Home | History | Annotate | Line # | Download | only in genfs
      1  1.72   thorpej /*	$NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $	*/
      2   1.1  wrstuden 
      3   1.1  wrstuden /*
      4   1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5   1.1  wrstuden  * All rights reserved.
      6   1.1  wrstuden  *
      7   1.1  wrstuden  * This software was written by William Studenmund of the
      8   1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9   1.1  wrstuden  *
     10   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11   1.1  wrstuden  * modification, are permitted provided that the following conditions
     12   1.1  wrstuden  * are met:
     13   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18   1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19   1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20   1.1  wrstuden  *    products derived from this software without specific prior written
     21   1.1  wrstuden  *    permission.
     22   1.1  wrstuden  *
     23   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24   1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27   1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28   1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  wrstuden  */
     35  1.42     rmind 
     36   1.1  wrstuden /*
     37   1.1  wrstuden  * Copyright (c) 1992, 1993
     38   1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     39   1.1  wrstuden  *
     40   1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     41   1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     42   1.1  wrstuden  *
     43   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     44   1.1  wrstuden  * modification, are permitted provided that the following conditions
     45   1.1  wrstuden  * are met:
     46   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     47   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     48   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     50   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     51  1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     52   1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     53   1.1  wrstuden  *    without specific prior written permission.
     54   1.1  wrstuden  *
     55   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.1  wrstuden  * SUCH DAMAGE.
     66   1.1  wrstuden  *
     67   1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68   1.1  wrstuden  *
     69   1.1  wrstuden  * Ancestors:
     70   1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  1.31     enami  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72   1.1  wrstuden  *	...and...
     73   1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74   1.1  wrstuden  */
     75   1.1  wrstuden 
     76   1.1  wrstuden /*
     77  1.42     rmind  * Generic layer vnode operations.
     78   1.1  wrstuden  *
     79  1.42     rmind  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  1.42     rmind  * the core implementation of stacked file-systems.
     81   1.1  wrstuden  *
     82  1.42     rmind  * The layerfs duplicates a portion of the file system name space under
     83  1.42     rmind  * a new name.  In this respect, it is similar to the loopback file system.
     84  1.42     rmind  * It differs from the loopback fs in two respects: it is implemented using
     85  1.42     rmind  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  1.42     rmind  * lower-layer vnodes, not just over directory vnodes.
     87  1.42     rmind  *
     88  1.42     rmind  * OPERATION OF LAYERFS
     89  1.42     rmind  *
     90  1.42     rmind  * The layerfs is the minimum file system layer, bypassing all possible
     91  1.42     rmind  * operations to the lower layer for processing there.  The majority of its
     92  1.42     rmind  * activity centers on the bypass routine, through which nearly all vnode
     93  1.42     rmind  * operations pass.
     94  1.42     rmind  *
     95  1.42     rmind  * The bypass routine accepts arbitrary vnode operations for handling by
     96  1.42     rmind  * the lower layer.  It begins by examining vnode operation arguments and
     97  1.42     rmind  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  1.42     rmind  * invokes an operation on the lower layer.  Finally, it replaces the
     99  1.42     rmind  * layered nodes in the arguments and, if a vnode is returned by the
    100  1.42     rmind  * operation, stacks a layered node on top of the returned vnode.
    101   1.1  wrstuden  *
    102   1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    103   1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    104   1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    105   1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    106   1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    107   1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    108   1.1  wrstuden  *
    109   1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    110   1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111   1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    112   1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    113  1.42     rmind  * use the layerm_bypass() routine.
    114   1.1  wrstuden  *
    115   1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    116  1.42     rmind  * of operations are special cased and handled by the layerfs.  For instance,
    117  1.42     rmind  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  1.42     rmind  * and layer_unlock() must handle any locking for the current vnode as well
    119  1.42     rmind  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  1.42     rmind  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  1.42     rmind  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  1.42     rmind  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  1.42     rmind  * these operations should not change the lock state, but should be changed
    124  1.42     rmind  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  1.42     rmind  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126   1.1  wrstuden  * the necessary locking at their layer.
    127   1.1  wrstuden  *
    128  1.42     rmind  * INSTANTIATING VNODE STACKS
    129   1.1  wrstuden  *
    130  1.42     rmind  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  1.42     rmind  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  1.42     rmind  * the root of the new layerfs.  All other vnode stacks are created as a
    133  1.42     rmind  * result of vnode operations on this or other layerfs vnode stacks.
    134   1.1  wrstuden  *
    135  1.42     rmind  * New vnode stacks come into existence as a result of an operation which
    136  1.42     rmind  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137   1.1  wrstuden  * vnode before returning it to the caller.
