1 1.72 thorpej /* $NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $ */ 2 1.1 wrstuden 3 1.1 wrstuden /* 4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration 5 1.1 wrstuden * All rights reserved. 6 1.1 wrstuden * 7 1.1 wrstuden * This software was written by William Studenmund of the 8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 1.1 wrstuden * 10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without 11 1.1 wrstuden * modification, are permitted provided that the following conditions 12 1.1 wrstuden * are met: 13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright 14 1.1 wrstuden * notice, this list of conditions and the following disclaimer. 15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the 17 1.1 wrstuden * documentation and/or other materials provided with the distribution. 18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration 19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote 20 1.1 wrstuden * products derived from this software without specific prior written 21 1.1 wrstuden * permission. 22 1.1 wrstuden * 23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE. 34 1.1 wrstuden */ 35 1.42 rmind 36 1.1 wrstuden /* 37 1.1 wrstuden * Copyright (c) 1992, 1993 38 1.1 wrstuden * The Regents of the University of California. All rights reserved. 39 1.1 wrstuden * 40 1.1 wrstuden * This code is derived from software contributed to Berkeley by 41 1.1 wrstuden * John Heidemann of the UCLA Ficus project. 42 1.1 wrstuden * 43 1.1 wrstuden * Redistribution and use in source and binary forms, with or without 44 1.1 wrstuden * modification, are permitted provided that the following conditions 45 1.1 wrstuden * are met: 46 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright 47 1.1 wrstuden * notice, this list of conditions and the following disclaimer. 48 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright 49 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the 50 1.1 wrstuden * documentation and/or other materials provided with the distribution. 51 1.11 agc * 3. Neither the name of the University nor the names of its contributors 52 1.1 wrstuden * may be used to endorse or promote products derived from this software 53 1.1 wrstuden * without specific prior written permission. 54 1.1 wrstuden * 55 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 1.1 wrstuden * SUCH DAMAGE. 66 1.1 wrstuden * 67 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 68 1.1 wrstuden * 69 1.1 wrstuden * Ancestors: 70 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 71 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp 72 1.1 wrstuden * ...and... 73 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 74 1.1 wrstuden */ 75 1.1 wrstuden 76 1.1 wrstuden /* 77 1.42 rmind * Generic layer vnode operations. 78 1.1 wrstuden * 79 1.42 rmind * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 80 1.42 rmind * the core implementation of stacked file-systems. 81 1.1 wrstuden * 82 1.42 rmind * The layerfs duplicates a portion of the file system name space under 83 1.42 rmind * a new name. In this respect, it is similar to the loopback file system. 84 1.42 rmind * It differs from the loopback fs in two respects: it is implemented using 85 1.42 rmind * a stackable layers technique, and it is "layerfs-nodes" stack above all 86 1.42 rmind * lower-layer vnodes, not just over directory vnodes. 87 1.42 rmind * 88 1.42 rmind * OPERATION OF LAYERFS 89 1.42 rmind * 90 1.42 rmind * The layerfs is the minimum file system layer, bypassing all possible 91 1.42 rmind * operations to the lower layer for processing there. The majority of its 92 1.42 rmind * activity centers on the bypass routine, through which nearly all vnode 93 1.42 rmind * operations pass. 94 1.42 rmind * 95 1.42 rmind * The bypass routine accepts arbitrary vnode operations for handling by 96 1.42 rmind * the lower layer. It begins by examining vnode operation arguments and 97 1.42 rmind * replacing any layered nodes by their lower-layer equivalents. It then 98 1.42 rmind * invokes an operation on the lower layer. Finally, it replaces the 99 1.42 rmind * layered nodes in the arguments and, if a vnode is returned by the 100 1.42 rmind * operation, stacks a layered node on top of the returned vnode. 