_LOCKED requests, just return whatever's in memory.
    539 	 */
    540 
    541 	if (flags & PGO_LOCKED) {
    542 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    543 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
    544 
    545 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    546 	}
    547 
    548 	/* uobj is locked */
    549 
    550 	if (write && (vp->v_flag & VONWORKLST) == 0) {
    551 		vn_syncer_add_to_worklist(vp, filedelay);
    552 	}
    553 
    554 	/*
    555 	 * find the requested pages and make some simple checks.
    556 	 * leave space in the page array for a whole block.
    557 	 */
    558 
    559 	if (vp->v_type == VREG) {
    560 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    561 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    562 	} else {
    563 		fs_bshift = DEV_BSHIFT;
    564 		dev_bshift = DEV_BSHIFT;
    565 	}
    566 	fs_bsize = 1 << fs_bshift;
    567 
    568 	orignpages = MIN(orignpages,
    569 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    570 	npages = orignpages;
    571 	startoffset = origoffset & ~(fs_bsize - 1);
    572 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    573 	    fs_bsize - 1) & ~(fs_bsize - 1));
    574 	endoffset = MIN(endoffset, round_page(memeof));
    575 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    576 
    577 	pgs_size = sizeof(struct vm_page *) *
    578 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    579 	if (pgs_size > sizeof(pgs_onstack)) {
    580 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
    581 		if (pgs == NULL) {
    582 			simple_unlock(&uobj->vmobjlock);
    583 			return (ENOMEM);
    584 		}
    585 	} else {
    586 		pgs = pgs_onstack;
    587 		memset(pgs, 0, pgs_size);
    588 	}
    589 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    590 	    ridx, npages, startoffset, endoffset);
    591 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    592 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    593 		KASSERT(async != 0);
    594 		genfs_rel_pages(&pgs[ridx], orignpages);
    595 		simple_unlock(&uobj->vmobjlock);
    596 		if (pgs != pgs_onstack)
    597 			free(pgs, M_DEVBUF);
    598 		return (EBUSY);
    599 	}
    600 
    601 	/*
    602 	 * if the pages are already resident, just return them.
    603 	 */
    604 
    605 	for (i = 0; i < npages; i++) {
    606 		struct vm_page *pg = pgs[ridx + i];
    607 
    608 		if ((pg->flags & PG_FAKE) ||
    609 		    (write && (pg->flags & PG_RDONLY))) {
    610 			break;
    611 		}
    612 	}
    613 	if (i == npages) {
    614 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    615 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    616 		npages += ridx;
    617 		goto raout;
    618 	}
    619 
    620 	/*
    621 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    622 	 */
    623 
    624 	if (flags & PGO_OVERWRITE) {
    625 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    626 
    627 		for (i = 0; i < npages; i++) {
    628 			struct vm_page *pg = pgs[ridx + i];
    629 
    630 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    631 		}
    632 		npages += ridx;
    633 		goto out;
    634 	}
    635 
    636 	/*
    637 	 * the page wasn't resident and we're not overwriting,
    638 	 * so we're going to have to do some i/o.
    639 	 * find any additional pages needed to cover the expanded range.
    640 	 */
    641 
    642 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    643 	if (startoffset != origoffset || npages != orignpages) {
    644 
    645 		/*
    646 		 * we need to avoid deadlocks caused by locking
    647 		 * additional pages at lower offsets than pages we
    648 		 * already have locked.  unlock them all and start over.
    649 		 */
    650 
    651 		genfs_rel_pages(&pgs[ridx], orignpages);
    652 		memset(pgs, 0, pgs_size);
    653 
    654 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    655 		    startoffset, endoffset, 0,0);
    656 		npgs = npages;
    657 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    658 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    659 			KASSERT(async != 0);
    660 			genfs_rel_pages(pgs, npages);
    661 			simple_unlock(&uobj->vmobjlock);
    662 			if (pgs != pgs_onstack)
    663 				free(pgs, M_DEVBUF);
    664 			return (EBUSY);
    665 		}
    666 	}
    667 	simple_unlock(&uobj->vmobjlock);
    668 
    669 	/*
    670 	 * read the desired page(s).
    671 	 */
    672 
    673 	totalbytes = npages << PAGE_SHIFT;
    674 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    675 	tailbytes = totalbytes - bytes;
    676 	skipbytes = 0;
    677 
    678 	kva = uvm_pagermapin(pgs, npages,
    679 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    680 
    681 	s = splbio();
    682 	mbp = pool_get(&bufpool, PR_WAITOK);
    683 	splx(s);
    684 	BUF_INIT(mbp);
    685 	mbp->b_bufsize = totalbytes;
    686 	mbp->b_data = (void *)kva;
    687 	mbp->b_resid = mbp->b_bcount = bytes;
    688 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    689 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    690 	mbp->b_vp = vp;
    691 
    692 	/*
    693 	 * if EOF is in the middle of the range, zero the part past EOF.
    694 	 * if the page including EOF is not PG_FAKE, skip over it since
    695 	 * in that case it has valid data that we need to preserve.
    696 	 */
    697 
    698 	if (tailbytes > 0) {
    699 		size_t tailstart = bytes;
    700 
    701 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    702 			tailstart = round_page(tailstart);
    703 			tailbytes -= tailstart - bytes;
    704 		}
    705 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    706 		    kva, tailstart, tailbytes,0);
    707 		memset((void *)(kva + tailstart), 0, tailbytes);
    708 	}
    709 
    710 	/*
    711 	 * now loop over the pages, reading as needed.