    138   1.1  wrstuden  *
    139  1.42     rmind  * For example, imagine mounting a null layer with:
    140   1.1  wrstuden  *
    141  1.42     rmind  *	"mount_null /usr/include /dev/layer/null"
    142   1.1  wrstuden  *
    143  1.42     rmind  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  1.42     rmind  * which was created when the null layer was mounted).  Now consider opening
    145  1.42     rmind  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  1.42     rmind  * This operation would bypass through to the lower layer which would return
    147  1.42     rmind  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  1.42     rmind  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  1.42     rmind  * Later operations on the layerfs-node "sys" will repeat this process when
    150  1.42     rmind  * constructing other vnode stacks.
    151   1.1  wrstuden  *
    152   1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    153   1.1  wrstuden  *
    154  1.42     rmind  * There are two techniques to invoke operations on a lower layer when the
    155  1.42     rmind  * operation cannot be completely bypassed.  Each method is appropriate in
    156  1.42     rmind  * different situations.  In both cases, it is the responsibility of the
    157  1.42     rmind  * aliasing layer to make the operation arguments "correct" for the lower
    158  1.42     rmind  * layer by mapping any vnode arguments to the lower layer.
    159  1.42     rmind  *
    160  1.42     rmind  * The first approach is to call the aliasing layer's bypass routine.  This
    161  1.42     rmind  * method is most suitable when you wish to invoke the operation currently
    162  1.42     rmind  * being handled on the lower layer.  It has the advantage that the bypass
    163  1.42     rmind  * routine already must do argument mapping.  An example of this is
    164  1.42     rmind  * layer_getattr().
    165  1.42     rmind  *
    166  1.42     rmind  * A second approach is to directly invoke vnode operations on the lower
    167  1.42     rmind  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  1.42     rmind  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  1.42     rmind  * The disadvantage is that vnode's arguments must be manually mapped.
    170   1.1  wrstuden  */
    171   1.8     lukem 
    172   1.8     lukem #include <sys/cdefs.h>
    173  1.72   thorpej __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $");
    174   1.1  wrstuden 
    175   1.1  wrstuden #include <sys/param.h>
    176   1.1  wrstuden #include <sys/systm.h>
    177   1.1  wrstuden #include <sys/proc.h>
    178   1.1  wrstuden #include <sys/time.h>
    179   1.1  wrstuden #include <sys/vnode.h>
    180   1.1  wrstuden #include <sys/mount.h>
    181   1.1  wrstuden #include <sys/namei.h>
    182  1.34        ad #include <sys/kmem.h>
    183   1.1  wrstuden #include <sys/buf.h>
    184  1.27      elad #include <sys/kauth.h>
    185  1.60   hannken #include <sys/fcntl.h>
    186  1.65   hannken #include <sys/fstrans.h>
    187  1.27      elad 
    188   1.1  wrstuden #include <miscfs/genfs/layer.h>
    189   1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    190   1.1  wrstuden #include <miscfs/genfs/genfs.h>
    191  1.50   hannken #include <miscfs/specfs/specdev.h>
    192   1.1  wrstuden 
    193   1.1  wrstuden /*
    194   1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    195   1.1  wrstuden  *		routine by John Heidemann.
    196   1.1  wrstuden  *	The new element for this version is that the whole nullfs
    197  1.40   hannken  * system gained the concept of locks on the lower node.
    198   1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    199   1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    200   1.1  wrstuden  * robust to programmer errors.
    201   1.1  wrstuden  *
    202   1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    203   1.1  wrstuden  *
    204   1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    205   1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    206   1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    207   1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    208   1.1  wrstuden  * since there are no such side-effects.
    209   1.1  wrstuden  *
    210   1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    211   1.1  wrstuden  * the passed-in node (typically they vput the node).
    212   1.1  wrstuden  *
    213   1.1  wrstuden  * This makes the following assumptions:
    214   1.1  wrstuden  * - only one returned vpp
    215   1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    216   1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    217   1.1  wrstuden  *   to determine what implementation of the op should be invoked
    218   1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    219   1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    220  1.24     perry  */
    221   1.1  wrstuden int
    222  1.38       dsl layer_bypass(void *v)
    223   1.1  wrstuden {
    224   1.1  wrstuden 	struct vop_generic_args /* {
    225   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    226   1.1  wrstuden 		<other random data follows, presumably>
    227   1.1  wrstuden 	} */ *ap = v;
    228  1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    229   1.3  augustss 	struct vnode **this_vp_p;
    230  1.40   hannken 	int error;
    231   1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    232   1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    233   1.1  wrstuden 	struct vnode ***vppp;
    234  1.33    dyoung 	struct mount *mp;
    235   1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    236   1.1  wrstuden 	int reles, i, flags;
    237   1.1  wrstuden 
    238  1.37    plunky #ifdef DIAGNOSTIC
    239   1.1  wrstuden 	/*
    240   1.1  wrstuden 	 * We require at least one vp.
