layer_vnops.c revision 1.19 1 1.19 yamt /* $NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.1 wrstuden /*
36 1.1 wrstuden * Copyright (c) 1992, 1993
37 1.1 wrstuden * The Regents of the University of California. All rights reserved.
38 1.1 wrstuden *
39 1.1 wrstuden * This code is derived from software contributed to Berkeley by
40 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
41 1.1 wrstuden *
42 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
43 1.1 wrstuden * modification, are permitted provided that the following conditions
44 1.1 wrstuden * are met:
45 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
46 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
47 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
49 1.1 wrstuden * documentation and/or other materials provided with the distribution.
50 1.11 agc * 3. Neither the name of the University nor the names of its contributors
51 1.1 wrstuden * may be used to endorse or promote products derived from this software
52 1.1 wrstuden * without specific prior written permission.
53 1.1 wrstuden *
54 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 wrstuden * SUCH DAMAGE.
65 1.1 wrstuden *
66 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 1.1 wrstuden *
68 1.1 wrstuden * Ancestors:
69 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 1.19 yamt * $Id: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $
71 1.1 wrstuden * ...and...
72 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 1.1 wrstuden */
74 1.1 wrstuden
75 1.1 wrstuden /*
76 1.1 wrstuden * Null Layer vnode routines.
77 1.1 wrstuden *
78 1.1 wrstuden * (See mount_null(8) for more information.)
79 1.1 wrstuden *
80 1.1 wrstuden * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 1.12 wiz * the core implementation of the null file system and most other stacked
82 1.1 wrstuden * fs's. The description below refers to the null file system, but the
83 1.1 wrstuden * services provided by the layer* files are useful for all layered fs's.
84 1.1 wrstuden *
85 1.1 wrstuden * The null layer duplicates a portion of the file system
86 1.1 wrstuden * name space under a new name. In this respect, it is
87 1.1 wrstuden * similar to the loopback file system. It differs from
88 1.1 wrstuden * the loopback fs in two respects: it is implemented using
89 1.1 wrstuden * a stackable layers techniques, and it's "null-node"s stack above
90 1.1 wrstuden * all lower-layer vnodes, not just over directory vnodes.
91 1.1 wrstuden *
92 1.1 wrstuden * The null layer has two purposes. First, it serves as a demonstration
93 1.1 wrstuden * of layering by proving a layer which does nothing. (It actually
94 1.1 wrstuden * does everything the loopback file system does, which is slightly
95 1.1 wrstuden * more than nothing.) Second, the null layer can serve as a prototype
96 1.1 wrstuden * layer. Since it provides all necessary layer framework,
97 1.1 wrstuden * new file system layers can be created very easily be starting
98 1.1 wrstuden * with a null layer.
99 1.1 wrstuden *
100 1.1 wrstuden * The remainder of the man page examines the null layer as a basis
101 1.1 wrstuden * for constructing new layers.
102 1.1 wrstuden *
103 1.1 wrstuden *
104 1.1 wrstuden * INSTANTIATING NEW NULL LAYERS
105 1.1 wrstuden *
106 1.1 wrstuden * New null layers are created with mount_null(8).
107 1.1 wrstuden * Mount_null(8) takes two arguments, the pathname
108 1.1 wrstuden * of the lower vfs (target-pn) and the pathname where the null
109 1.1 wrstuden * layer will appear in the namespace (alias-pn). After
110 1.1 wrstuden * the null layer is put into place, the contents
111 1.1 wrstuden * of target-pn subtree will be aliased under alias-pn.
112 1.1 wrstuden *
113 1.1 wrstuden * It is conceivable that other overlay filesystems will take different
114 1.1 wrstuden * parameters. For instance, data migration or access controll layers might
115 1.1 wrstuden * only take one pathname which will serve both as the target-pn and
116 1.1 wrstuden * alias-pn described above.
117 1.1 wrstuden *
118 1.1 wrstuden *
119 1.1 wrstuden * OPERATION OF A NULL LAYER
120 1.1 wrstuden *
121 1.1 wrstuden * The null layer is the minimum file system layer,
122 1.1 wrstuden * simply bypassing all possible operations to the lower layer
123 1.1 wrstuden * for processing there. The majority of its activity centers
124 1.13 wiz * on the bypass routine, through which nearly all vnode operations
125 1.1 wrstuden * pass.
126 1.1 wrstuden *
127 1.1 wrstuden * The bypass routine accepts arbitrary vnode operations for
128 1.1 wrstuden * handling by the lower layer. It begins by examing vnode
129 1.1 wrstuden * operation arguments and replacing any layered nodes by their
130 1.13 wiz * lower-layer equivalents. It then invokes the operation
131 1.1 wrstuden * on the lower layer. Finally, it replaces the layered nodes
132 1.1 wrstuden * in the arguments and, if a vnode is return by the operation,
133 1.1 wrstuden * stacks a layered node on top of the returned vnode.
