Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.1.4.2
      1  1.1.4.2    bouyer /*	$NetBSD: layer_vnops.c,v 1.1.4.2 2001/01/05 17:36:47 bouyer Exp $	*/
      2      1.1  wrstuden 
      3      1.1  wrstuden /*
      4      1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5      1.1  wrstuden  * All rights reserved.
      6      1.1  wrstuden  *
      7      1.1  wrstuden  * This software was written by William Studenmund of the
      8      1.1  wrstuden  * Numerical Aerospace Similation Facility, NASA Ames Research Center.
      9      1.1  wrstuden  *
     10      1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11      1.1  wrstuden  * modification, are permitted provided that the following conditions
     12      1.1  wrstuden  * are met:
     13      1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14      1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15      1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17      1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18  1.1.4.1    bouyer  * 3. Neither the name of the National Aeronautics & Space Administration
     19      1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20      1.1  wrstuden  *    products derived from this software without specific prior written
     21      1.1  wrstuden  *    permission.
     22      1.1  wrstuden  *
     23      1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24      1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25      1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26      1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27      1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28      1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29      1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30      1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31      1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32      1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33      1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34      1.1  wrstuden  */
     35      1.1  wrstuden /*
     36      1.1  wrstuden  * Copyright (c) 1992, 1993
     37      1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     38      1.1  wrstuden  *
     39      1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     40      1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     41      1.1  wrstuden  *
     42      1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     43      1.1  wrstuden  * modification, are permitted provided that the following conditions
     44      1.1  wrstuden  * are met:
     45      1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     46      1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     47      1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     48      1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     49      1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     50      1.1  wrstuden  * 3. All advertising materials mentioning features or use of this software
     51      1.1  wrstuden  *    must display the following acknowledgement:
     52      1.1  wrstuden  *	This product includes software developed by the University of
     53      1.1  wrstuden  *	California, Berkeley and its contributors.
     54      1.1  wrstuden  * 4. Neither the name of the University nor the names of its contributors
     55      1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     56      1.1  wrstuden  *    without specific prior written permission.
     57      1.1  wrstuden  *
     58      1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59      1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60      1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61      1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62      1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63      1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64      1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65      1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66      1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67      1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68      1.1  wrstuden  * SUCH DAMAGE.
     69      1.1  wrstuden  *
     70      1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     71      1.1  wrstuden  *
     72      1.1  wrstuden  * Ancestors:
     73      1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     74  1.1.4.2    bouyer  *	$Id: layer_vnops.c,v 1.1.4.2 2001/01/05 17:36:47 bouyer Exp $
     75      1.1  wrstuden  *	...and...
     76      1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     77      1.1  wrstuden  */
     78      1.1  wrstuden 
     79      1.1  wrstuden /*
     80      1.1  wrstuden  * Null Layer vnode routines.
     81      1.1  wrstuden  *
     82      1.1  wrstuden  * (See mount_null(8) for more information.)
     83      1.1  wrstuden  *
     84      1.1  wrstuden  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     85      1.1  wrstuden  * the core implimentation of the null file system and most other stacked
     86      1.1  wrstuden  * fs's. The description below refers to the null file system, but the
     87      1.1  wrstuden  * services provided by the layer* files are useful for all layered fs's.
     88      1.1  wrstuden  *
     89      1.1  wrstuden  * The null layer duplicates a portion of the file system
     90      1.1  wrstuden  * name space under a new name.  In this respect, it is
     91      1.1  wrstuden  * similar to the loopback file system.  It differs from
     92      1.1  wrstuden  * the loopback fs in two respects:  it is implemented using
     93      1.1  wrstuden  * a stackable layers techniques, and it's "null-node"s stack above
     94      1.1  wrstuden  * all lower-layer vnodes, not just over directory vnodes.
     95      1.1  wrstuden  *
     96      1.1  wrstuden  * The null layer has two purposes.  First, it serves as a demonstration
     97      1.1  wrstuden  * of layering by proving a layer which does nothing.  (It actually
     98      1.1  wrstuden  * does everything the loopback file system does, which is slightly
     99      1.1  wrstuden  * more than nothing.)  Second, the null layer can serve as a prototype
    100      1.1  wrstuden  * layer.  Since it provides all necessary layer framework,
    101      1.1  wrstuden  * new file system layers can be created very easily be starting
    102      1.1  wrstuden  * with a null layer.
    103      1.1  wrstuden  *
    104      1.1  wrstuden  * The remainder of the man page examines the null layer as a basis
    105      1.1  wrstuden  * for constructing new layers.
    106      1.1  wrstuden  *
    107      1.1  wrstuden  *
    108      1.1  wrstuden  * INSTANTIATING NEW NULL LAYERS
    109      1.1  wrstuden  *
    110      1.1  wrstuden  * New null layers are created with mount_null(8).
    111      1.1  wrstuden  * Mount_null(8) takes two arguments, the pathname
    112      1.1  wrstuden  * of the lower vfs (target-pn) and the pathname where the null
    113      1.1  wrstuden  * layer will appear in the namespace (alias-pn).  After
    114      1.1  wrstuden  * the null layer is put into place, the contents
    115      1.1  wrstuden  * of target-pn subtree will be aliased under alias-pn.
    116      1.1  wrstuden  *
    117      1.1  wrstuden  * It is conceivable that other overlay filesystems will take different
    118      1.1  wrstuden  * parameters. For instance, data migration or access controll layers might
    119      1.1  wrstuden  * only take one pathname which will serve both as the target-pn and
    120      1.1  wrstuden  * alias-pn described above.