    241   1.1  wrstuden 	 */
    242   1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    243   1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    244  1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    245   1.1  wrstuden #endif
    246   1.1  wrstuden 
    247  1.20      yamt 	vps_p[0] =
    248  1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    249   1.1  wrstuden 	vp0 = *vps_p[0];
    250  1.33    dyoung 	mp = vp0->v_mount;
    251  1.33    dyoung 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    252   1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    253   1.1  wrstuden 
    254   1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    255  1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    256   1.1  wrstuden 
    257   1.1  wrstuden 	/*
    258   1.1  wrstuden 	 * Map the vnodes going in.
    259   1.1  wrstuden 	 * Later, we'll invoke the operation based on
    260   1.1  wrstuden 	 * the first mapped vnode's operation vector.
    261   1.1  wrstuden 	 */
    262   1.1  wrstuden 	reles = descp->vdesc_flags;
    263   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    264   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    265   1.1  wrstuden 			break;   /* bail out at end of list */
    266  1.24     perry 		vps_p[i] = this_vp_p =
    267  1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    268  1.20      yamt 		    ap);
    269   1.1  wrstuden 		/*
    270   1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    271   1.1  wrstuden 		 * are of our type.  Check for and don't map any
    272   1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    273   1.1  wrstuden 		 */
    274   1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    275   1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    276   1.1  wrstuden 			old_vps[i] = NULL;
    277   1.1  wrstuden 		} else {
    278   1.1  wrstuden 			old_vps[i] = *this_vp_p;
    279   1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    280   1.1  wrstuden 			/*
    281   1.1  wrstuden 			 * XXX - Several operations have the side effect
    282   1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    283   1.1  wrstuden 			 * that.  (This should go away in the future.)
    284   1.1  wrstuden 			 */
    285   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    286  1.39     pooka 				vref(*this_vp_p);
    287   1.1  wrstuden 		}
    288   1.1  wrstuden 	}
    289   1.1  wrstuden 
    290   1.1  wrstuden 	/*
    291   1.1  wrstuden 	 * Call the operation on the lower layer
    292   1.1  wrstuden 	 * with the modified argument structure.
    293   1.1  wrstuden 	 */
    294   1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    295   1.1  wrstuden 
    296   1.1  wrstuden 	/*
    297   1.1  wrstuden 	 * Maintain the illusion of call-by-value
    298   1.1  wrstuden 	 * by restoring vnodes in the argument structure
    299   1.1  wrstuden 	 * to their original value.
    300   1.1  wrstuden 	 */
    301   1.1  wrstuden 	reles = descp->vdesc_flags;
    302   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    303   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    304   1.1  wrstuden 			break;   /* bail out at end of list */
    305   1.1  wrstuden 		if (old_vps[i]) {
    306   1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    307   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    308   1.1  wrstuden 				vrele(*(vps_p[i]));
    309   1.1  wrstuden 		}
    310   1.1  wrstuden 	}
    311   1.1  wrstuden 
    312   1.1  wrstuden 	/*
    313   1.1  wrstuden 	 * Map the possible out-going vpp
    314   1.1  wrstuden 	 * (Assumes that the lower layer always returns
    315   1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    316   1.1  wrstuden 	 */
    317  1.47     rmind 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    318   1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    319  1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    320   1.1  wrstuden 		/*
    321  1.52   hannken 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
    322  1.52   hannken 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
    323   1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    324  1.52   hannken 		 * So all the calls which get us here have a unlocked vpp. :-)
    325   1.1  wrstuden 		 */
    326  1.33    dyoung 		error = layer_node_create(mp, **vppp, *vppp);
    327  1.19      yamt 		if (error) {
    328  1.52   hannken 			vrele(**vppp);
    329  1.19      yamt 			**vppp = NULL;
    330  1.19      yamt 		}
    331   1.1  wrstuden 	}
    332  1.42     rmind 	return error;
    333   1.1  wrstuden }
    334   1.1  wrstuden 
    335   1.1  wrstuden /*
    336   1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    337   1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    338   1.1  wrstuden  * if this layer is mounted read-only.