    712 	 */
    713 
    714 	if (write) {
    715 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    716 	} else {
    717 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    718 	}
    719 
    720 	bp = NULL;
    721 	for (offset = startoffset;
    722 	    bytes > 0;
    723 	    offset += iobytes, bytes -= iobytes) {
    724 
    725 		/*
    726 		 * skip pages which don't need to be read.
    727 		 */
    728 
    729 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    730 		while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
    731 			size_t b;
    732 
    733 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    734 			b = MIN(PAGE_SIZE, bytes);
    735 			offset += b;
    736 			bytes -= b;
    737 			skipbytes += b;
    738 			pidx++;
    739 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    740 			    offset, 0,0,0);
    741 			if (bytes == 0) {
    742 				goto loopdone;
    743 			}
    744 		}
    745 
    746 		/*
    747 		 * bmap the file to find out the blkno to read from and
    748 		 * how much we can read in one i/o.  if bmap returns an error,
    749 		 * skip the rest of the top-level i/o.
    750 		 */
    751 
    752 		lbn = offset >> fs_bshift;
    753 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    754 		if (error) {
    755 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    756 			    lbn, error,0,0);
    757 			skipbytes += bytes;
    758 			goto loopdone;
    759 		}
    760 
    761 		/*
    762 		 * see how many pages can be read with this i/o.
    763 		 * reduce the i/o size if necessary to avoid
    764 		 * overwriting pages with valid data.
    765 		 */
    766 
    767 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    768 		    bytes);
    769 		if (offset + iobytes > round_page(offset)) {
    770 			pcount = 1;
    771 			while (pidx + pcount < npages &&
    772 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    773 				pcount++;
    774 			}
    775 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    776 			    (offset - trunc_page(offset)));
    777 		}
    778 
    779 		/*
    780 		 * if this block isn't allocated, zero it instead of
    781 		 * reading it.  if this is a read access, mark the
    782 		 * pages we zeroed PG_RDONLY.
    783 		 */
    784 
    785 		if (blkno < 0) {
    786 			int holepages = (round_page(offset + iobytes) -
    787 			    trunc_page(offset)) >> PAGE_SHIFT;
    788 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    789 
    790 			sawhole = TRUE;
    791 			memset((char *)kva + (offset - startoffset), 0,
    792 			    iobytes);
    793 			skipbytes += iobytes;
    794 
    795 			for (i = 0; i < holepages; i++) {
    796 				if (write) {
    797 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    798 				} else {
    799 					pgs[pidx + i]->flags |= PG_RDONLY;
    800 				}
    801 			}
    802 			continue;
    803 		}
    804 
    805 		/*
    806 		 * allocate a sub-buf for this piece of the i/o
    807 		 * (or just use mbp if there's only 1 piece),
    808 		 * and start it going.
    809 		 */
    810 
    811 		if (offset == startoffset && iobytes == bytes) {
    812 			bp = mbp;
    813 		} else {
    814 			s = splbio();
    815 			bp = pool_get(&bufpool, PR_WAITOK);
    816 			splx(s);
    817 			BUF_INIT(bp);
    818 			bp->b_data = (char *)kva + offset - startoffset;
    819 			bp->b_resid = bp->b_bcount = iobytes;
    820 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
    821 			bp->b_iodone = uvm_aio_biodone1;
    822 			bp->b_vp = vp;
    823 			bp->b_proc = NULL;
    824 		}
    825 		bp->b_lblkno = 0;
    826 		bp->b_private = mbp;
    827 		if (devvp->v_type == VBLK) {
    828 			bp->b_dev = devvp->v_rdev;
    829 		}
    830 
    831 		/* adjust physical blkno for partial blocks */
    832 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    833 		    dev_bshift);
    834 
    835 		UVMHIST_LOG(ubchist,
    836 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    837 		    bp, offset, iobytes, bp->b_blkno);
    838 
    839 		if (async)
    840 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    841 		else
    842 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    843 		VOP_STRATEGY(bp->b_vp, bp);
    844 	}
    845 
    846 loopdone:
    847 	if (skipbytes) {
    848 		s = splbio();
    849 		if (error) {
    850 			mbp->b_flags |= B_ERROR;
    851 			mbp->b_error = error;
    852 		}
    853 		mbp->b_resid -= skipbytes;
    854 		if (mbp->b_resid == 0) {
    855 			biodone(mbp);
    856 		}
    857 		splx(s);
    858 	}
    859 
    860 	if (async) {
    861 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    862 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    863 		if (pgs != pgs_onstack)
    864 			free(pgs, M_DEVBUF);
    865 		return (0);
    866 	}
    867 	if (bp != NULL) {
    868 		error = biowait(mbp);
    869 	}
    870 	s = splbio();
    871 	pool_put(&bufpool, mbp);
    872 	splx(s);
    873 	uvm_pagermapout(kva, npages);
    874 	raoffset = startoffset + totalbytes;
    875 
    876 	/*
    877 	 * if this we encountered a hole then we have to do a little more work.
    878 	 * for read faults, we marked the page PG_RDONLY so that future
    879 	 * write accesses to the page will fault again.