    121      1.1  wrstuden  *
    122      1.1  wrstuden  *
    123      1.1  wrstuden  * OPERATION OF A NULL LAYER
    124      1.1  wrstuden  *
    125      1.1  wrstuden  * The null layer is the minimum file system layer,
    126      1.1  wrstuden  * simply bypassing all possible operations to the lower layer
    127      1.1  wrstuden  * for processing there.  The majority of its activity centers
    128      1.1  wrstuden  * on the bypass routine, though which nearly all vnode operations
    129      1.1  wrstuden  * pass.
    130      1.1  wrstuden  *
    131      1.1  wrstuden  * The bypass routine accepts arbitrary vnode operations for
    132      1.1  wrstuden  * handling by the lower layer.  It begins by examing vnode
    133      1.1  wrstuden  * operation arguments and replacing any layered nodes by their
    134      1.1  wrstuden  * lower-layer equivlants.  It then invokes the operation
    135      1.1  wrstuden  * on the lower layer.  Finally, it replaces the layered nodes
    136      1.1  wrstuden  * in the arguments and, if a vnode is return by the operation,
    137      1.1  wrstuden  * stacks a layered node on top of the returned vnode.
    138      1.1  wrstuden  *
    139      1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    140      1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    141      1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    142      1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    143      1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    144      1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    145      1.1  wrstuden  *
    146      1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    147      1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    148      1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    149      1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    150      1.1  wrstuden  * use the layerm_bypass routine.
    151      1.1  wrstuden  *
    152      1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    153      1.1  wrstuden  * of operations are special cased, and handled by the layered fs. One
    154      1.1  wrstuden  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    155      1.1  wrstuden  * layer_fsync, perform layer-specific manipulation in addition to calling
    156      1.1  wrstuden  * the bypass routine. The other group
    157      1.1  wrstuden 
    158      1.1  wrstuden  * Although bypass handles most operations, vop_getattr, vop_lock,
    159      1.1  wrstuden  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    160      1.1  wrstuden  * bypassed. Vop_getattr must change the fsid being returned.
    161      1.1  wrstuden  * Vop_lock and vop_unlock must handle any locking for the
    162      1.1  wrstuden  * current vnode as well as pass the lock request down.
    163      1.1  wrstuden  * Vop_inactive and vop_reclaim are not bypassed so that
    164      1.1  wrstuden  * they can handle freeing null-layer specific data. Vop_print
    165      1.1  wrstuden  * is not bypassed to avoid excessive debugging information.
    166      1.1  wrstuden  * Also, certain vnode operations change the locking state within
    167      1.1  wrstuden  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    168      1.1  wrstuden  * and symlink). Ideally these operations should not change the
    169      1.1  wrstuden  * lock state, but should be changed to let the caller of the
    170      1.1  wrstuden  * function unlock them. Otherwise all intermediate vnode layers
    171      1.1  wrstuden  * (such as union, umapfs, etc) must catch these functions to do
    172      1.1  wrstuden  * the necessary locking at their layer.
    173      1.1  wrstuden  *
    174      1.1  wrstuden  *
    175      1.1  wrstuden  * INSTANTIATING VNODE STACKS
    176      1.1  wrstuden  *
    177      1.1  wrstuden  * Mounting associates the null layer with a lower layer,
    178      1.1  wrstuden  * effect stacking two VFSes.  Vnode stacks are instead
    179      1.1  wrstuden  * created on demand as files are accessed.
    180      1.1  wrstuden  *
    181      1.1  wrstuden  * The initial mount creates a single vnode stack for the
    182      1.1  wrstuden  * root of the new null layer.  All other vnode stacks
    183      1.1  wrstuden  * are created as a result of vnode operations on
    184      1.1  wrstuden  * this or other null vnode stacks.
    185      1.1  wrstuden  *
    186      1.1  wrstuden  * New vnode stacks come into existance as a result of
    187      1.1  wrstuden  * an operation which returns a vnode.
    188      1.1  wrstuden  * The bypass routine stacks a null-node above the new
    189      1.1  wrstuden  * vnode before returning it to the caller.
    190      1.1  wrstuden  *
    191      1.1  wrstuden  * For example, imagine mounting a null layer with
    192      1.1  wrstuden  * "mount_null /usr/include /dev/layer/null".
    193      1.1  wrstuden  * Changing directory to /dev/layer/null will assign
    194      1.1  wrstuden  * the root null-node (which was created when the null layer was mounted).
    195      1.1  wrstuden  * Now consider opening "sys".  A vop_lookup would be
    196      1.1  wrstuden  * done on the root null-node.  This operation would bypass through
    197      1.1  wrstuden  * to the lower layer which would return a vnode representing
    198      1.1  wrstuden  * the UFS "sys".  layer_bypass then builds a null-node
    199      1.1  wrstuden  * aliasing the UFS "sys" and returns this to the caller.
    200      1.1  wrstuden  * Later operations on the null-node "sys" will repeat this
    201      1.1  wrstuden  * process when constructing other vnode stacks.