    339   1.1  wrstuden  */
    340   1.1  wrstuden int
    341  1.38       dsl layer_lookup(void *v)
    342   1.1  wrstuden {
    343  1.54   hannken 	struct vop_lookup_v2_args /* {
    344   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    345   1.1  wrstuden 		struct vnode * a_dvp;
    346   1.1  wrstuden 		struct vnode ** a_vpp;
    347   1.1  wrstuden 		struct componentname * a_cnp;
    348   1.1  wrstuden 	} */ *ap = v;
    349   1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    350  1.29       chs 	struct vnode *dvp, *lvp, *ldvp;
    351  1.42     rmind 	int error, flags = cnp->cn_flags;
    352   1.1  wrstuden 
    353   1.1  wrstuden 	dvp = ap->a_dvp;
    354   1.1  wrstuden 
    355   1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    356  1.51  dholland 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    357  1.51  dholland 		*ap->a_vpp = NULL;
    358  1.42     rmind 		return EROFS;
    359  1.51  dholland 	}
    360   1.1  wrstuden 
    361   1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    362   1.1  wrstuden 	ap->a_dvp = ldvp;
    363   1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    364  1.29       chs 	lvp = *ap->a_vpp;
    365  1.18      yamt 	*ap->a_vpp = NULL;
    366   1.1  wrstuden 
    367   1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    368   1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    369   1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    370   1.1  wrstuden 		error = EROFS;
    371  1.29       chs 
    372   1.1  wrstuden 	/*
    373  1.24     perry 	 * We must do the same locking and unlocking at this layer as
    374  1.29       chs 	 * is done in the layers below us.
    375   1.1  wrstuden 	 */
    376  1.29       chs 	if (ldvp == lvp) {
    377   1.1  wrstuden 		/*
    378  1.36  dholland 		 * Got the same object back, because we looked up ".",
    379  1.36  dholland 		 * or ".." in the root node of a mount point.
    380  1.36  dholland 		 * So we make another reference to dvp and return it.
    381   1.1  wrstuden 		 */
    382  1.39     pooka 		vref(dvp);
    383   1.1  wrstuden 		*ap->a_vpp = dvp;
    384  1.29       chs 		vrele(lvp);
    385  1.29       chs 	} else if (lvp != NULL) {
    386  1.54   hannken 		/* Note: dvp and ldvp are both locked. */
    387  1.69        ad 		KASSERT(error != ENOLCK);
    388  1.29       chs 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    389  1.19      yamt 		if (error) {
    390  1.54   hannken 			vrele(lvp);
    391  1.19      yamt 		}
    392   1.1  wrstuden 	}
    393  1.42     rmind 	return error;
    394   1.1  wrstuden }
    395   1.1  wrstuden 
    396   1.1  wrstuden /*
    397   1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    398   1.1  wrstuden  */
    399   1.1  wrstuden int
    400  1.38       dsl layer_setattr(void *v)
    401   1.1  wrstuden {
    402   1.1  wrstuden 	struct vop_setattr_args /* {
    403   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    404   1.1  wrstuden 		struct vnode *a_vp;
    405   1.1  wrstuden 		struct vattr *a_vap;
    406  1.27      elad 		kauth_cred_t a_cred;
    407  1.26  christos 		struct lwp *a_l;
    408   1.1  wrstuden 	} */ *ap = v;
    409   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    410   1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    411   1.1  wrstuden 
    412   1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    413   1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    414   1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    415   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    416  1.42     rmind 		return EROFS;
    417   1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    418   1.1  wrstuden  		switch (vp->v_type) {
    419   1.1  wrstuden  		case VDIR:
    420  1.42     rmind  			return EISDIR;
    421   1.1  wrstuden  		case VCHR:
    422   1.1  wrstuden  		case VBLK:
    423   1.1  wrstuden  		case VSOCK:
    424   1.1  wrstuden  		case VFIFO:
    425  1.42     rmind 			return 0;
    426   1.1  wrstuden 		case VREG:
    427   1.1  wrstuden 		case VLNK:
    428   1.1  wrstuden  		default:
    429   1.1  wrstuden 			/*
    430   1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    431   1.1  wrstuden 			 * mounted read-only.
    432   1.1  wrstuden 			 */
    433   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    434  1.42     rmind 				return EROFS;
    435   1.1  wrstuden 		}
    436   1.1  wrstuden 	}
    437  1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    438   1.1  wrstuden }
    439   1.1  wrstuden 
    440   1.1  wrstuden /*
    441   1.1  wrstuden  *  We handle getattr only to change the fsid.