101 1.1 wrstuden * 102 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use 103 1.1 wrstuden * by many different layered filesystems. It can be used by multiple 104 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide 105 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as 106 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user 107 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine. 108 1.1 wrstuden * 109 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the 110 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally 111 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass 112 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will 113 1.42 rmind * use the layerm_bypass() routine. 114 1.1 wrstuden * 115 1.1 wrstuden * Although the bypass routine handles most operations outright, a number 116 1.42 rmind * of operations are special cased and handled by the layerfs. For instance, 117 1.42 rmind * layer_getattr() must change the fsid being returned. While layer_lock() 118 1.42 rmind * and layer_unlock() must handle any locking for the current vnode as well 119 1.42 rmind * as pass the lock request down. layer_inactive() and layer_reclaim() are 120 1.42 rmind * not bypassed so that they can handle freeing layerfs-specific data. Also, 121 1.42 rmind * certain vnode operations (create, mknod, remove, link, rename, mkdir, 122 1.42 rmind * rmdir, and symlink) change the locking state within the operation. Ideally 123 1.42 rmind * these operations should not change the lock state, but should be changed 124 1.42 rmind * to let the caller of the function unlock them. Otherwise, all intermediate 125 1.42 rmind * vnode layers (such as union, umapfs, etc) must catch these functions to do 126 1.1 wrstuden * the necessary locking at their layer. 127 1.1 wrstuden * 128 1.42 rmind * INSTANTIATING VNODE STACKS 129 1.1 wrstuden * 130 1.42 rmind * Mounting associates "layerfs-nodes" stack and lower layer, in effect 131 1.42 rmind * stacking two VFSes. The initial mount creates a single vnode stack for 132 1.42 rmind * the root of the new layerfs. All other vnode stacks are created as a 133 1.42 rmind * result of vnode operations on this or other layerfs vnode stacks. 134 1.1 wrstuden * 135 1.42 rmind * New vnode stacks come into existence as a result of an operation which 136 1.42 rmind * returns a vnode. The bypass routine stacks a layerfs-node above the new 137 1.1 wrstuden * vnode before returning it to the caller. 138 1.1 wrstuden * 139 1.42 rmind * For example, imagine mounting a null layer with: 140 1.1 wrstuden * 141 1.42 rmind * "mount_null /usr/include /dev/layer/null" 142 1.1 wrstuden * 143 1.42 rmind * Changing directory to /dev/layer/null will assign the root layerfs-node, 144 1.42 rmind * which was created when the null layer was mounted). Now consider opening 145 1.42 rmind * "sys". A layer_lookup() would be performed on the root layerfs-node. 146 1.42 rmind * This operation would bypass through to the lower layer which would return 147 1.42 rmind * a vnode representing the UFS "sys". Then, layer_bypass() builds a 148 1.42 rmind * layerfs-node aliasing the UFS "sys" and returns this to the caller. 149 1.42 rmind * Later operations on the layerfs-node "sys" will repeat this process when 150 1.42 rmind * constructing other vnode stacks. 151 1.1 wrstuden * 152 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS 153 1.1 wrstuden * 154 1.42 rmind * There are two techniques to invoke operations on a lower layer when the 155 1.42 rmind * operation cannot be completely bypassed. Each method is appropriate in 156 1.42 rmind * different situations. In both cases, it is the responsibility of the 157 1.42 rmind * aliasing layer to make the operation arguments "correct" for the lower 158 1.42 rmind * layer by mapping any vnode arguments to the lower layer. 159 1.42 rmind * 160 1.42 rmind * The first approach is to call the aliasing layer's bypass routine. This 161 1.42 rmind * method is most suitable when you wish to invoke the operation currently 162 1.42 rmind * being handled on the lower layer. It has the advantage that the bypass 163 1.42 rmind * routine already must do argument mapping. An example of this is 164 1.42 rmind * layer_getattr(). 