    202      1.1  wrstuden  *
    203      1.1  wrstuden  *
    204      1.1  wrstuden  * CREATING OTHER FILE SYSTEM LAYERS
    205      1.1  wrstuden  *
    206      1.1  wrstuden  * One of the easiest ways to construct new file system layers is to make
    207      1.1  wrstuden  * a copy of the null layer, rename all files and variables, and
    208      1.1  wrstuden  * then begin modifing the copy.  Sed can be used to easily rename
    209      1.1  wrstuden  * all variables.
    210      1.1  wrstuden  *
    211      1.1  wrstuden  * The umap layer is an example of a layer descended from the
    212      1.1  wrstuden  * null layer.
    213      1.1  wrstuden  *
    214      1.1  wrstuden  *
    215      1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    216      1.1  wrstuden  *
    217      1.1  wrstuden  * There are two techniques to invoke operations on a lower layer
    218      1.1  wrstuden  * when the operation cannot be completely bypassed.  Each method
    219      1.1  wrstuden  * is appropriate in different situations.  In both cases,
    220      1.1  wrstuden  * it is the responsibility of the aliasing layer to make
    221      1.1  wrstuden  * the operation arguments "correct" for the lower layer
    222      1.1  wrstuden  * by mapping an vnode arguments to the lower layer.
    223      1.1  wrstuden  *
    224      1.1  wrstuden  * The first approach is to call the aliasing layer's bypass routine.
    225      1.1  wrstuden  * This method is most suitable when you wish to invoke the operation
    226      1.1  wrstuden  * currently being hanldled on the lower layer.  It has the advantage
    227      1.1  wrstuden  * that the bypass routine already must do argument mapping.
    228      1.1  wrstuden  * An example of this is null_getattrs in the null layer.
    229      1.1  wrstuden  *
    230      1.1  wrstuden  * A second approach is to directly invoked vnode operations on
    231      1.1  wrstuden  * the lower layer with the VOP_OPERATIONNAME interface.
    232      1.1  wrstuden  * The advantage of this method is that it is easy to invoke
    233      1.1  wrstuden  * arbitrary operations on the lower layer.  The disadvantage
    234      1.1  wrstuden  * is that vnodes arguments must be manualy mapped.
    235      1.1  wrstuden  *
    236      1.1  wrstuden  */
    237      1.1  wrstuden 
    238      1.1  wrstuden #include <sys/param.h>
    239      1.1  wrstuden #include <sys/systm.h>
    240      1.1  wrstuden #include <sys/proc.h>
    241      1.1  wrstuden #include <sys/time.h>
    242      1.1  wrstuden #include <sys/types.h>
    243      1.1  wrstuden #include <sys/vnode.h>
    244      1.1  wrstuden #include <sys/mount.h>
    245      1.1  wrstuden #include <sys/namei.h>
    246      1.1  wrstuden #include <sys/malloc.h>
    247      1.1  wrstuden #include <sys/buf.h>
    248      1.1  wrstuden #include <miscfs/genfs/layer.h>
    249      1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    250      1.1  wrstuden #include <miscfs/genfs/genfs.h>
    251      1.1  wrstuden 
    252      1.1  wrstuden 
    253      1.1  wrstuden /*
    254      1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    255      1.1  wrstuden  *		routine by John Heidemann.
    256      1.1  wrstuden  *	The new element for this version is that the whole nullfs
    257      1.1  wrstuden  * system gained the concept of locks on the lower node, and locks on
    258      1.1  wrstuden  * our nodes. When returning from a call to the lower layer, we may
    259      1.1  wrstuden  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    260      1.1  wrstuden  * macros provide this functionality.
    261      1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    262      1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    263      1.1  wrstuden  * robust to programmer errors.
    264      1.1  wrstuden  *    Define SAFETY to include some error checking code.
    265      1.1  wrstuden  *
    266      1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    267      1.1  wrstuden  *
    268      1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    269      1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    270      1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    271      1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    272      1.1  wrstuden  * since there are no such side-effects.
    273      1.1  wrstuden  *
    274      1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    275      1.1  wrstuden  * the passed-in node (typically they vput the node).
    276      1.1  wrstuden  *
    277      1.1  wrstuden  * This makes the following assumptions:
    278      1.1  wrstuden  * - only one returned vpp
    279      1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    280      1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    281      1.1  wrstuden  *   to determine what implementation of the op should be invoked
    282      1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    283      1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    284      1.1  wrstuden  */
    285      1.1  wrstuden int
    286      1.1  wrstuden layer_bypass(v)
    287      1.1  wrstuden 	void *v;
    288      1.1  wrstuden {
    289      1.1  wrstuden 	struct vop_generic_args /* {
    290      1.1  wrstuden 		struct vnodeop_desc *a_desc;
    291      1.1  wrstuden 		<other random data follows, presumably>
    292      1.1  wrstuden 	} */ *ap = v;
    293      1.1  wrstuden 	int (**our_vnodeop_p) __P((void *));
    294  1.1.4.1    bouyer 	struct vnode **this_vp_p;
    295      1.1  wrstuden 	int error, error1;
    296      1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    297      1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    298      1.1  wrstuden 	struct vnode ***vppp;
    299      1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    300      1.1  wrstuden 	int reles, i, flags;
    301      1.1  wrstuden 
    302      1.1  wrstuden #ifdef SAFETY
    303      1.1  wrstuden 	/*
    304      1.1  wrstuden 	 * We require at least one vp.