    442   1.1  wrstuden  */
    443   1.1  wrstuden int
    444  1.38       dsl layer_getattr(void *v)
    445   1.1  wrstuden {
    446   1.1  wrstuden 	struct vop_getattr_args /* {
    447   1.1  wrstuden 		struct vnode *a_vp;
    448   1.1  wrstuden 		struct vattr *a_vap;
    449  1.27      elad 		kauth_cred_t a_cred;
    450  1.26  christos 		struct lwp *a_l;
    451   1.1  wrstuden 	} */ *ap = v;
    452   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    453   1.1  wrstuden 	int error;
    454   1.1  wrstuden 
    455  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    456  1.42     rmind 	if (error) {
    457  1.42     rmind 		return error;
    458  1.42     rmind 	}
    459   1.1  wrstuden 	/* Requires that arguments be restored. */
    460  1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    461  1.42     rmind 	return 0;
    462   1.1  wrstuden }
    463   1.1  wrstuden 
    464   1.1  wrstuden int
    465  1.38       dsl layer_access(void *v)
    466   1.1  wrstuden {
    467   1.1  wrstuden 	struct vop_access_args /* {
    468   1.1  wrstuden 		struct vnode *a_vp;
    469  1.71  christos 		accmode_t  a_accmode;
    470  1.27      elad 		kauth_cred_t a_cred;
    471  1.26  christos 		struct lwp *a_l;
    472   1.1  wrstuden 	} */ *ap = v;
    473   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    474  1.71  christos 	accmode_t accmode = ap->a_accmode;
    475   1.1  wrstuden 
    476   1.1  wrstuden 	/*
    477   1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    478   1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    479   1.1  wrstuden 	 * character device resident on the file system.
    480   1.1  wrstuden 	 */
    481  1.71  christos 	if (accmode & VWRITE) {
    482   1.1  wrstuden 		switch (vp->v_type) {
    483   1.1  wrstuden 		case VDIR:
    484   1.1  wrstuden 		case VLNK:
    485   1.1  wrstuden 		case VREG:
    486   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    487  1.42     rmind 				return EROFS;
    488   1.1  wrstuden 			break;
    489   1.1  wrstuden 		default:
    490   1.1  wrstuden 			break;
    491   1.1  wrstuden 		}
    492   1.1  wrstuden 	}
    493  1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    494   1.1  wrstuden }
    495   1.1  wrstuden 
    496   1.1  wrstuden /*
    497  1.60   hannken  * We must handle open to be able to catch MNT_NODEV and friends
    498  1.60   hannken  * and increment the lower v_writecount.
    499   1.1  wrstuden  */
    500   1.1  wrstuden int
    501  1.38       dsl layer_open(void *v)
    502   1.1  wrstuden {
    503  1.42     rmind 	struct vop_open_args /* {
    504  1.42     rmind 		const struct vnodeop_desc *a_desc;
    505  1.42     rmind 		struct vnode *a_vp;
    506  1.42     rmind 		int a_mode;
    507  1.42     rmind 		kauth_cred_t a_cred;
    508  1.42     rmind 	} */ *ap = v;
    509   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    510  1.60   hannken 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    511  1.60   hannken 	int error;
    512   1.1  wrstuden 
    513  1.60   hannken 	if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
    514   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    515   1.1  wrstuden 		return ENXIO;
    516   1.1  wrstuden 
    517  1.60   hannken 	error = LAYERFS_DO_BYPASS(vp, ap);
    518  1.60   hannken 	if (error == 0 && (ap->a_mode & FWRITE)) {
    519  1.60   hannken 		mutex_enter(lvp->v_interlock);
    520  1.60   hannken 		lvp->v_writecount++;
    521  1.60   hannken 		mutex_exit(lvp->v_interlock);
    522  1.60   hannken 	}
    523  1.60   hannken 	return error;
    524  1.60   hannken }
    525  1.60   hannken 
    526  1.60   hannken /*
    527  1.60   hannken  * We must handle close to decrement the lower v_writecount.
    528  1.60   hannken  */
    529  1.60   hannken int
    530  1.60   hannken layer_close(void *v)
    531  1.60   hannken {
    532  1.60   hannken 	struct vop_close_args /* {
    533  1.60   hannken 		const struct vnodeop_desc *a_desc;
    534  1.60   hannken 		struct vnode *a_vp;
    535  1.60   hannken 		int a_fflag;
    536  1.60   hannken 		kauth_cred_t a_cred;
    537  1.60   hannken 	} */ *ap = v;
    538  1.60   hannken 	struct vnode *vp = ap->a_vp;
    539  1.60   hannken 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    540  1.60   hannken 
    541  1.60   hannken 	if ((ap->a_fflag & FWRITE)) {
    542  1.60   hannken 		mutex_enter(lvp->v_interlock);
    543  1.60   hannken 		KASSERT(lvp->v_writecount > 0);
    544  1.60   hannken 		lvp->v_writecount--;
    545  1.60   hannken 		mutex_exit(lvp->v_interlock);
    546  1.60   hannken 	}
    547   1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    548   1.1  wrstuden }
    549   1.1  wrstuden 
    550   1.1  wrstuden /*
    551   1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    552   1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    553  1.42     rmind  * reclaimed; otherwise, pass it through to the underlying layer.