165 1.42 rmind * 166 1.42 rmind * A second approach is to directly invoke vnode operations on the lower 167 1.42 rmind * layer with the VOP_OPERATIONNAME interface. The advantage of this method 168 1.42 rmind * is that it is easy to invoke arbitrary operations on the lower layer. 169 1.42 rmind * The disadvantage is that vnode's arguments must be manually mapped. 170 1.1 wrstuden */ 171 1.8 lukem 172 1.8 lukem #include <sys/cdefs.h> 173 1.72 thorpej __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.72 2021/10/20 03:08:18 thorpej Exp $"); 174 1.1 wrstuden 175 1.1 wrstuden #include <sys/param.h> 176 1.1 wrstuden #include <sys/systm.h> 177 1.1 wrstuden #include <sys/proc.h> 178 1.1 wrstuden #include <sys/time.h> 179 1.1 wrstuden #include <sys/vnode.h> 180 1.1 wrstuden #include <sys/mount.h> 181 1.1 wrstuden #include <sys/namei.h> 182 1.34 ad #include <sys/kmem.h> 183 1.1 wrstuden #include <sys/buf.h> 184 1.27 elad #include <sys/kauth.h> 185 1.60 hannken #include <sys/fcntl.h> 186 1.65 hannken #include <sys/fstrans.h> 187 1.27 elad 188 1.1 wrstuden #include <miscfs/genfs/layer.h> 189 1.1 wrstuden #include <miscfs/genfs/layer_extern.h> 190 1.1 wrstuden #include <miscfs/genfs/genfs.h> 191 1.50 hannken #include <miscfs/specfs/specdev.h> 192 1.1 wrstuden 193 1.1 wrstuden /* 194 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 195 1.1 wrstuden * routine by John Heidemann. 196 1.1 wrstuden * The new element for this version is that the whole nullfs 197 1.40 hannken * system gained the concept of locks on the lower node. 198 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some 199 1.1 wrstuden * safety checks. It should still always work, but it's not as 200 1.1 wrstuden * robust to programmer errors. 201 1.1 wrstuden * 202 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back. 203 1.1 wrstuden * 204 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing 205 1.1 wrstuden * their arguments. With stacking, the reference counts are held 206 1.1 wrstuden * by the upper node, not the lower one, so we must handle these 207 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems 208 1.1 wrstuden * since there are no such side-effects. 209 1.1 wrstuden * 210 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock 211 1.1 wrstuden * the passed-in node (typically they vput the node). 212 1.1 wrstuden * 213 1.1 wrstuden * This makes the following assumptions: 214 1.1 wrstuden * - only one returned vpp 215 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these) 216 1.1 wrstuden * - the vnode operation vector of the first vnode should be used 217 1.1 wrstuden * to determine what implementation of the op should be invoked 218 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK: 219 1.1 wrstuden * problems on rmdir'ing mount points and renaming?) 220 1.24 perry */ 221 1.1 wrstuden int 222 1.38 dsl layer_bypass(void *v) 223 1.1 wrstuden { 224 1.1 wrstuden struct vop_generic_args /* { 225 1.1 wrstuden struct vnodeop_desc *a_desc; 226 1.1 wrstuden <other random data follows, presumably> 227 1.1 wrstuden } */ *ap = v; 228 1.25 xtraeme int (**our_vnodeop_p)(void *); 229 1.3 augustss struct vnode **this_vp_p; 230 1.40 hannken int error; 231 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 232 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS]; 233 1.1 wrstuden struct vnode ***vppp; 234 1.33 dyoung struct mount *mp; 235 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc; 236 1.1 wrstuden int reles, i, flags; 237 1.1 wrstuden 238 1.37 plunky #ifdef DIAGNOSTIC 239 1.1 wrstuden /* 240 1.1 wrstuden * We require at least one vp. 241 1.1 wrstuden */ 242 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL || 243 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 244 1.20 yamt panic("%s: no vp's in map.\n", __func__); 245 1.1 wrstuden #endif 246 1.1 wrstuden 247 1.20 yamt vps_p[0] = 248 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 249 1.1 wrstuden vp0 = *vps_p[0]; 250 1.33 dyoung mp = vp0->v_mount; 251 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags; 252 1.1 wrstuden our_vnodeop_p = vp0->v_op; 253 1.1 wrstuden 254 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG) 255 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name); 256 1.1 wrstuden 257 1.1 wrstuden /* 258 1.1 wrstuden * Map the vnodes going in. 259 1.1 wrstuden * Later, we'll invoke the operation based on 260 1.1 wrstuden * the first mapped vnode's operation vector. 