    305      1.1  wrstuden 	 */
    306      1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    307      1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    308      1.1  wrstuden 		panic ("layer_bypass: no vp's in map.\n");
    309      1.1  wrstuden #endif
    310      1.1  wrstuden 
    311      1.1  wrstuden 	vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
    312      1.1  wrstuden 	vp0 = *vps_p[0];
    313      1.1  wrstuden 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    314      1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    315      1.1  wrstuden 
    316      1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    317      1.1  wrstuden 		printf ("layer_bypass: %s\n", descp->vdesc_name);
    318      1.1  wrstuden 
    319      1.1  wrstuden 	/*
    320      1.1  wrstuden 	 * Map the vnodes going in.
    321      1.1  wrstuden 	 * Later, we'll invoke the operation based on
    322      1.1  wrstuden 	 * the first mapped vnode's operation vector.
    323      1.1  wrstuden 	 */
    324      1.1  wrstuden 	reles = descp->vdesc_flags;
    325      1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    326      1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    327      1.1  wrstuden 			break;   /* bail out at end of list */
    328      1.1  wrstuden 		vps_p[i] = this_vp_p =
    329      1.1  wrstuden 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    330      1.1  wrstuden 		/*
    331      1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    332      1.1  wrstuden 		 * are of our type.  Check for and don't map any
    333      1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    334      1.1  wrstuden 		 */
    335      1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    336      1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    337      1.1  wrstuden 			old_vps[i] = NULL;
    338      1.1  wrstuden 		} else {
    339      1.1  wrstuden 			old_vps[i] = *this_vp_p;
    340      1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    341      1.1  wrstuden 			/*
    342      1.1  wrstuden 			 * XXX - Several operations have the side effect
    343      1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    344      1.1  wrstuden 			 * that.  (This should go away in the future.)
    345      1.1  wrstuden 			 */
    346      1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    347      1.1  wrstuden 				VREF(*this_vp_p);
    348      1.1  wrstuden 		}
    349      1.1  wrstuden 
    350      1.1  wrstuden 	}
    351      1.1  wrstuden 
    352      1.1  wrstuden 	/*
    353      1.1  wrstuden 	 * Call the operation on the lower layer
    354      1.1  wrstuden 	 * with the modified argument structure.
    355      1.1  wrstuden 	 */
    356      1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    357      1.1  wrstuden 
    358      1.1  wrstuden 	/*
    359      1.1  wrstuden 	 * Maintain the illusion of call-by-value
    360      1.1  wrstuden 	 * by restoring vnodes in the argument structure
    361      1.1  wrstuden 	 * to their original value.
    362      1.1  wrstuden 	 */
    363      1.1  wrstuden 	reles = descp->vdesc_flags;
    364      1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    365      1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    366      1.1  wrstuden 			break;   /* bail out at end of list */
    367      1.1  wrstuden 		if (old_vps[i]) {
    368      1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    369      1.1  wrstuden 			if (reles & VDESC_VP0_WILLUNLOCK)
    370      1.1  wrstuden 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    371      1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    372      1.1  wrstuden 				vrele(*(vps_p[i]));
    373      1.1  wrstuden 		}
    374      1.1  wrstuden 	}
    375      1.1  wrstuden 
    376      1.1  wrstuden 	/*
    377      1.1  wrstuden 	 * Map the possible out-going vpp
    378      1.1  wrstuden 	 * (Assumes that the lower layer always returns
    379      1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    380      1.1  wrstuden 	 */
    381      1.1  wrstuden 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    382      1.1  wrstuden 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    383      1.1  wrstuden 	    !error) {
    384      1.1  wrstuden 		/*
    385      1.1  wrstuden 		 * XXX - even though some ops have vpp returned vp's,
    386      1.1  wrstuden 		 * several ops actually vrele this before returning.
    387      1.1  wrstuden 		 * We must avoid these ops.
    388      1.1  wrstuden 		 * (This should go away when these ops are regularized.)
    389      1.1  wrstuden 		 */
    390      1.1  wrstuden 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    391      1.1  wrstuden 			goto out;
    392      1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    393      1.1  wrstuden 				 descp->vdesc_vpp_offset,ap);
    394      1.1  wrstuden 		/*
    395      1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    396      1.1  wrstuden 		 * vop_mknod, and vop_symlink return vpp's. The latter
    397      1.1  wrstuden 		 * two are VPP_WILLRELE, so we won't get here, and vop_bmap
    398      1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    399      1.1  wrstuden 		 * going to do i/o on it). vop_loookup doesn't call bypass
    400      1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    401      1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    402      1.1  wrstuden 		 */
    403      1.1  wrstuden 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    404      1.1  wrstuden 	}
    405      1.1  wrstuden 
    406      1.1  wrstuden  out:
    407      1.1  wrstuden 	return (error);
    408      1.1  wrstuden }
    409      1.1  wrstuden 
    410      1.1  wrstuden /*
    411      1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    412      1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    413      1.1  wrstuden  * if this layer is mounted read-only.