    880 	 * for write faults, we must make sure that the backing store for
    881 	 * the page is completely allocated while the pages are locked.
    882 	 */
    883 
    884 	if (!error && sawhole && write) {
    885 		for (i = 0; i < npages; i++) {
    886 			if (pgs[i] == NULL) {
    887 				continue;
    888 			}
    889 			pgs[i]->flags &= ~PG_CLEAN;
    890 			UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
    891 		}
    892 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    893 		    cred);
    894 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    895 		    startoffset, npages << PAGE_SHIFT, error,0);
    896 	}
    897 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    898 	simple_lock(&uobj->vmobjlock);
    899 
    900 	/*
    901 	 * see if we want to start any readahead.
    902 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
    903 	 * this is pretty nonsensical, but it is 50% faster than reading
    904 	 * just the next 64k.
    905 	 */
    906 
    907 raout:
    908 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
    909 	    PAGE_SHIFT <= 16) {
    910 		off_t rasize;
    911 		int rapages, err, i, skipped;
    912 
    913 		/* XXXUBC temp limit, from above */
    914 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
    915 		    genfs_rapages);
    916 		rasize = rapages << PAGE_SHIFT;
    917 		for (i = skipped = 0; i < genfs_racount; i++) {
    918 
    919 			if (raoffset >= memeof)
    920 				break;
    921 
    922 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
    923 			    VM_PROT_READ, 0, 0);
    924 			simple_lock(&uobj->vmobjlock);
    925 			if (err) {
    926 				if (err != EBUSY ||
    927 				    skipped++ == genfs_raskip)
    928 					break;
    929 			}
    930 			raoffset += rasize;
    931 			rapages = rasize >> PAGE_SHIFT;
    932 		}
    933 	}
    934 
    935 	/*
    936 	 * we're almost done!  release the pages...
    937 	 * for errors, we free the pages.
    938 	 * otherwise we activate them and mark them as valid and clean.
    939 	 * also, unbusy pages that were not actually requested.
    940 	 */
    941 
    942 	if (error) {
    943 		for (i = 0; i < npages; i++) {
    944 			if (pgs[i] == NULL) {
    945 				continue;
    946 			}
    947 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    948 			    pgs[i], pgs[i]->flags, 0,0);
    949 			if (pgs[i]->flags & PG_FAKE) {
    950 				pgs[i]->flags |= PG_RELEASED;
    951 			}
    952 		}
    953 		uvm_lock_pageq();
    954 		uvm_page_unbusy(pgs, npages);
    955 		uvm_unlock_pageq();
    956 		simple_unlock(&uobj->vmobjlock);
    957 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    958 		if (pgs != pgs_onstack)
    959 			free(pgs, M_DEVBUF);
    960 		return (error);
    961 	}
    962 
    963 out:
    964 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    965 	uvm_lock_pageq();
    966 	for (i = 0; i < npages; i++) {
    967 		pg = pgs[i];
    968 		if (pg == NULL) {
    969 			continue;
    970 		}
    971 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    972 		    pg, pg->flags, 0,0);
    973 		if (pg->flags & PG_FAKE && !overwrite) {
    974 			pg->flags &= ~(PG_FAKE);
    975 			pmap_clear_modify(pgs[i]);
    976 		}
    977 		if (write) {
    978 			pg->flags &= ~(PG_RDONLY);
    979 		}
    980 		if (i < ridx || i >= ridx + orignpages || async) {
    981 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    982 			    pg, pg->offset,0,0);
    983 			if (pg->flags & PG_WANTED) {
    984 				wakeup(pg);
    985 			}
    986 			if (pg->flags & PG_FAKE) {
    987 				KASSERT(overwrite);
    988 				uvm_pagezero(pg);
    989 			}
    990 			if (pg->flags & PG_RELEASED) {
    991 				uvm_pagefree(pg);
    992 				continue;
    993 			}
    994 			uvm_pageactivate(pg);
    995 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    996 			UVM_PAGE_OWN(pg, NULL);
    997 		}
    998 	}
    999 	uvm_unlock_pageq();
   1000 	simple_unlock(&uobj->vmobjlock);
   1001 	if (ap->a_m != NULL) {
   1002 		memcpy(ap->a_m, &pgs[ridx],
   1003 		    orignpages * sizeof(struct vm_page *));
   1004 	}
   1005 	if (pgs != pgs_onstack)
   1006 		free(pgs, M_DEVBUF);
   1007 	return (0);
   1008 }
   1009 
   1010 /*
   1011  * generic VM putpages routine.
   1012  * Write the given range of pages to backing store.
   1013  *
   1014  * => "offhi == 0" means flush all pages at or after "offlo".
   1015  * => object should be locked by caller.   we may _unlock_ the object
   1016  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
   1017  *	if PGO_SYNCIO is set and there are pages busy.
   1018  *	we return with the object locked.
   1019  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1020  *	thus, a caller might want to unlock higher level resources
   1021  *	(e.g. vm_map) before calling flush.
   1022  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
   1023  *	unlock the object nor block.
   1024  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1025  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1026  *	that new pages are inserted on the tail end of the list.   thus,
   1027  *	we can make a complete pass through the object in one go by starting
   1028  *	at the head and working towards the tail (new pages are put in
   1029  *	front of us).