261 1.1 wrstuden */ 262 1.1 wrstuden reles = descp->vdesc_flags; 263 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 264 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 265 1.1 wrstuden break; /* bail out at end of list */ 266 1.24 perry vps_p[i] = this_vp_p = 267 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 268 1.20 yamt ap); 269 1.1 wrstuden /* 270 1.1 wrstuden * We're not guaranteed that any but the first vnode 271 1.1 wrstuden * are of our type. Check for and don't map any 272 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.) 273 1.1 wrstuden */ 274 1.1 wrstuden if (i && (*this_vp_p == NULL || 275 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) { 276 1.1 wrstuden old_vps[i] = NULL; 277 1.1 wrstuden } else { 278 1.1 wrstuden old_vps[i] = *this_vp_p; 279 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 280 1.1 wrstuden /* 281 1.1 wrstuden * XXX - Several operations have the side effect 282 1.1 wrstuden * of vrele'ing their vp's. We must account for 283 1.1 wrstuden * that. (This should go away in the future.) 284 1.1 wrstuden */ 285 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE) 286 1.39 pooka vref(*this_vp_p); 287 1.1 wrstuden } 288 1.1 wrstuden } 289 1.1 wrstuden 290 1.1 wrstuden /* 291 1.1 wrstuden * Call the operation on the lower layer 292 1.1 wrstuden * with the modified argument structure. 293 1.1 wrstuden */ 294 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 295 1.1 wrstuden 296 1.1 wrstuden /* 297 1.1 wrstuden * Maintain the illusion of call-by-value 298 1.1 wrstuden * by restoring vnodes in the argument structure 299 1.1 wrstuden * to their original value. 300 1.1 wrstuden */ 301 1.1 wrstuden reles = descp->vdesc_flags; 302 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 303 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 304 1.1 wrstuden break; /* bail out at end of list */ 305 1.1 wrstuden if (old_vps[i]) { 306 1.1 wrstuden *(vps_p[i]) = old_vps[i]; 307 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE) 308 1.1 wrstuden vrele(*(vps_p[i])); 309 1.1 wrstuden } 310 1.1 wrstuden } 311 1.1 wrstuden 312 1.1 wrstuden /* 313 1.1 wrstuden * Map the possible out-going vpp 314 1.1 wrstuden * (Assumes that the lower layer always returns 315 1.1 wrstuden * a VREF'ed vpp unless it gets an error.) 316 1.1 wrstuden */ 317 1.47 rmind if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) { 318 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***, 319 1.20 yamt descp->vdesc_vpp_offset, ap); 320 1.1 wrstuden /* 321 1.52 hannken * Only vop_lookup, vop_create, vop_makedir, vop_mknod 322 1.52 hannken * and vop_symlink return vpp's. vop_lookup doesn't call bypass 323 1.1 wrstuden * as a lookup on "." would generate a locking error. 324 1.52 hannken * So all the calls which get us here have a unlocked vpp. :-) 325 1.1 wrstuden */ 326 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp); 327 1.19 yamt if (error) { 328 1.52 hannken vrele(**vppp); 329 1.19 yamt **vppp = NULL; 330 1.19 yamt } 331 1.1 wrstuden } 332 1.42 rmind return error; 333 1.1 wrstuden } 334 1.1 wrstuden 335 1.1 wrstuden /* 336 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes 337 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only 338 1.1 wrstuden * if this layer is mounted read-only. 339 1.1 wrstuden */ 340 1.1 wrstuden int 341 1.38 dsl layer_lookup(void *v) 342 1.1 wrstuden { 343 1.54 hannken struct vop_lookup_v2_args /* { 344 1.1 wrstuden struct vnodeop_desc *a_desc; 345 1.1 wrstuden struct vnode * a_dvp; 346 1.1 wrstuden struct vnode ** a_vpp; 347 1.1 wrstuden struct componentname * a_cnp; 348 1.1 wrstuden } */ *ap = v; 349 1.1 wrstuden struct componentname *cnp = ap->a_cnp; 350 1.29 chs struct vnode *dvp, *lvp, *ldvp; 351 1.42 rmind int error, flags = cnp->cn_flags; 352 1.1 wrstuden 353 1.1 wrstuden dvp = ap->a_dvp; 354 1.1 wrstuden 355 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 356 1.51 dholland (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) { 357 1.51 dholland *ap->a_vpp = NULL; 358 1.42 rmind return EROFS; 359 1.51 dholland } 360 1.1 wrstuden 361 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp); 362 1.1 wrstuden ap->a_dvp = ldvp; 363 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 