    414      1.1  wrstuden  */
    415      1.1  wrstuden int
    416      1.1  wrstuden layer_lookup(v)
    417      1.1  wrstuden 	void *v;
    418      1.1  wrstuden {
    419      1.1  wrstuden 	struct vop_lookup_args /* {
    420      1.1  wrstuden 		struct vnodeop_desc *a_desc;
    421      1.1  wrstuden 		struct vnode * a_dvp;
    422      1.1  wrstuden 		struct vnode ** a_vpp;
    423      1.1  wrstuden 		struct componentname * a_cnp;
    424      1.1  wrstuden 	} */ *ap = v;
    425      1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    426      1.1  wrstuden 	int flags = cnp->cn_flags;
    427      1.1  wrstuden 	struct vnode *dvp, *vp, *ldvp;
    428      1.1  wrstuden 	int error, r;
    429      1.1  wrstuden 
    430      1.1  wrstuden 	dvp = ap->a_dvp;
    431      1.1  wrstuden 
    432      1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    433      1.1  wrstuden 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    434      1.1  wrstuden 		return (EROFS);
    435      1.1  wrstuden 
    436      1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    437      1.1  wrstuden 	ap->a_dvp = ldvp;
    438      1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    439      1.1  wrstuden 	vp = *ap->a_vpp;
    440      1.1  wrstuden 
    441      1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    442      1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    443      1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    444      1.1  wrstuden 		error = EROFS;
    445      1.1  wrstuden 	/*
    446      1.1  wrstuden 	 * We must do the same locking and unlocking at this layer as
    447      1.1  wrstuden 	 * is done in the layers below us. It used to be we would try
    448      1.1  wrstuden 	 * to guess based on what was set with the flags and error codes.
    449      1.1  wrstuden 	 *
    450      1.1  wrstuden 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    451      1.1  wrstuden 	 * tell us if it released the parent vnode, and we adjust the
    452      1.1  wrstuden 	 * upper node accordingly. We can't just look at the lock states
    453      1.1  wrstuden 	 * of the lower nodes as someone else might have come along and
    454      1.1  wrstuden 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    455      1.1  wrstuden 	 */
    456      1.1  wrstuden 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    457      1.1  wrstuden 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    458      1.1  wrstuden 	}
    459      1.1  wrstuden 	if (ldvp == vp) {
    460      1.1  wrstuden 		/*
    461      1.1  wrstuden 		 * Did lookup on "." or ".." in the root node of a mount point.
    462      1.1  wrstuden 		 * So we return dvp after a VREF.
    463      1.1  wrstuden 		 */
    464      1.1  wrstuden 		*ap->a_vpp = dvp;
    465      1.1  wrstuden 		VREF(dvp);
    466      1.1  wrstuden 		vrele(vp);
    467      1.1  wrstuden 	} else if (vp != NULL) {
    468      1.1  wrstuden 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    469      1.1  wrstuden 	}
    470      1.1  wrstuden 	return (error);
    471      1.1  wrstuden }
    472      1.1  wrstuden 
    473      1.1  wrstuden /*
    474      1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    475      1.1  wrstuden  */
    476      1.1  wrstuden int
    477      1.1  wrstuden layer_setattr(v)
    478      1.1  wrstuden 	void *v;
    479      1.1  wrstuden {
    480      1.1  wrstuden 	struct vop_setattr_args /* {
    481      1.1  wrstuden 		struct vnodeop_desc *a_desc;
    482      1.1  wrstuden 		struct vnode *a_vp;
    483      1.1  wrstuden 		struct vattr *a_vap;
    484      1.1  wrstuden 		struct ucred *a_cred;
    485      1.1  wrstuden 		struct proc *a_p;
    486      1.1  wrstuden 	} */ *ap = v;
    487      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    488      1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    489      1.1  wrstuden 
    490      1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    491      1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    492      1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    493      1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    494      1.1  wrstuden 		return (EROFS);
    495      1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    496      1.1  wrstuden  		switch (vp->v_type) {
    497      1.1  wrstuden  		case VDIR:
    498      1.1  wrstuden  			return (EISDIR);
    499      1.1  wrstuden  		case VCHR:
    500      1.1  wrstuden  		case VBLK:
    501      1.1  wrstuden  		case VSOCK:
    502      1.1  wrstuden  		case VFIFO:
    503      1.1  wrstuden 			return (0);
    504      1.1  wrstuden 		case VREG:
    505      1.1  wrstuden 		case VLNK:
    506      1.1  wrstuden  		default:
    507      1.1  wrstuden 			/*
    508      1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    509      1.1  wrstuden 			 * mounted read-only.
    510      1.1  wrstuden 			 */
    511      1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    512      1.1  wrstuden 				return (EROFS);
    513      1.1  wrstuden 		}
    514      1.1  wrstuden 	}
    515      1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    516      1.1  wrstuden }
    517      1.1  wrstuden 
    518      1.1  wrstuden /*
    519      1.1  wrstuden  *  We handle getattr only to change the fsid.
    520      1.1  wrstuden  */
    521      1.1  wrstuden int
    522      1.1  wrstuden layer_getattr(v)
    523      1.1  wrstuden 	void *v;
    524      1.1  wrstuden {
    525      1.1  wrstuden 	struct vop_getattr_args /* {
    526      1.1  wrstuden 		struct vnode *a_vp;
    527      1.1  wrstuden 		struct vattr *a_vap;
    528      1.1  wrstuden 		struct ucred *a_cred;
    529      1.1  wrstuden 		struct proc *a_p;
    530      1.1  wrstuden 	} */ *ap = v;
    531      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    532      1.1  wrstuden 	int error;
    533      1.1  wrstuden 
    534      1.1  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    535      1.1  wrstuden 		return (error);
    536      1.1  wrstuden 	/* Requires that arguments be restored. */
    537      1.1  wrstuden 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
    538      1.1  wrstuden 	return (0);
    539      1.1  wrstuden }
    540      1.1  wrstuden 
    541      1.1  wrstuden int
    542      1.1  wrstuden layer_access(v)
    543      1.1  wrstuden 	void *v;
    544      1.1  wrstuden {
    545      1.1  wrstuden 	struct vop_access_args /* {
    546      1.1  wrstuden 		struct vnode *a_vp;
    547      1.1  wrstuden 		int  a_mode;
    548      1.1  wrstuden 		struct ucred *a_cred;
    549      1.1  wrstuden 		struct proc *a_p;
    550      1.1  wrstuden 	} */ *ap = v;
    551      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    552      1.1  wrstuden 	mode_t mode = ap->a_mode;
    553      1.1  wrstuden 
    554      1.1  wrstuden 	/*
    555      1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    556      1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    557      1.1  wrstuden 	 * character device resident on the file system.