134 1.1 wrstuden *
135 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
136 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
137 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
138 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
139 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
140 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
141 1.1 wrstuden *
142 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
143 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
145 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
146 1.1 wrstuden * use the layerm_bypass routine.
147 1.1 wrstuden *
148 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
149 1.1 wrstuden * of operations are special cased, and handled by the layered fs. One
150 1.1 wrstuden * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 1.1 wrstuden * layer_fsync, perform layer-specific manipulation in addition to calling
152 1.1 wrstuden * the bypass routine. The other group
153 1.1 wrstuden
154 1.1 wrstuden * Although bypass handles most operations, vop_getattr, vop_lock,
155 1.1 wrstuden * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 1.1 wrstuden * bypassed. Vop_getattr must change the fsid being returned.
157 1.1 wrstuden * Vop_lock and vop_unlock must handle any locking for the
158 1.1 wrstuden * current vnode as well as pass the lock request down.
159 1.1 wrstuden * Vop_inactive and vop_reclaim are not bypassed so that
160 1.1 wrstuden * they can handle freeing null-layer specific data. Vop_print
161 1.1 wrstuden * is not bypassed to avoid excessive debugging information.
162 1.1 wrstuden * Also, certain vnode operations change the locking state within
163 1.1 wrstuden * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 1.1 wrstuden * and symlink). Ideally these operations should not change the
165 1.1 wrstuden * lock state, but should be changed to let the caller of the
166 1.1 wrstuden * function unlock them. Otherwise all intermediate vnode layers
167 1.1 wrstuden * (such as union, umapfs, etc) must catch these functions to do
168 1.1 wrstuden * the necessary locking at their layer.
169 1.1 wrstuden *
170 1.1 wrstuden *
171 1.1 wrstuden * INSTANTIATING VNODE STACKS
172 1.1 wrstuden *
173 1.1 wrstuden * Mounting associates the null layer with a lower layer,
174 1.1 wrstuden * effect stacking two VFSes. Vnode stacks are instead
175 1.1 wrstuden * created on demand as files are accessed.
176 1.1 wrstuden *
177 1.1 wrstuden * The initial mount creates a single vnode stack for the
178 1.1 wrstuden * root of the new null layer. All other vnode stacks
179 1.1 wrstuden * are created as a result of vnode operations on
180 1.1 wrstuden * this or other null vnode stacks.
181 1.1 wrstuden *
182 1.13 wiz * New vnode stacks come into existence as a result of
183 1.1 wrstuden * an operation which returns a vnode.
184 1.1 wrstuden * The bypass routine stacks a null-node above the new
185 1.1 wrstuden * vnode before returning it to the caller.
186 1.1 wrstuden *
187 1.1 wrstuden * For example, imagine mounting a null layer with
188 1.1 wrstuden * "mount_null /usr/include /dev/layer/null".
189 1.1 wrstuden * Changing directory to /dev/layer/null will assign
190 1.1 wrstuden * the root null-node (which was created when the null layer was mounted).
191 1.1 wrstuden * Now consider opening "sys". A vop_lookup would be
192 1.1 wrstuden * done on the root null-node. This operation would bypass through
193 1.1 wrstuden * to the lower layer which would return a vnode representing
194 1.1 wrstuden * the UFS "sys". layer_bypass then builds a null-node
195 1.1 wrstuden * aliasing the UFS "sys" and returns this to the caller.
196 1.1 wrstuden * Later operations on the null-node "sys" will repeat this
197 1.1 wrstuden * process when constructing other vnode stacks.
198 1.1 wrstuden *
199 1.1 wrstuden *
200 1.1 wrstuden * CREATING OTHER FILE SYSTEM LAYERS
201 1.1 wrstuden *
202 1.1 wrstuden * One of the easiest ways to construct new file system layers is to make
203 1.1 wrstuden * a copy of the null layer, rename all files and variables, and
204 1.1 wrstuden * then begin modifing the copy. Sed can be used to easily rename
205 1.1 wrstuden * all variables.
206 1.1 wrstuden *
207 1.1 wrstuden * The umap layer is an example of a layer descended from the
208 1.1 wrstuden * null layer.
209 1.1 wrstuden *
210 1.1 wrstuden *
211 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
212 1.1 wrstuden *
213 1.1 wrstuden * There are two techniques to invoke operations on a lower layer
214 1.1 wrstuden * when the operation cannot be completely bypassed. Each method
215 1.1 wrstuden * is appropriate in different situations. In both cases,
216 1.1 wrstuden * it is the responsibility of the aliasing layer to make
217 1.1 wrstuden * the operation arguments "correct" for the lower layer
218 1.1 wrstuden * by mapping an vnode arguments to the lower layer.