364 1.29 chs lvp = *ap->a_vpp; 365 1.18 yamt *ap->a_vpp = NULL; 366 1.1 wrstuden 367 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) && 368 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) && 369 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 370 1.1 wrstuden error = EROFS; 371 1.29 chs 372 1.1 wrstuden /* 373 1.24 perry * We must do the same locking and unlocking at this layer as 374 1.29 chs * is done in the layers below us. 375 1.1 wrstuden */ 376 1.29 chs if (ldvp == lvp) { 377 1.1 wrstuden /* 378 1.36 dholland * Got the same object back, because we looked up ".", 379 1.36 dholland * or ".." in the root node of a mount point. 380 1.36 dholland * So we make another reference to dvp and return it. 381 1.1 wrstuden */ 382 1.39 pooka vref(dvp); 383 1.1 wrstuden *ap->a_vpp = dvp; 384 1.29 chs vrele(lvp); 385 1.29 chs } else if (lvp != NULL) { 386 1.54 hannken /* Note: dvp and ldvp are both locked. */ 387 1.69 ad KASSERT(error != ENOLCK); 388 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp); 389 1.19 yamt if (error) { 390 1.54 hannken vrele(lvp); 391 1.19 yamt } 392 1.1 wrstuden } 393 1.42 rmind return error; 394 1.1 wrstuden } 395 1.1 wrstuden 396 1.1 wrstuden /* 397 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only. 398 1.1 wrstuden */ 399 1.1 wrstuden int 400 1.38 dsl layer_setattr(void *v) 401 1.1 wrstuden { 402 1.1 wrstuden struct vop_setattr_args /* { 403 1.1 wrstuden struct vnodeop_desc *a_desc; 404 1.1 wrstuden struct vnode *a_vp; 405 1.1 wrstuden struct vattr *a_vap; 406 1.27 elad kauth_cred_t a_cred; 407 1.26 christos struct lwp *a_l; 408 1.1 wrstuden } */ *ap = v; 409 1.1 wrstuden struct vnode *vp = ap->a_vp; 410 1.1 wrstuden struct vattr *vap = ap->a_vap; 411 1.1 wrstuden 412 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 413 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 414 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 415 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY)) 416 1.42 rmind return EROFS; 417 1.1 wrstuden if (vap->va_size != VNOVAL) { 418 1.1 wrstuden switch (vp->v_type) { 419 1.1 wrstuden case VDIR: 420 1.42 rmind return EISDIR; 421 1.1 wrstuden case VCHR: 422 1.1 wrstuden case VBLK: 423 1.1 wrstuden case VSOCK: 424 1.1 wrstuden case VFIFO: 425 1.42 rmind return 0; 426 1.1 wrstuden case VREG: 427 1.1 wrstuden case VLNK: 428 1.1 wrstuden default: 429 1.1 wrstuden /* 430 1.1 wrstuden * Disallow write attempts if the filesystem is 431 1.1 wrstuden * mounted read-only. 432 1.1 wrstuden */ 433 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY) 434 1.42 rmind return EROFS; 435 1.1 wrstuden } 436 1.1 wrstuden } 437 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap); 438 1.1 wrstuden } 439 1.1 wrstuden 440 1.1 wrstuden /* 441 1.1 wrstuden * We handle getattr only to change the fsid. 442 1.1 wrstuden */ 443 1.1 wrstuden int 444 1.38 dsl layer_getattr(void *v) 445 1.1 wrstuden { 446 1.1 wrstuden struct vop_getattr_args /* { 447 1.1 wrstuden struct vnode *a_vp; 448 1.1 wrstuden struct vattr *a_vap; 449 1.27 elad kauth_cred_t a_cred; 450 1.26 christos struct lwp *a_l; 451 1.1 wrstuden } */ *ap = v; 452 1.1 wrstuden struct vnode *vp = ap->a_vp; 453 1.1 wrstuden int error; 454 1.1 wrstuden 455 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap); 456 1.42 rmind if (error) { 457 1.42 rmind return error; 458 1.42 rmind } 459 1.1 wrstuden /* Requires that arguments be restored. */ 460 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 461 1.42 rmind return 0; 462 1.1 wrstuden } 463 1.1 wrstuden 464 1.1 wrstuden int 465 1.38 dsl layer_access(void *v) 466 1.1 wrstuden { 467 1.1 wrstuden struct vop_access_args /* { 468 1.1 wrstuden struct vnode *a_vp; 469 1.71 christos accmode_t a_accmode; 470 1.27 elad kauth_cred_t a_cred; 471 1.26 christos struct lwp *a_l; 472 1.1 wrstuden } */ *ap = v; 473 1.1 wrstuden struct vnode *vp = ap->a_vp; 474 1.71 christos accmode_t accmode = ap->a_accmode; 475 1.1 wrstuden 476 1.1 wrstuden /* 477 1.1 wrstuden * Disallow write attempts on read-only layers; 478 1.1 wrstuden * unless the file is a socket, fifo, or a block or 479 1.1 wrstuden * character device resident on the file system. 