    554   1.1  wrstuden  *
    555   1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    556   1.1  wrstuden  */
    557   1.1  wrstuden int
    558  1.38       dsl layer_fsync(void *v)
    559   1.1  wrstuden {
    560   1.1  wrstuden 	struct vop_fsync_args /* {
    561   1.1  wrstuden 		struct vnode *a_vp;
    562  1.27      elad 		kauth_cred_t a_cred;
    563   1.1  wrstuden 		int  a_flags;
    564   1.4      fvdl 		off_t offlo;
    565   1.4      fvdl 		off_t offhi;
    566  1.26  christos 		struct lwp *a_l;
    567   1.1  wrstuden 	} */ *ap = v;
    568  1.50   hannken 	int error;
    569   1.1  wrstuden 
    570   1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    571   1.1  wrstuden 		return 0;
    572   1.1  wrstuden 	}
    573  1.50   hannken 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    574  1.50   hannken 		error = spec_fsync(v);
    575  1.50   hannken 		if (error)
    576  1.50   hannken 			return error;
    577  1.50   hannken 	}
    578  1.42     rmind 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    579   1.1  wrstuden }
    580   1.1  wrstuden 
    581   1.1  wrstuden int
    582  1.38       dsl layer_inactive(void *v)
    583   1.1  wrstuden {
    584  1.62  riastrad 	struct vop_inactive_v2_args /* {
    585   1.1  wrstuden 		struct vnode *a_vp;
    586  1.34        ad 		bool *a_recycle;
    587   1.1  wrstuden 	} */ *ap = v;
    588   1.5     enami 	struct vnode *vp = ap->a_vp;
    589   1.1  wrstuden 
    590   1.1  wrstuden 	/*
    591  1.44   hannken 	 * If we did a remove, don't cache the node.
    592  1.34        ad 	 */
    593  1.44   hannken 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    594  1.34        ad 
    595  1.34        ad 	/*
    596   1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    597   1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    598   1.1  wrstuden 	 * so that until then our layer_node is in the
    599   1.1  wrstuden 	 * cache and reusable.
    600   1.1  wrstuden 	 *
    601   1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    602   1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    603   1.1  wrstuden 	 * with capabilities (v_id)
    604   1.1  wrstuden 	 * like they do in the name lookup cache code.
    605   1.1  wrstuden 	 * That's too much work for now.
    606   1.1  wrstuden 	 */
    607  1.62  riastrad 
    608  1.42     rmind 	return 0;
    609   1.1  wrstuden }
    610   1.1  wrstuden 
    611   1.1  wrstuden int
    612  1.38       dsl layer_remove(void *v)
    613  1.16  wrstuden {
    614  1.72   thorpej 	struct vop_remove_v3_args /* {
    615  1.63  riastrad 		struct vnode		*a_dvp;
    616  1.16  wrstuden 		struct vnode		*a_vp;
    617  1.16  wrstuden 		struct componentname	*a_cnp;
    618  1.72   thorpej 		nlink_t			 ctx_vp_new_nlink;
    619  1.16  wrstuden 	} */ *ap = v;
    620  1.42     rmind 	struct vnode *vp = ap->a_vp;
    621  1.42     rmind 	int error;
    622  1.16  wrstuden 
    623  1.16  wrstuden 	vref(vp);
    624  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    625  1.42     rmind 	if (error == 0) {
    626  1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    627  1.42     rmind 	}
    628  1.16  wrstuden 	vrele(vp);
    629  1.16  wrstuden 
    630  1.42     rmind 	return error;
    631  1.16  wrstuden }
    632  1.16  wrstuden 
    633  1.16  wrstuden int
    634  1.38       dsl layer_rename(void *v)
    635  1.17      yamt {
    636  1.72   thorpej 	struct vop_rename_args /* {
    637  1.17      yamt 		struct vnode		*a_fdvp;
    638  1.17      yamt 		struct vnode		*a_fvp;
    639  1.17      yamt 		struct componentname	*a_fcnp;
    640  1.17      yamt 		struct vnode		*a_tdvp;
    641  1.17      yamt 		struct vnode		*a_tvp;
    642  1.17      yamt 		struct componentname	*a_tcnp;
    643  1.17      yamt 	} */ *ap = v;
    644  1.42     rmind 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    645  1.17      yamt 	int error;
    646  1.17      yamt 
    647  1.17      yamt 	tvp = ap->a_tvp;
    648  1.17      yamt 	if (tvp) {
    649  1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    650  1.17      yamt 			tvp = NULL;
    651  1.17      yamt 		else
    652  1.17      yamt 			vref(tvp);
    653  1.17      yamt 	}
    654  1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    655  1.17      yamt 	if (tvp) {