    558      1.1  wrstuden 	 */
    559      1.1  wrstuden 	if (mode & VWRITE) {
    560      1.1  wrstuden 		switch (vp->v_type) {
    561      1.1  wrstuden 		case VDIR:
    562      1.1  wrstuden 		case VLNK:
    563      1.1  wrstuden 		case VREG:
    564      1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    565      1.1  wrstuden 				return (EROFS);
    566      1.1  wrstuden 			break;
    567      1.1  wrstuden 		default:
    568      1.1  wrstuden 			break;
    569      1.1  wrstuden 		}
    570      1.1  wrstuden 	}
    571      1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    572      1.1  wrstuden }
    573      1.1  wrstuden 
    574      1.1  wrstuden /*
    575      1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    576      1.1  wrstuden  */
    577      1.1  wrstuden int
    578      1.1  wrstuden layer_open(v)
    579      1.1  wrstuden 	void *v;
    580      1.1  wrstuden {
    581      1.1  wrstuden 	struct vop_open_args *ap = v;
    582      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    583      1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    584      1.1  wrstuden 
    585      1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    586      1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    587      1.1  wrstuden 		return ENXIO;
    588      1.1  wrstuden 
    589      1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    590      1.1  wrstuden }
    591      1.1  wrstuden 
    592      1.1  wrstuden /*
    593      1.1  wrstuden  * We need to process our own vnode lock and then clear the
    594      1.1  wrstuden  * interlock flag as it applies only to our vnode, not the
    595      1.1  wrstuden  * vnodes below us on the stack.
    596      1.1  wrstuden  */
    597      1.1  wrstuden int
    598      1.1  wrstuden layer_lock(v)
    599      1.1  wrstuden 	void *v;
    600      1.1  wrstuden {
    601      1.1  wrstuden 	struct vop_lock_args /* {
    602      1.1  wrstuden 		struct vnode *a_vp;
    603      1.1  wrstuden 		int a_flags;
    604      1.1  wrstuden 		struct proc *a_p;
    605      1.1  wrstuden 	} */ *ap = v;
    606      1.1  wrstuden 	struct vnode *vp = ap->a_vp, *lowervp;
    607      1.1  wrstuden 	int	flags = ap->a_flags, error;
    608      1.1  wrstuden 
    609      1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    610      1.1  wrstuden 		/*
    611      1.1  wrstuden 		 * The lower level has exported a struct lock to us. Use
    612      1.1  wrstuden 		 * it so that all vnodes in the stack lock and unlock
    613      1.1  wrstuden 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    614      1.1  wrstuden 		 * decommissions the lock - just because our vnode is
    615      1.1  wrstuden 		 * going away doesn't mean the struct lock below us is.
    616      1.1  wrstuden 		 * LK_EXCLUSIVE is fine.
    617      1.1  wrstuden 		 */
    618      1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    619      1.1  wrstuden 			return(lockmgr(vp->v_vnlock,
    620      1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    621      1.1  wrstuden 				&vp->v_interlock));
    622      1.1  wrstuden 		} else
    623      1.1  wrstuden 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    624      1.1  wrstuden 	} else {
    625      1.1  wrstuden 		/*
    626      1.1  wrstuden 		 * Ahh well. It would be nice if the fs we're over would
    627      1.1  wrstuden 		 * export a struct lock for us to use, but it doesn't.
    628      1.1  wrstuden 		 *
    629      1.1  wrstuden 		 * To prevent race conditions involving doing a lookup
    630      1.1  wrstuden 		 * on "..", we have to lock the lower node, then lock our
    631      1.1  wrstuden 		 * node. Most of the time it won't matter that we lock our
    632      1.1  wrstuden 		 * node (as any locking would need the lower one locked
    633      1.1  wrstuden 		 * first). But we can LK_DRAIN the upper lock as a step
    634      1.1  wrstuden 		 * towards decomissioning it.