   1030  * => NOTE: we are allowed to lock the page queues, so the caller
   1031  *	must not be holding the page queue lock.
   1032  *
   1033  * note on "cleaning" object and PG_BUSY pages:
   1034  *	this routine is holding the lock on the object.   the only time
   1035  *	that it can run into a PG_BUSY page that it does not own is if
   1036  *	some other process has started I/O on the page (e.g. either
   1037  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1038  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1039  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1040  *	paged out then it means that someone else has already started
   1041  *	cleaning the page for us (how nice!).    in this case, if we
   1042  *	have syncio specified, then after we make our pass through the
   1043  *	object we need to wait for the other PG_BUSY pages to clear
   1044  *	off (i.e. we need to do an iosync).   also note that once a
   1045  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1046  *
   1047  * note on page traversal:
   1048  *	we can traverse the pages in an object either by going down the
   1049  *	linked list in "uobj->memq", or we can go over the address range
   1050  *	by page doing hash table lookups for each address.    depending
   1051  *	on how many pages are in the object it may be cheaper to do one
   1052  *	or the other.   we set "by_list" to true if we are using memq.
   1053  *	if the cost of a hash lookup was equal to the cost of the list
   1054  *	traversal we could compare the number of pages in the start->stop
   1055  *	range to the total number of pages in the object.   however, it
   1056  *	seems that a hash table lookup is more expensive than the linked
   1057  *	list traversal, so we multiply the number of pages in the
   1058  *	range by an estimate of the relatively higher cost of the hash lookup.
   1059  */
   1060 
   1061 int
   1062 genfs_putpages(void *v)
   1063 {
   1064 	struct vop_putpages_args /* {
   1065 		struct vnode *a_vp;
   1066 		voff_t a_offlo;
   1067 		voff_t a_offhi;
   1068 		int a_flags;
   1069 	} */ *ap = v;
   1070 	struct vnode *vp = ap->a_vp;
   1071 	struct uvm_object *uobj = &vp->v_uobj;
   1072 	struct simplelock *slock = &uobj->vmobjlock;
   1073 	off_t startoff = ap->a_offlo;
   1074 	off_t endoff = ap->a_offhi;
   1075 	off_t off;
   1076 	int flags = ap->a_flags;
   1077 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1078 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
   1079 	int i, s, error, npages, nback;
   1080 	int freeflag;
   1081 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1082 	boolean_t wasclean, by_list, needs_clean, yield;
   1083 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1084 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1085 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1086 
   1087 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1088 
   1089 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1090 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1091 	KASSERT(startoff < endoff || endoff == 0);
   1092 
   1093 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1094 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1095 	if (uobj->uo_npages == 0) {
   1096 		s = splbio();
   1097 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1098 		    (vp->v_flag & VONWORKLST)) {
   1099 			vp->v_flag &= ~VONWORKLST;
   1100 			LIST_REMOVE(vp, v_synclist);
   1101 		}
   1102 		splx(s);
   1103 		simple_unlock(slock);
   1104 		return (0);
   1105 	}
   1106 
   1107 	/*
   1108 	 * the vnode has pages, set up to process the request.
   1109 	 */
   1110 
   1111 	error = 0;
   1112 	s = splbio();
   1113 	simple_lock(&global_v_numoutput_slock);
   1114 	wasclean = (vp->v_numoutput == 0);
   1115 	simple_unlock(&global_v_numoutput_slock);
   1116 	splx(s);
   1117 	off = startoff;
   1118 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1119 		endoff = trunc_page(LLONG_MAX);
   1120 	}
   1121 	by_list = (uobj->uo_npages <=
   1122 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1123 
   1124 	/*
   1125 	 * start the loop.  when scanning by list, hold the last page
   1126 	 * in the list before we start.  pages allocated after we start
   1127 	 * will be added to the end of the list, so we can stop at the
   1128 	 * current last page.
   1129 	 */
   1130 
   1131 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1132 	curmp.uobject = uobj;
   1133 	curmp.offset = (voff_t)-1;
   1134 	curmp.flags = PG_BUSY;
   1135 	endmp.uobject = uobj;
   1136 	endmp.offset = (voff_t)-1;
   1137 	endmp.flags = PG_BUSY;
   1138 	if (by_list) {
   1139 		pg = TAILQ_FIRST(&uobj->memq);
   1140 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1141 		PHOLD(l);
   1142 	} else {
   1143 		pg = uvm_pagelookup(uobj, off);
   1144 	}
   1145 	nextpg = NULL;
   1146 	while (by_list || off < endoff) {
   1147 
   1148 		/*
   1149 		 * if the current page is not interesting, move on to the next.
   1150 		 */
   1151 
   1152 		KASSERT(pg == NULL || pg->uobject == uobj);
   1153 		KASSERT(pg == NULL ||
   1154 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1155 		    (pg->flags & PG_BUSY) != 0);
   1156 		if (by_list) {
   1157 			if (pg == &endmp) {
   1158 				break;
   1159 			}
   1160 			if (pg->offset < startoff || pg->offset >= endoff ||
   1161 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1162 				pg = TAILQ_NEXT(pg, listq);
   1163 				continue;
   1164 			}
   1165 			off = pg->offset;
   1166 		} else if (pg == NULL ||
   1167 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1168 			off += PAGE_SIZE;
   1169 			if (off < endoff) {
   1170 				pg = uvm_pagelookup(uobj, off);
   1171 			}
   1172 			continue;
   1173 		}
   1174 
   1175 		/*
   1176 		 * if the current page needs to be cleaned and it's busy,
   1177 		 * wait for it to become unbusy.