    656  1.17      yamt 		if (error == 0)
    657  1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    658  1.17      yamt 		vrele(tvp);
    659  1.17      yamt 	}
    660  1.42     rmind 	return error;
    661  1.17      yamt }
    662  1.17      yamt 
    663  1.17      yamt int
    664  1.38       dsl layer_rmdir(void *v)
    665  1.23   hannken {
    666  1.63  riastrad 	struct vop_rmdir_v2_args /* {
    667  1.23   hannken 		struct vnode		*a_dvp;
    668  1.23   hannken 		struct vnode		*a_vp;
    669  1.23   hannken 		struct componentname	*a_cnp;
    670  1.23   hannken 	} */ *ap = v;
    671  1.23   hannken 	int		error;
    672  1.23   hannken 	struct vnode	*vp = ap->a_vp;
    673  1.23   hannken 
    674  1.23   hannken 	vref(vp);
    675  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    676  1.42     rmind 	if (error == 0) {
    677  1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    678  1.42     rmind 	}
    679  1.23   hannken 	vrele(vp);
    680  1.23   hannken 
    681  1.42     rmind 	return error;
    682  1.23   hannken }
    683  1.23   hannken 
    684  1.23   hannken int
    685  1.45   hannken layer_revoke(void *v)
    686  1.45   hannken {
    687  1.45   hannken         struct vop_revoke_args /* {
    688  1.45   hannken 		struct vnode *a_vp;
    689  1.45   hannken 		int a_flags;
    690  1.45   hannken 	} */ *ap = v;
    691  1.45   hannken 	struct vnode *vp = ap->a_vp;
    692  1.45   hannken 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    693  1.46   hannken 	int error;
    694  1.45   hannken 
    695  1.45   hannken 	/*
    696  1.70        ad 	 * We will most likely end up in vclean which uses the usecount
    697  1.46   hannken 	 * to determine if a vnode is active.  Take an extra reference on
    698  1.46   hannken 	 * the lower vnode so it will always close and inactivate.
    699  1.45   hannken 	 */
    700  1.46   hannken 	vref(lvp);
    701  1.45   hannken 	error = LAYERFS_DO_BYPASS(vp, ap);
    702  1.46   hannken 	vrele(lvp);
    703  1.45   hannken 
    704  1.45   hannken 	return error;
    705  1.45   hannken }
    706  1.45   hannken 
    707  1.45   hannken int
    708  1.38       dsl layer_reclaim(void *v)
    709   1.1  wrstuden {
    710  1.66  riastrad 	struct vop_reclaim_v2_args /* {
    711   1.1  wrstuden 		struct vnode *a_vp;
    712  1.26  christos 		struct lwp *a_l;
    713   1.1  wrstuden 	} */ *ap = v;
    714   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    715   1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    716   1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    717   1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    718   1.1  wrstuden 
    719  1.66  riastrad 	VOP_UNLOCK(vp);
    720  1.66  riastrad 
    721   1.1  wrstuden 	/*
    722   1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    723   1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    724  1.34        ad 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    725   1.1  wrstuden 	 */
    726  1.42     rmind 	if (vp == lmp->layerm_rootvp) {
    727   1.1  wrstuden 		/*
    728   1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    729   1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    730   1.1  wrstuden 		 *
    731   1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    732   1.1  wrstuden 		 */
    733   1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    734   1.1  wrstuden 	}
    735  1.64   hannken 
    736  1.64   hannken 	mutex_enter(vp->v_interlock);
    737  1.64   hannken 	KASSERT(vp->v_interlock == lowervp->v_interlock);
    738  1.64   hannken 	lowervp->v_writecount -= vp->v_writecount;
    739  1.64   hannken 	mutex_exit(vp->v_interlock);
    740  1.64   hannken 
    741  1.42     rmind 	/* After this assignment, this node will not be re-used. */
    742   1.1  wrstuden 	xp->layer_lowervp = NULL;
    743  1.34        ad 	kmem_free(vp->v_data, lmp->layerm_size);
    744   1.1  wrstuden 	vp->v_data = NULL;
    745  1.29       chs 	vrele(lowervp);
    746  1.34        ad 
    747  1.42     rmind 	return 0;
    748   1.1  wrstuden }
    749   1.1  wrstuden 
    750   1.1  wrstuden /*
    751   1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    752   1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    753   1.1  wrstuden  * i/o. :-)