    635      1.1  wrstuden 		 */
    636      1.1  wrstuden 		lowervp = LAYERVPTOLOWERVP(vp);
    637      1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    638      1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    639      1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    640      1.1  wrstuden 		}
    641      1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    642      1.1  wrstuden 			error = VOP_LOCK(lowervp,
    643      1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    644      1.1  wrstuden 		} else
    645      1.1  wrstuden 			error = VOP_LOCK(lowervp, flags);
    646      1.1  wrstuden 		if (error)
    647      1.1  wrstuden 			return (error);
    648      1.1  wrstuden 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    649      1.1  wrstuden 			VOP_UNLOCK(lowervp, 0);
    650      1.1  wrstuden 		}
    651      1.1  wrstuden 		return (error);
    652      1.1  wrstuden 	}
    653      1.1  wrstuden }
    654      1.1  wrstuden 
    655      1.1  wrstuden /*
    656      1.1  wrstuden  */
    657      1.1  wrstuden int
    658      1.1  wrstuden layer_unlock(v)
    659      1.1  wrstuden 	void *v;
    660      1.1  wrstuden {
    661      1.1  wrstuden 	struct vop_unlock_args /* {
    662      1.1  wrstuden 		struct vnode *a_vp;
    663      1.1  wrstuden 		int a_flags;
    664      1.1  wrstuden 		struct proc *a_p;
    665      1.1  wrstuden 	} */ *ap = v;
    666      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    667      1.1  wrstuden 	int	flags = ap->a_flags;
    668      1.1  wrstuden 
    669      1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    670      1.1  wrstuden 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    671      1.1  wrstuden 			&vp->v_interlock));
    672      1.1  wrstuden 	} else {
    673      1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    674      1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    675      1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    676      1.1  wrstuden 		}
    677      1.1  wrstuden 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    678      1.1  wrstuden 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    679      1.1  wrstuden 			&vp->v_interlock));
    680      1.1  wrstuden 	}
    681      1.1  wrstuden }
    682      1.1  wrstuden 
    683      1.1  wrstuden /*
    684      1.1  wrstuden  * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
    685      1.1  wrstuden  * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
    686      1.1  wrstuden  */
    687      1.1  wrstuden int
    688      1.1  wrstuden layer_islocked(v)
    689      1.1  wrstuden 	void *v;
    690      1.1  wrstuden {
    691      1.1  wrstuden 	struct vop_islocked_args /* {
    692      1.1  wrstuden 		struct vnode *a_vp;
    693      1.1  wrstuden 	} */ *ap = v;
    694      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    695      1.1  wrstuden 
    696      1.1  wrstuden 	if (vp->v_vnlock != NULL)
    697      1.1  wrstuden 		return (lockstatus(vp->v_vnlock));
    698      1.1  wrstuden 	else
    699      1.1  wrstuden 		return (lockstatus(&vp->v_lock));
    700      1.1  wrstuden }
    701      1.1  wrstuden 
    702      1.1  wrstuden /*
    703      1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    704      1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    705      1.1  wrstuden  * reclaimed; otherwise,
    706      1.1  wrstuden  * pass it through to the underlying layer.
    707      1.1  wrstuden  *
    708      1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    709      1.1  wrstuden  */
    710      1.1  wrstuden 
    711      1.1  wrstuden int
    712      1.1  wrstuden layer_fsync(v)
    713      1.1  wrstuden 	void *v;
    714      1.1  wrstuden {
    715      1.1  wrstuden 	struct vop_fsync_args /* {
    716      1.1  wrstuden 		struct vnode *a_vp;
    717      1.1  wrstuden 		struct ucred *a_cred;
    718      1.1  wrstuden 		int  a_flags;
    719  1.1.4.1    bouyer 		off_t offlo;
    720  1.1.4.1    bouyer 		off_t offhi;
    721      1.1  wrstuden 		struct proc *a_p;
    722      1.1  wrstuden 	} */ *ap = v;
    723      1.1  wrstuden 
    724      1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    725      1.1  wrstuden 		return 0;
    726      1.1  wrstuden 	}
    727      1.1  wrstuden 
    728      1.1  wrstuden 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    729      1.1  wrstuden }
    730      1.1  wrstuden 
    731      1.1  wrstuden 
    732      1.1  wrstuden int
    733      1.1  wrstuden layer_inactive(v)
    734      1.1  wrstuden 	void *v;
    735      1.1  wrstuden {
    736      1.1  wrstuden 	struct vop_inactive_args /* {
    737      1.1  wrstuden 		struct vnode *a_vp;
    738      1.1  wrstuden 		struct proc *a_p;
    739      1.1  wrstuden 	} */ *ap = v;
    740  1.1.4.2    bouyer 	struct vnode *vp = ap->a_vp;
    741      1.1  wrstuden 
    742      1.1  wrstuden 	/*
    743      1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    744      1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    745      1.1  wrstuden 	 * so that until then our layer_node is in the
    746      1.1  wrstuden 	 * cache and reusable.
    747      1.1  wrstuden 	 *
    748      1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    749      1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    750      1.1  wrstuden 	 * with capabilities (v_id)
    751      1.1  wrstuden 	 * like they do in the name lookup cache code.
    752      1.1  wrstuden 	 * That's too much work for now.
    753      1.1  wrstuden 	 */
    754  1.1.4.2    bouyer 	VOP_UNLOCK(vp, 0);
    755  1.1.4.2    bouyer 
    756  1.1.4.2    bouyer 	/* ..., but don't cache the device node. */
    757  1.1.4.2    bouyer 	if (vp->v_type == VBLK || vp->v_type == VCHR)
    758  1.1.4.2    bouyer 		vgone(vp);
    759      1.1  wrstuden 	return (0);
    760      1.1  wrstuden }
    761      1.1  wrstuden 
    762      1.1  wrstuden int
    763      1.1  wrstuden layer_reclaim(v)
    764      1.1  wrstuden 	void *v;
    765      1.1  wrstuden {
    766      1.1  wrstuden 	struct vop_reclaim_args /* {
    767      1.1  wrstuden 		struct vnode *a_vp;
    768      1.1  wrstuden 		struct proc *a_p;
    769      1.1  wrstuden 	} */ *ap = v;
    770      1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    771      1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    772      1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    773      1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    774      1.1  wrstuden 
    775      1.1  wrstuden 	/*
    776      1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    777      1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    778      1.1  wrstuden 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    779      1.1  wrstuden 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    780      1.1  wrstuden 	 * set.