   1178 		 */
   1179 
   1180 		yield = (l->l_cpu->ci_schedstate.spc_flags &
   1181 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1182 		if (pg->flags & PG_BUSY || yield) {
   1183 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1184 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1185 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1186 				error = EDEADLK;
   1187 				break;
   1188 			}
   1189 			KASSERT(!pagedaemon);
   1190 			if (by_list) {
   1191 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1192 				UVMHIST_LOG(ubchist, "curmp next %p",
   1193 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1194 			}
   1195 			if (yield) {
   1196 				simple_unlock(slock);
   1197 				preempt(1);
   1198 				simple_lock(slock);
   1199 			} else {
   1200 				pg->flags |= PG_WANTED;
   1201 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1202 				simple_lock(slock);
   1203 			}
   1204 			if (by_list) {
   1205 				UVMHIST_LOG(ubchist, "after next %p",
   1206 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1207 				pg = TAILQ_NEXT(&curmp, listq);
   1208 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1209 			} else {
   1210 				pg = uvm_pagelookup(uobj, off);
   1211 			}
   1212 			continue;
   1213 		}
   1214 
   1215 		/*
   1216 		 * if we're freeing, remove all mappings of the page now.
   1217 		 * if we're cleaning, check if the page is needs to be cleaned.
   1218 		 */
   1219 
   1220 		if (flags & PGO_FREE) {
   1221 			pmap_page_protect(pg, VM_PROT_NONE);
   1222 		}
   1223 		if (flags & PGO_CLEANIT) {
   1224 			needs_clean = pmap_clear_modify(pg) ||
   1225 			    (pg->flags & PG_CLEAN) == 0;
   1226 			pg->flags |= PG_CLEAN;
   1227 		} else {
   1228 			needs_clean = FALSE;
   1229 		}
   1230 
   1231 		/*
   1232 		 * if we're cleaning, build a cluster.
   1233 		 * the cluster will consist of pages which are currently dirty,
   1234 		 * but they will be returned to us marked clean.
   1235 		 * if not cleaning, just operate on the one page.
   1236 		 */
   1237 
   1238 		if (needs_clean) {
   1239 			wasclean = FALSE;
   1240 			memset(pgs, 0, sizeof(pgs));
   1241 			pg->flags |= PG_BUSY;
   1242 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1243 
   1244 			/*
   1245 			 * first look backward.
   1246 			 */
   1247 
   1248 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1249 			nback = npages;
   1250 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1251 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1252 			if (nback) {
   1253 				memmove(&pgs[0], &pgs[npages - nback],
   1254 				    nback * sizeof(pgs[0]));
   1255 				if (npages - nback < nback)
   1256 					memset(&pgs[nback], 0,
   1257 					    (npages - nback) * sizeof(pgs[0]));
   1258 				else
   1259 					memset(&pgs[npages - nback], 0,
   1260 					    nback * sizeof(pgs[0]));
   1261 			}
   1262 
   1263 			/*
   1264 			 * then plug in our page of interest.
   1265 			 */
   1266 
   1267 			pgs[nback] = pg;
   1268 
   1269 			/*
   1270 			 * then look forward to fill in the remaining space in
   1271 			 * the array of pages.
   1272 			 */
   1273 
   1274 			npages = maxpages - nback - 1;
   1275 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1276 			    &pgs[nback + 1],
   1277 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1278 			npages += nback + 1;
   1279 		} else {
   1280 			pgs[0] = pg;
   1281 			npages = 1;
   1282 			nback = 0;
   1283 		}
   1284 
   1285 		/*
   1286 		 * apply FREE or DEACTIVATE options if requested.
   1287 		 */
   1288 
   1289 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1290 			uvm_lock_pageq();
   1291 		}
   1292 		for (i = 0; i < npages; i++) {
   1293 			tpg = pgs[i];
   1294 			KASSERT(tpg->uobject == uobj);
   1295 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1296 				pg = tpg;
   1297 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1298 				continue;
   1299 			if (flags & PGO_DEACTIVATE &&
   1300 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1301 			    tpg->wire_count == 0) {
   1302 				(void) pmap_clear_reference(tpg);
   1303 				uvm_pagedeactivate(tpg);
   1304 			} else if (flags & PGO_FREE) {
   1305 				pmap_page_protect(tpg, VM_PROT_NONE);
   1306 				if (tpg->flags & PG_BUSY) {
   1307 					tpg->flags |= freeflag;
   1308 					if (pagedaemon) {
   1309 						uvmexp.paging++;
   1310 						uvm_pagedequeue(tpg);
   1311 					}
   1312 				} else {
   1313 
   1314 					/*
   1315 					 * ``page is not busy''
   1316 					 * implies that npages is 1
   1317 					 * and needs_clean is false.
   1318 					 */
   1319 
   1320 					nextpg = TAILQ_NEXT(tpg, listq);
   1321 					uvm_pagefree(tpg);
   1322 					if (pagedaemon)
   1323 						uvmexp.pdfreed++;
   1324 				}
   1325 			}
   1326 		}
   1327 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1328 			uvm_unlock_pageq();
   1329 		}
   1330 		if (needs_clean) {
   1331 
   1332 			/*
   1333 			 * start the i/o.  if we're traversing by list,
   1334 			 * keep our place in the list with a marker page.