480 1.1 wrstuden */ 481 1.71 christos if (accmode & VWRITE) { 482 1.1 wrstuden switch (vp->v_type) { 483 1.1 wrstuden case VDIR: 484 1.1 wrstuden case VLNK: 485 1.1 wrstuden case VREG: 486 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY) 487 1.42 rmind return EROFS; 488 1.1 wrstuden break; 489 1.1 wrstuden default: 490 1.1 wrstuden break; 491 1.1 wrstuden } 492 1.1 wrstuden } 493 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap); 494 1.1 wrstuden } 495 1.1 wrstuden 496 1.1 wrstuden /* 497 1.60 hannken * We must handle open to be able to catch MNT_NODEV and friends 498 1.60 hannken * and increment the lower v_writecount. 499 1.1 wrstuden */ 500 1.1 wrstuden int 501 1.38 dsl layer_open(void *v) 502 1.1 wrstuden { 503 1.42 rmind struct vop_open_args /* { 504 1.42 rmind const struct vnodeop_desc *a_desc; 505 1.42 rmind struct vnode *a_vp; 506 1.42 rmind int a_mode; 507 1.42 rmind kauth_cred_t a_cred; 508 1.42 rmind } */ *ap = v; 509 1.1 wrstuden struct vnode *vp = ap->a_vp; 510 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp); 511 1.60 hannken int error; 512 1.1 wrstuden 513 1.60 hannken if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) && 514 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV)) 515 1.1 wrstuden return ENXIO; 516 1.1 wrstuden 517 1.60 hannken error = LAYERFS_DO_BYPASS(vp, ap); 518 1.60 hannken if (error == 0 && (ap->a_mode & FWRITE)) { 519 1.60 hannken mutex_enter(lvp->v_interlock); 520 1.60 hannken lvp->v_writecount++; 521 1.60 hannken mutex_exit(lvp->v_interlock); 522 1.60 hannken } 523 1.60 hannken return error; 524 1.60 hannken } 525 1.60 hannken 526 1.60 hannken /* 527 1.60 hannken * We must handle close to decrement the lower v_writecount. 528 1.60 hannken */ 529 1.60 hannken int 530 1.60 hannken layer_close(void *v) 531 1.60 hannken { 532 1.60 hannken struct vop_close_args /* { 533 1.60 hannken const struct vnodeop_desc *a_desc; 534 1.60 hannken struct vnode *a_vp; 535 1.60 hannken int a_fflag; 536 1.60 hannken kauth_cred_t a_cred; 537 1.60 hannken } */ *ap = v; 538 1.60 hannken struct vnode *vp = ap->a_vp; 539 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp); 540 1.60 hannken 541 1.60 hannken if ((ap->a_fflag & FWRITE)) { 542 1.60 hannken mutex_enter(lvp->v_interlock); 543 1.60 hannken KASSERT(lvp->v_writecount > 0); 544 1.60 hannken lvp->v_writecount--; 545 1.60 hannken mutex_exit(lvp->v_interlock); 546 1.60 hannken } 547 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap); 548 1.1 wrstuden } 549 1.1 wrstuden 550 1.1 wrstuden /* 551 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 552 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when 553 1.42 rmind * reclaimed; otherwise, pass it through to the underlying layer. 554 1.1 wrstuden * 555 1.1 wrstuden * XXX Do we still need to worry about shallow fsync? 556 1.1 wrstuden */ 557 1.1 wrstuden int 558 1.38 dsl layer_fsync(void *v) 559 1.1 wrstuden { 560 1.1 wrstuden struct vop_fsync_args /* { 561 1.1 wrstuden struct vnode *a_vp; 562 1.27 elad kauth_cred_t a_cred; 563 1.1 wrstuden int a_flags; 564 1.4 fvdl off_t offlo; 565 1.4 fvdl off_t offhi; 566 1.26 christos struct lwp *a_l; 567 1.1 wrstuden } */ *ap = v; 568 1.50 hannken int error; 569 1.1 wrstuden 570 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) { 571 1.1 wrstuden return 0; 572 1.1 wrstuden } 573 1.50 hannken if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) { 574 1.50 hannken error = spec_fsync(v); 575 1.50 hannken if (error) 576 1.50 hannken return error; 577 1.50 hannken } 578 1.42 rmind return LAYERFS_DO_BYPASS(ap->a_vp, ap); 579 1.1 wrstuden } 580 1.1 wrstuden 581 1.1 wrstuden int 582 1.38 dsl layer_inactive(void *v) 583 1.1 wrstuden { 584 1.62 riastrad struct vop_inactive_v2_args /* { 585 1.1 wrstuden struct vnode *a_vp; 586 1.34 ad bool *a_recycle; 587 1.1 wrstuden } */ *ap = v; 588 1.5 enami struct vnode *vp = ap->a_vp; 589 1.1 wrstuden 590 1.1 wrstuden /* 591 1.44 hannken * If we did a remove, don't cache the node. 592 1.34 ad */ 593 1.44 hannken *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0); 594 1.34 ad 595 1.34 ad /* 596 1.1 wrstuden * Do nothing (and _don't_ bypass). 597 1.1 wrstuden * Wait to vrele lowervp until reclaim, 598 1.1 wrstuden * so that until then our layer_node is in the 599 1.1 wrstuden * cache and reusable. 