    754   1.1  wrstuden  */
    755   1.1  wrstuden int
    756  1.38       dsl layer_bmap(void *v)
    757   1.1  wrstuden {
    758   1.1  wrstuden 	struct vop_bmap_args /* {
    759   1.1  wrstuden 		struct vnode *a_vp;
    760   1.1  wrstuden 		daddr_t  a_bn;
    761   1.1  wrstuden 		struct vnode **a_vpp;
    762   1.1  wrstuden 		daddr_t *a_bnp;
    763   1.1  wrstuden 		int *a_runp;
    764   1.1  wrstuden 	} */ *ap = v;
    765   1.1  wrstuden 	struct vnode *vp;
    766   1.1  wrstuden 
    767  1.42     rmind 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    768  1.42     rmind 	ap->a_vp = vp;
    769   1.1  wrstuden 
    770  1.42     rmind 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    771   1.1  wrstuden }
    772   1.1  wrstuden 
    773   1.1  wrstuden int
    774  1.38       dsl layer_print(void *v)
    775   1.1  wrstuden {
    776   1.1  wrstuden 	struct vop_print_args /* {
    777   1.1  wrstuden 		struct vnode *a_vp;
    778   1.1  wrstuden 	} */ *ap = v;
    779   1.3  augustss 	struct vnode *vp = ap->a_vp;
    780   1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    781  1.42     rmind 	return 0;
    782   1.1  wrstuden }
    783   1.1  wrstuden 
    784  1.10       chs int
    785  1.38       dsl layer_getpages(void *v)
    786  1.10       chs {
    787  1.10       chs 	struct vop_getpages_args /* {
    788  1.10       chs 		struct vnode *a_vp;
    789  1.10       chs 		voff_t a_offset;
    790  1.10       chs 		struct vm_page **a_m;
    791  1.10       chs 		int *a_count;
    792  1.10       chs 		int a_centeridx;
    793  1.10       chs 		vm_prot_t a_access_type;
    794  1.10       chs 		int a_advice;
    795  1.10       chs 		int a_flags;
    796  1.10       chs 	} */ *ap = v;
    797  1.10       chs 	struct vnode *vp = ap->a_vp;
    798  1.65   hannken 	struct mount *mp = vp->v_mount;
    799  1.65   hannken 	int error;
    800  1.68        ad 	krw_t op;
    801  1.10       chs 
    802  1.68        ad 	KASSERT(rw_lock_held(vp->v_uobj.vmobjlock));
    803  1.10       chs 
    804  1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    805  1.10       chs 		return EBUSY;
    806  1.10       chs 	}
    807  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    808  1.68        ad 	KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);
    809  1.48     rmind 
    810  1.48     rmind 	/* Just pass the request on to the underlying layer. */
    811  1.68        ad 	op = rw_lock_op(vp->v_uobj.vmobjlock);
    812  1.68        ad 	rw_exit(vp->v_uobj.vmobjlock);
    813  1.67   hannken 	fstrans_start(mp);
    814  1.68        ad 	rw_enter(vp->v_uobj.vmobjlock, op);
    815  1.65   hannken 	if (mp == vp->v_mount) {
    816  1.68        ad 		/* Will release the lock. */
    817  1.65   hannken 		error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    818  1.65   hannken 	} else {
    819  1.68        ad 		rw_exit(vp->v_uobj.vmobjlock);
    820  1.65   hannken 		error = ENOENT;
    821  1.65   hannken 	}
    822  1.65   hannken 	fstrans_done(mp);
    823  1.65   hannken 
    824  1.65   hannken 	return error;
    825  1.10       chs }
    826  1.10       chs 
    827  1.10       chs int
    828  1.38       dsl layer_putpages(void *v)
    829  1.10       chs {
    830  1.10       chs 	struct vop_putpages_args /* {
    831  1.10       chs 		struct vnode *a_vp;
    832  1.10       chs 		voff_t a_offlo;
    833  1.10       chs 		voff_t a_offhi;
    834  1.10       chs 		int a_flags;
    835  1.10       chs 	} */ *ap = v;
    836  1.10       chs 	struct vnode *vp = ap->a_vp;
    837  1.10       chs 
    838  1.68        ad 	KASSERT(rw_write_held(vp->v_uobj.vmobjlock));
    839  1.10       chs 
    840  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    841  1.68        ad 	KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);
    842  1.48     rmind 
    843  1.30       chs 	if (ap->a_flags & PGO_RECLAIM) {
    844  1.68        ad 		rw_exit(vp->v_uobj.vmobjlock);
    845  1.30       chs 		return 0;
    846  1.30       chs 	}
    847  1.48     rmind 
    848  1.48     rmind 	/* Just pass the request on to the underlying layer. */
    849  1.48     rmind 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    850   1.1  wrstuden }
    851