    781      1.1  wrstuden 	 */
    782      1.1  wrstuden 	/* After this assignment, this node will not be re-used. */
    783      1.1  wrstuden 	if ((vp == lmp->layerm_rootvp)) {
    784      1.1  wrstuden 		/*
    785      1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    786      1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    787      1.1  wrstuden 		 *
    788      1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    789      1.1  wrstuden 		 */
    790      1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    791      1.1  wrstuden 	}
    792      1.1  wrstuden 	xp->layer_lowervp = NULL;
    793      1.1  wrstuden 	simple_lock(&lmp->layerm_hashlock);
    794      1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    795      1.1  wrstuden 	simple_unlock(&lmp->layerm_hashlock);
    796      1.1  wrstuden 	FREE(vp->v_data, M_TEMP);
    797      1.1  wrstuden 	vp->v_data = NULL;
    798      1.1  wrstuden 	vrele (lowervp);
    799      1.1  wrstuden 	return (0);
    800      1.1  wrstuden }
    801      1.1  wrstuden 
    802      1.1  wrstuden /*
    803      1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    804      1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    805      1.1  wrstuden  * i/o. :-)
    806      1.1  wrstuden  */
    807      1.1  wrstuden int
    808      1.1  wrstuden layer_bmap(v)
    809      1.1  wrstuden 	void *v;
    810      1.1  wrstuden {
    811      1.1  wrstuden 	struct vop_bmap_args /* {
    812      1.1  wrstuden 		struct vnode *a_vp;
    813      1.1  wrstuden 		daddr_t  a_bn;
    814      1.1  wrstuden 		struct vnode **a_vpp;
    815      1.1  wrstuden 		daddr_t *a_bnp;
    816      1.1  wrstuden 		int *a_runp;
    817      1.1  wrstuden 	} */ *ap = v;
    818      1.1  wrstuden 	struct vnode *vp;
    819      1.1  wrstuden 
    820      1.1  wrstuden 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    821      1.1  wrstuden 
    822      1.1  wrstuden 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    823      1.1  wrstuden }
    824      1.1  wrstuden 
    825      1.1  wrstuden int
    826      1.1  wrstuden layer_print(v)
    827      1.1  wrstuden 	void *v;
    828      1.1  wrstuden {
    829      1.1  wrstuden 	struct vop_print_args /* {
    830      1.1  wrstuden 		struct vnode *a_vp;
    831      1.1  wrstuden 	} */ *ap = v;
    832  1.1.4.1    bouyer 	struct vnode *vp = ap->a_vp;
    833      1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    834      1.1  wrstuden 	return (0);
    835      1.1  wrstuden }
    836      1.1  wrstuden 
    837      1.1  wrstuden /*
    838      1.1  wrstuden  * XXX - vop_strategy must be hand coded because it has no
    839      1.1  wrstuden  * vnode in its arguments.
    840      1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    841      1.1  wrstuden  */
    842      1.1  wrstuden int
    843      1.1  wrstuden layer_strategy(v)
    844      1.1  wrstuden 	void *v;
    845      1.1  wrstuden {
    846      1.1  wrstuden 	struct vop_strategy_args /* {
    847      1.1  wrstuden 		struct buf *a_bp;
    848      1.1  wrstuden 	} */ *ap = v;
    849      1.1  wrstuden 	struct buf *bp = ap->a_bp;
    850      1.1  wrstuden 	int error;
    851      1.1  wrstuden 	struct vnode *savedvp;
    852      1.1  wrstuden 
    853      1.1  wrstuden 	savedvp = bp->b_vp;
    854      1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    855      1.1  wrstuden 
    856      1.1  wrstuden 	error = VOP_STRATEGY(bp);
    857      1.1  wrstuden 
    858      1.1  wrstuden 	bp->b_vp = savedvp;
    859      1.1  wrstuden 
    860      1.1  wrstuden 	return (error);
    861      1.1  wrstuden }
    862      1.1  wrstuden 
    863      1.1  wrstuden /*
    864      1.1  wrstuden  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
    865      1.1  wrstuden  * vnode in its arguments.
    866      1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    867      1.1  wrstuden  */
    868      1.1  wrstuden int
    869      1.1  wrstuden layer_bwrite(v)
    870      1.1  wrstuden 	void *v;
    871      1.1  wrstuden {
    872      1.1  wrstuden 	struct vop_bwrite_args /* {
    873      1.1  wrstuden 		struct buf *a_bp;
    874      1.1  wrstuden 	} */ *ap = v;
    875      1.1  wrstuden 	struct buf *bp = ap->a_bp;
    876      1.1  wrstuden 	int error;
    877      1.1  wrstuden 	struct vnode *savedvp;
    878      1.1  wrstuden 
    879      1.1  wrstuden 	savedvp = bp->b_vp;
    880      1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    881      1.1  wrstuden 
    882      1.1  wrstuden 	error = VOP_BWRITE(bp);
    883      1.1  wrstuden 
    884      1.1  wrstuden 	bp->b_vp = savedvp;
    885      1.1  wrstuden 
    886      1.1  wrstuden 	return (error);
    887      1.1  wrstuden }
    888