600 1.1 wrstuden * 601 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing 602 1.1 wrstuden * the lowervp and then trying to reactivate it 603 1.1 wrstuden * with capabilities (v_id) 604 1.1 wrstuden * like they do in the name lookup cache code. 605 1.1 wrstuden * That's too much work for now. 606 1.1 wrstuden */ 607 1.62 riastrad 608 1.42 rmind return 0; 609 1.1 wrstuden } 610 1.1 wrstuden 611 1.1 wrstuden int 612 1.38 dsl layer_remove(void *v) 613 1.16 wrstuden { 614 1.72 thorpej struct vop_remove_v3_args /* { 615 1.63 riastrad struct vnode *a_dvp; 616 1.16 wrstuden struct vnode *a_vp; 617 1.16 wrstuden struct componentname *a_cnp; 618 1.72 thorpej nlink_t ctx_vp_new_nlink; 619 1.16 wrstuden } */ *ap = v; 620 1.42 rmind struct vnode *vp = ap->a_vp; 621 1.42 rmind int error; 622 1.16 wrstuden 623 1.16 wrstuden vref(vp); 624 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap); 625 1.42 rmind if (error == 0) { 626 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 627 1.42 rmind } 628 1.16 wrstuden vrele(vp); 629 1.16 wrstuden 630 1.42 rmind return error; 631 1.16 wrstuden } 632 1.16 wrstuden 633 1.16 wrstuden int 634 1.38 dsl layer_rename(void *v) 635 1.17 yamt { 636 1.72 thorpej struct vop_rename_args /* { 637 1.17 yamt struct vnode *a_fdvp; 638 1.17 yamt struct vnode *a_fvp; 639 1.17 yamt struct componentname *a_fcnp; 640 1.17 yamt struct vnode *a_tdvp; 641 1.17 yamt struct vnode *a_tvp; 642 1.17 yamt struct componentname *a_tcnp; 643 1.17 yamt } */ *ap = v; 644 1.42 rmind struct vnode *fdvp = ap->a_fdvp, *tvp; 645 1.17 yamt int error; 646 1.17 yamt 647 1.17 yamt tvp = ap->a_tvp; 648 1.17 yamt if (tvp) { 649 1.17 yamt if (tvp->v_mount != fdvp->v_mount) 650 1.17 yamt tvp = NULL; 651 1.17 yamt else 652 1.17 yamt vref(tvp); 653 1.17 yamt } 654 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap); 655 1.17 yamt if (tvp) { 656 1.17 yamt if (error == 0) 657 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 658 1.17 yamt vrele(tvp); 659 1.17 yamt } 660 1.42 rmind return error; 661 1.17 yamt } 662 1.17 yamt 663 1.17 yamt int 664 1.38 dsl layer_rmdir(void *v) 665 1.23 hannken { 666 1.63 riastrad struct vop_rmdir_v2_args /* { 667 1.23 hannken struct vnode *a_dvp; 668 1.23 hannken struct vnode *a_vp; 669 1.23 hannken struct componentname *a_cnp; 670 1.23 hannken } */ *ap = v; 671 1.23 hannken int error; 672 1.23 hannken struct vnode *vp = ap->a_vp; 673 1.23 hannken 674 1.23 hannken vref(vp); 675 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap); 676 1.42 rmind if (error == 0) { 677 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 678 1.42 rmind } 679 1.23 hannken vrele(vp); 680 1.23 hannken 681 1.42 rmind return error; 682 1.23 hannken } 683 1.23 hannken 684 1.23 hannken int 685 1.45 hannken layer_revoke(void *v) 686 1.45 hannken { 687 1.45 hannken struct vop_revoke_args /* { 688 1.45 hannken struct vnode *a_vp; 689 1.45 hannken int a_flags; 690 1.45 hannken } */ *ap = v; 691 1.45 hannken struct vnode *vp = ap->a_vp; 692 1.45 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp); 693 1.46 hannken int error; 694 1.45 hannken 695 1.45 hannken /* 696 1.70 ad * We will most likely end up in vclean which uses the usecount 697 1.46 hannken * to determine if a vnode is active. Take an extra reference on 698 1.46 hannken * the lower vnode so it will always close and inactivate. 699 1.45 hannken */ 700 1.46 hannken vref(lvp); 701 1.45 hannken error = LAYERFS_DO_BYPASS(vp, ap); 702 1.46 hannken vrele(lvp); 703 1.45 hannken 704 1.45 hannken return error; 705 1.45 hannken } 706 1.45 hannken 707 1.45 hannken int 708 1.38 dsl layer_reclaim(void *v) 709 1.1 wrstuden { 710 1.66 riastrad struct vop_reclaim_v2_args /* { 711 1.1 wrstuden struct vnode *a_vp; 712 1.26 christos struct lwp *a_l; 713 1.1 wrstuden } */ *ap = v; 714 1.1 wrstuden struct vnode *vp = ap->a_vp; 715 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 716 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp); 717 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp; 718 1.1 wrstuden 719 1.66 riastrad VOP_UNLOCK(vp); 720 1.66 riastrad 721 1.1 wrstuden /* 722 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been 723 1.1 wrstuden * decomissioned, so we have to be careful about calling 724 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set. 725 1.1 wrstuden */ 726 1.42 rmind if (vp == lmp->layerm_rootvp) { 727 1.1 wrstuden /* 728 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is 729 1.1 wrstuden * that someone forcably unmunted the underlying fs. 730 1.1 wrstuden * 731 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-( 732 1.1 wrstuden */ 733 1.1 wrstuden lmp->layerm_rootvp = NULL; 734 1.1 wrstuden } 735 1.64 hannken 736 1.64 hannken mutex_enter(vp->v_interlock); 737 1.64 hannken KASSERT(vp->v_interlock == lowervp->v_interlock); 738 1.64 hannken lowervp->v_writecount -= vp->v_writecount; 739 1.64 hannken mutex_exit(vp->v_interlock); 740 1.64 hannken 741 1.42 rmind /* After this assignment, this node will not be re-used. */ 742 1.1 wrstuden xp->layer_lowervp = NULL; 743 1.34 ad kmem_free(vp->v_data, lmp->layerm_size); 744 1.1 wrstuden vp->v_data = NULL; 745 1.29 chs vrele(lowervp); 746 1.34 ad 747 1.42 rmind return 0; 748 1.1 wrstuden } 749 1.1 wrstuden 750 1.1 wrstuden /* 751 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need 752 1.1 wrstuden * to build a layer node on top of the node on which we're going to do 753 1.1 wrstuden * i/o. :-) 754 1.1 wrstuden */ 755 1.1 wrstuden int 756 1.38 dsl layer_bmap(void *v) 757 1.1 wrstuden { 758 1.1 wrstuden struct vop_bmap_args /* { 759 1.1 wrstuden struct vnode *a_vp; 760 1.1 wrstuden daddr_t a_bn; 761 1.1 wrstuden struct vnode **a_vpp; 762 1.1 wrstuden daddr_t *a_bnp; 763 1.1 wrstuden int *a_runp; 764 1.1 wrstuden } */ *ap = v; 765 1.1 wrstuden struct vnode *vp; 766 1.1 wrstuden 767 1.42 rmind vp = LAYERVPTOLOWERVP(ap->a_vp); 768 1.42 rmind ap->a_vp = vp; 769 1.1 wrstuden 770 1.42 rmind return VCALL(vp, ap->a_desc->vdesc_offset, ap); 771 1.1 wrstuden } 772 1.1 wrstuden 773 1.1 wrstuden int 774 1.38 dsl layer_print(void *v) 775 1.1 wrstuden { 776 1.1 wrstuden struct vop_print_args /* { 777 1.1 wrstuden struct vnode *a_vp; 778 1.1 wrstuden } */ *ap = v; 779 1.3 augustss struct vnode *vp = ap->a_vp; 780 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 781 1.42 rmind return 0; 782 1.1 wrstuden } 783 1.1 wrstuden 784 1.10 chs int 785 1.38 dsl layer_getpages(void *v) 786 1.10 chs { 787 1.10 chs struct vop_getpages_args /* { 788 1.10 chs struct vnode *a_vp; 789 1.10 chs voff_t a_offset; 790 1.10 chs struct vm_page **a_m; 791 1.10 chs int *a_count; 792 1.10 chs int a_centeridx; 793 1.10 chs vm_prot_t a_access_type; 794 1.10 chs int a_advice; 795 1.10 chs int a_flags; 796 1.10 chs } */ *ap = v; 797 1.10 chs struct vnode *vp = ap->a_vp; 798 1.65 hannken struct mount *mp = vp->v_mount; 799 1.65 hannken int error; 800 1.68 ad krw_t op; 801 1.10 chs 802 1.68 ad KASSERT(rw_lock_held(vp->v_uobj.vmobjlock)); 803 1.10 chs 804 1.10 chs if (ap->a_flags & PGO_LOCKED) { 805 1.10 chs return EBUSY; 806 1.10 chs } 807 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp); 808 1.68 ad KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock); 809 1.48 rmind 810 1.48 rmind /* Just pass the request on to the underlying layer. */ 811 1.68 ad op = rw_lock_op(vp->v_uobj.vmobjlock); 812 1.68 ad rw_exit(vp->v_uobj.vmobjlock); 813 1.67 hannken fstrans_start(mp); 814 1.68 ad rw_enter(vp->v_uobj.vmobjlock, op); 815 1.65 hannken if (mp == vp->v_mount) { 816 1.68 ad /* Will release the lock. */ 817 1.65 hannken error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 818 1.65 hannken } else { 819 1.68 ad rw_exit(vp->v_uobj.vmobjlock); 820 1.65 hannken error = ENOENT; 821 1.65 hannken } 822 1.65 hannken fstrans_done(mp); 823 1.65 hannken 824 1.65 hannken return error; 825 1.10 chs } 826 1.10 chs 827 1.10 chs int 828 1.38 dsl layer_putpages(void *v) 829 1.10 chs { 830 1.10 chs struct vop_putpages_args /* { 831 1.10 chs struct vnode *a_vp; 832 1.10 chs voff_t a_offlo; 833 1.10 chs voff_t a_offhi; 834 1.10 chs int a_flags; 835 1.10 chs } */ *ap = v; 836 1.10 chs struct vnode *vp = ap->a_vp; 837 1.10 chs 838 1.68 ad KASSERT(rw_write_held(vp->v_uobj.vmobjlock)); 839 1.10 chs 840 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp); 841 1.68 ad KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock); 842 1.48 rmind 843 1.30 chs if (ap->a_flags & PGO_RECLAIM) { 844 1.68 ad rw_exit(vp->v_uobj.vmobjlock); 845 1.30 chs return 0; 846 1.30 chs } 847 1.48 rmind 848 1.48 rmind /* Just pass the request on to the underlying layer. */ 849 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 850 1.1 wrstuden } 851