   1335 			 */
   1336 
   1337 			if (by_list) {
   1338 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1339 				    listq);
   1340 			}
   1341 			simple_unlock(slock);
   1342 			error = GOP_WRITE(vp, pgs, npages, flags);
   1343 			simple_lock(slock);
   1344 			if (by_list) {
   1345 				pg = TAILQ_NEXT(&curmp, listq);
   1346 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1347 			}
   1348 			if (error) {
   1349 				break;
   1350 			}
   1351 			if (by_list) {
   1352 				continue;
   1353 			}
   1354 		}
   1355 
   1356 		/*
   1357 		 * find the next page and continue if there was no error.
   1358 		 */
   1359 
   1360 		if (by_list) {
   1361 			if (nextpg) {
   1362 				pg = nextpg;
   1363 				nextpg = NULL;
   1364 			} else {
   1365 				pg = TAILQ_NEXT(pg, listq);
   1366 			}
   1367 		} else {
   1368 			off += (npages - nback) << PAGE_SHIFT;
   1369 			if (off < endoff) {
   1370 				pg = uvm_pagelookup(uobj, off);
   1371 			}
   1372 		}
   1373 	}
   1374 	if (by_list) {
   1375 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1376 		PRELE(l);
   1377 	}
   1378 
   1379 	/*
   1380 	 * if we're cleaning and there was nothing to clean,
   1381 	 * take us off the syncer list.  if we started any i/o
   1382 	 * and we're doing sync i/o, wait for all writes to finish.
   1383 	 */
   1384 
   1385 	s = splbio();
   1386 	if ((flags & PGO_CLEANIT) && wasclean &&
   1387 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1388 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1389 	    (vp->v_flag & VONWORKLST)) {
   1390 		vp->v_flag &= ~VONWORKLST;
   1391 		LIST_REMOVE(vp, v_synclist);
   1392 	}
   1393 	splx(s);
   1394 	if (!wasclean && !async) {
   1395 		s = splbio();
   1396 		/*
   1397 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1398 		 *	 but the slot in ltsleep() is taken!
   1399 		 * XXX - try to recover from missed wakeups with a timeout..
   1400 		 *	 must think of something better.
   1401 		 */
   1402 		while (vp->v_numoutput != 0) {
   1403 			vp->v_flag |= VBWAIT;
   1404 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1405 			    "genput2", hz);
   1406 			simple_lock(slock);
   1407 		}
   1408 		splx(s);
   1409 	}
   1410 	simple_unlock(&uobj->vmobjlock);
   1411 	return (error);
   1412 }
   1413 
   1414 int
   1415 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1416 {
   1417 	int s, error, run;
   1418 	int fs_bshift, dev_bshift;
   1419 	vaddr_t kva;
   1420 	off_t eof, offset, startoffset;
   1421 	size_t bytes, iobytes, skipbytes;
   1422 	daddr_t lbn, blkno;
   1423 	struct vm_page *pg;
   1424 	struct buf *mbp, *bp;
   1425 	struct vnode *devvp;
   1426 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1427 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1428 
   1429 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1430 	    vp, pgs, npages, flags);
   1431 
   1432 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
   1433 	if (vp->v_type == VREG) {
   1434 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1435 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1436 	} else {
   1437 		fs_bshift = DEV_BSHIFT;
   1438 		dev_bshift = DEV_BSHIFT;
   1439 	}
   1440 	error = 0;
   1441 	pg = pgs[0];
   1442 	startoffset = pg->offset;
   1443 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1444 	skipbytes = 0;
   1445 	KASSERT(bytes != 0);
   1446 
   1447 	kva = uvm_pagermapin(pgs, npages,
   1448 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1449 
   1450 	s = splbio();
   1451 	simple_lock(&global_v_numoutput_slock);
   1452 	vp->v_numoutput += 2;
   1453 	simple_unlock(&global_v_numoutput_slock);
   1454 	mbp = pool_get(&bufpool, PR_WAITOK);
   1455 	BUF_INIT(mbp);
   1456 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1457 	    vp, mbp, vp->v_numoutput, bytes);
   1458 	splx(s);
   1459 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1460 	mbp->b_data = (void *)kva;
   1461 	mbp->b_resid = mbp->b_bcount = bytes;
   1462 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
   1463 	mbp->b_iodone = uvm_aio_biodone;
   1464 	mbp->b_vp = vp;
   1465 
   1466 	bp = NULL;
   1467 	for (offset = startoffset;
   1468 	    bytes > 0;
   1469 	    offset += iobytes, bytes -= iobytes) {
   1470 		lbn = offset >> fs_bshift;
   1471 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1472 		if (error) {
   1473 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1474 			skipbytes += bytes;
   1475 			bytes = 0;
   1476 			break;
   1477 		}
   1478 
   1479 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1480 		    bytes);
   1481 		if (blkno == (daddr_t)-1) {
   1482 			skipbytes += iobytes;
   1483 			continue;
   1484 		}
   1485 
   1486 		/* if it's really one i/o, don't make a second buf */
   1487 		if (offset == startoffset && iobytes == bytes) {
   1488 			bp = mbp;
   1489 		} else {
   1490 			s = splbio();
   1491 			V_INCR_NUMOUTPUT(vp);
   1492 			bp = pool_get(&bufpool, PR_WAITOK);
   1493 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1494 			    vp, bp, vp->v_numoutput, 0);
   1495 			splx(s);
   1496 			BUF_INIT(bp);
   1497 			bp->b_data = (char *)kva +
   1498 			    (vaddr_t)(offset - pg->offset);
   1499 			bp->b_resid = bp->b_bcount = iobytes;
   1500 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
   1501 			bp->b_iodone = uvm_aio_biodone1;
   1502 			bp->b_vp = vp;
   1503 		}
   1504 		bp->b_lblkno = 0;
   1505 		bp->b_private = mbp;
   1506 		if (devvp->v_type == VBLK) {
   1507 			bp->b_dev = devvp->v_rdev;
   1508 		}
   1509 
   1510 		/* adjust physical blkno for partial blocks */
   1511 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1512 		    dev_bshift);
   1513 		UVMHIST_LOG(ubchist,
   1514 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1515 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1516 		if (curproc == uvm.pagedaemon_proc)
   1517 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1518 		else if (async)
   1519 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
   1520 		else
   1521 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1522 		VOP_STRATEGY(bp->b_vp, bp);
   1523 	}
   1524 	if (skipbytes) {
   1525 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1526 		s = splbio();
   1527 		if (error) {
   1528 			mbp->b_flags |= B_ERROR;
   1529 			mbp->b_error = error;
   1530 		}
   1531 		mbp->b_resid -= skipbytes;
   1532 		if (mbp->b_resid == 0) {
   1533 			biodone(mbp);
   1534 		}
   1535 		splx(s);
   1536 	}
   1537 	if (async) {
   1538 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1539 		return (0);
   1540 	}
   1541 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1542 	error = biowait(mbp);
   1543 	uvm_aio_aiodone(mbp);
   1544 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1545 	return (error);
   1546 }
   1547 
   1548 /*
   1549  * VOP_PUTPAGES() for vnodes which never have pages.
   1550  */
   1551 
   1552 int
   1553 genfs_null_putpages(void *v)
   1554 {
   1555 	struct vop_putpages_args /* {
   1556 		struct vnode *a_vp;
   1557 		voff_t a_offlo;
   1558 		voff_t a_offhi;
   1559 		int a_flags;
   1560 	} */ *ap = v;
   1561 	struct vnode *vp = ap->a_vp;
   1562 
   1563 	KASSERT(vp->v_uobj.uo_npages == 0);
   1564 	simple_unlock(&vp->v_interlock);
   1565 	return (0);
   1566 }
   1567 
   1568 void
   1569 genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
   1570 {
   1571 	struct genfs_node *gp = VTOG(vp);
   1572 
   1573 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1574 	gp->g_op = ops;
   1575 }
   1576 
   1577 void
   1578 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1579 {
   1580 	int bsize;
   1581 
   1582 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1583 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1584 }
   1585 
   1586 int
   1587 genfs_compat_getpages(void *v)
   1588 {
   1589 	struct vop_getpages_args /* {
   1590 		struct vnode *a_vp;
   1591 		voff_t a_offset;
   1592 		struct vm_page **a_m;
   1593 		int *a_count;
   1594 		int a_centeridx;
   1595 		vm_prot_t a_access_type;
   1596 		int a_advice;
   1597 		int a_flags;
   1598 	} */ *ap = v;
   1599 
   1600 	off_t origoffset;
   1601 	struct vnode *vp = ap->a_vp;
   1602 	struct uvm_object *uobj = &vp->v_uobj;
   1603 	struct vm_page *pg, **pgs;
   1604 	vaddr_t kva;
   1605 	int i, error, orignpages, npages;
   1606 	struct iovec iov;
   1607 	struct uio uio;
   1608 	struct ucred *cred = curproc->p_ucred;
   1609 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1610 
   1611 	error = 0;
   1612 	origoffset = ap->a_offset;
   1613 	orignpages = *ap->a_count;
   1614 	pgs = ap->a_m;
   1615 
   1616 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1617 		vn_syncer_add_to_worklist(vp, filedelay);
   1618 	}
   1619 	if (ap->a_flags & PGO_LOCKED) {
   1620 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1621 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1622 
   1623 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1624 	}
   1625 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1626 		simple_unlock(&uobj->vmobjlock);
   1627 		return (EINVAL);
   1628 	}
   1629 	npages = orignpages;
   1630 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1631 	simple_unlock(&uobj->vmobjlock);
   1632 	kva = uvm_pagermapin(pgs, npages,
   1633 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1634 	for (i = 0; i < npages; i++) {
   1635 		pg = pgs[i];
   1636 		if ((pg->flags & PG_FAKE) == 0) {
   1637 			continue;
   1638 		}
   1639 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1640 		iov.iov_len = PAGE_SIZE;
   1641 		uio.uio_iov = &iov;
   1642 		uio.uio_iovcnt = 1;
   1643 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1644 		uio.uio_segflg = UIO_SYSSPACE;
   1645 		uio.uio_rw = UIO_READ;
   1646 		uio.uio_resid = PAGE_SIZE;
   1647 		uio.uio_procp = NULL;
   1648 		/* XXX vn_lock */
   1649 		error = VOP_READ(vp, &uio, 0, cred);
   1650 		if (error) {
   1651 			break;
   1652 		}
   1653 		if (uio.uio_resid) {
   1654 			memset(iov.iov_base, 0, uio.uio_resid);
   1655 		}
   1656 	}
   1657 	uvm_pagermapout(kva, npages);
   1658 	simple_lock(&uobj->vmobjlock);
   1659 	uvm_lock_pageq();
   1660 	for (i = 0; i < npages; i++) {
   1661 		pg = pgs[i];
   1662 		if (error && (pg->flags & PG_FAKE) != 0) {
   1663 			pg->flags |= PG_RELEASED;
   1664 		} else {
   1665 			pmap_clear_modify(pg);
   1666 			uvm_pageactivate(pg);
   1667 		}
   1668 	}
   1669 	if (error) {
   1670 		uvm_page_unbusy(pgs, npages);
   1671 	}
   1672 	uvm_unlock_pageq();
   1673 	simple_unlock(&uobj->vmobjlock);
   1674 	return (error);
   1675 }
   1676 
   1677 int
   1678 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1679     int flags)
   1680 {
   1681 	off_t offset;
   1682 	struct iovec iov;
   1683 	struct uio uio;
   1684 	struct ucred *cred = curproc->p_ucred;
   1685 	struct buf *bp;
   1686 	vaddr_t kva;
   1687 	int s, error;
   1688 
   1689 	offset = pgs[0]->offset;
   1690 	kva = uvm_pagermapin(pgs, npages,
   1691 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1692 
   1693 	iov.iov_base = (void *)kva;
   1694 	iov.iov_len = npages << PAGE_SHIFT;
   1695 	uio.uio_iov = &iov;
   1696 	uio.uio_iovcnt = 1;
   1697 	uio.uio_offset = offset;
   1698 	uio.uio_segflg = UIO_SYSSPACE;
   1699 	uio.uio_rw = UIO_WRITE;
   1700 	uio.uio_resid = npages << PAGE_SHIFT;
   1701 	uio.uio_procp = NULL;
   1702 	/* XXX vn_lock */
   1703 	error = VOP_WRITE(vp, &uio, 0, cred);
   1704 
   1705 	s = splbio();
   1706 	V_INCR_NUMOUTPUT(vp);
   1707 	bp = pool_get(&bufpool, PR_WAITOK);
   1708 	splx(s);
   1709 
   1710 	BUF_INIT(bp);
   1711 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1712 	bp->b_vp = vp;
   1713 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1714 	bp->b_data = (char *)kva;
   1715 	bp->b_bcount = npages << PAGE_SHIFT;
   1716 	bp->b_bufsize = npages << PAGE_SHIFT;
   1717 	bp->b_resid = 0;
   1718 	if (error) {
   1719 		bp->b_flags |= B_ERROR;
   1720 		bp->b_error = error;
   1721 	}
   1722 	uvm_aio_aiodone(bp);
   1723 	return (error);
   1724 }
   1725 
   1726 static void
   1727 filt_genfsdetach(struct knote *kn)
   1728 {
   1729 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1730 
   1731 	/* XXXLUKEM lock the struct? */
   1732 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   1733 }
   1734 
   1735 static int
   1736 filt_genfsread(struct knote *kn, long hint)
   1737 {
   1738 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1739 
   1740 	/*
   1741 	 * filesystem is gone, so set the EOF flag and schedule
   1742 	 * the knote for deletion.
   1743 	 */
   1744 	if (hint == NOTE_REVOKE) {
   1745 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1746 		return (1);
   1747 	}
   1748 
   1749 	/* XXXLUKEM lock the struct? */
   1750 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   1751         return (kn->kn_data != 0);
   1752 }
   1753 
   1754 static int
   1755 filt_genfsvnode(struct knote *kn, long hint)
   1756 {
   1757 
   1758 	if (kn->kn_sfflags & hint)
   1759 		kn->kn_fflags |= hint;
   1760 	if (hint == NOTE_REVOKE) {
   1761 		kn->kn_flags |= EV_EOF;
   1762 		return (1);
   1763 	}
   1764 	return (kn->kn_fflags != 0);
   1765 }
   1766 
   1767 static const struct filterops genfsread_filtops =
   1768 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   1769 static const struct filterops genfsvnode_filtops =
   1770 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   1771 
   1772 int
   1773 genfs_kqfilter(void *v)
   1774 {
   1775 	struct vop_kqfilter_args /* {
   1776 		struct vnode	*a_vp;
   1777 		struct knote	*a_kn;
   1778 	} */ *ap = v;
   1779 	struct vnode *vp;
   1780 	struct knote *kn;
   1781 
   1782 	vp = ap->a_vp;
   1783 	kn = ap->a_kn;
   1784 	switch (kn->kn_filter) {
   1785 	case EVFILT_READ:
   1786 		kn->kn_fop = &genfsread_filtops;
   1787 		break;
   1788 	case EVFILT_VNODE:
   1789 		kn->kn_fop = &genfsvnode_filtops;
   1790 		break;
   1791 	default:
   1792 		return (1);
   1793 	}
   1794 
   1795 	kn->kn_hook = vp;
   1796 
   1797 	/* XXXLUKEM lock the struct? */
   1798 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   1799 
   1800 	return (0);
   1801 }
   1802