219 1.1 wrstuden *
220 1.1 wrstuden * The first approach is to call the aliasing layer's bypass routine.
221 1.1 wrstuden * This method is most suitable when you wish to invoke the operation
222 1.13 wiz * currently being handled on the lower layer. It has the advantage
223 1.1 wrstuden * that the bypass routine already must do argument mapping.
224 1.1 wrstuden * An example of this is null_getattrs in the null layer.
225 1.1 wrstuden *
226 1.13 wiz * A second approach is to directly invoke vnode operations on
227 1.1 wrstuden * the lower layer with the VOP_OPERATIONNAME interface.
228 1.1 wrstuden * The advantage of this method is that it is easy to invoke
229 1.1 wrstuden * arbitrary operations on the lower layer. The disadvantage
230 1.13 wiz * is that vnodes' arguments must be manually mapped.
231 1.1 wrstuden *
232 1.1 wrstuden */
233 1.8 lukem
234 1.8 lukem #include <sys/cdefs.h>
235 1.19 yamt __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $");
236 1.1 wrstuden
237 1.1 wrstuden #include <sys/param.h>
238 1.1 wrstuden #include <sys/systm.h>
239 1.1 wrstuden #include <sys/proc.h>
240 1.1 wrstuden #include <sys/time.h>
241 1.1 wrstuden #include <sys/vnode.h>
242 1.1 wrstuden #include <sys/mount.h>
243 1.1 wrstuden #include <sys/namei.h>
244 1.1 wrstuden #include <sys/malloc.h>
245 1.1 wrstuden #include <sys/buf.h>
246 1.1 wrstuden #include <miscfs/genfs/layer.h>
247 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
248 1.1 wrstuden #include <miscfs/genfs/genfs.h>
249 1.1 wrstuden
250 1.1 wrstuden
251 1.1 wrstuden /*
252 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 1.1 wrstuden * routine by John Heidemann.
254 1.1 wrstuden * The new element for this version is that the whole nullfs
255 1.1 wrstuden * system gained the concept of locks on the lower node, and locks on
256 1.1 wrstuden * our nodes. When returning from a call to the lower layer, we may
257 1.1 wrstuden * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 1.1 wrstuden * macros provide this functionality.
259 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
260 1.1 wrstuden * safety checks. It should still always work, but it's not as
261 1.1 wrstuden * robust to programmer errors.
262 1.1 wrstuden * Define SAFETY to include some error checking code.
263 1.1 wrstuden *
264 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
265 1.1 wrstuden *
266 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
267 1.1 wrstuden * their arguments. With stacking, the reference counts are held
268 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
269 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
270 1.1 wrstuden * since there are no such side-effects.
271 1.1 wrstuden *
272 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
273 1.1 wrstuden * the passed-in node (typically they vput the node).
274 1.1 wrstuden *
275 1.1 wrstuden * This makes the following assumptions:
276 1.1 wrstuden * - only one returned vpp
277 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
278 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
279 1.1 wrstuden * to determine what implementation of the op should be invoked
280 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
282 1.1 wrstuden */
283 1.1 wrstuden int
284 1.1 wrstuden layer_bypass(v)
285 1.1 wrstuden void *v;
286 1.1 wrstuden {
287 1.1 wrstuden struct vop_generic_args /* {
288 1.1 wrstuden struct vnodeop_desc *a_desc;
289 1.1 wrstuden <other random data follows, presumably>
290 1.1 wrstuden } */ *ap = v;
291 1.1 wrstuden int (**our_vnodeop_p) __P((void *));
292 1.3 augustss struct vnode **this_vp_p;
293 1.1 wrstuden int error, error1;
294 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
296 1.1 wrstuden struct vnode ***vppp;
297 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
298 1.1 wrstuden int reles, i, flags;
299 1.1 wrstuden
300 1.1 wrstuden #ifdef SAFETY
301 1.1 wrstuden /*
302 1.1 wrstuden * We require at least one vp.
303 1.1 wrstuden */
304 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
305 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 1.1 wrstuden panic ("layer_bypass: no vp's in map.\n");
307 1.1 wrstuden #endif
308 1.1 wrstuden
309 1.1 wrstuden vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
310 1.1 wrstuden vp0 = *vps_p[0];
311 1.1 wrstuden flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
312 1.1 wrstuden our_vnodeop_p = vp0->v_op;
313 1.1 wrstuden
314 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
315 1.1 wrstuden printf ("layer_bypass: %s\n", descp->vdesc_name);
316 1.1 wrstuden
317 1.1 wrstuden /*
318 1.1 wrstuden * Map the vnodes going in.
319 1.1 wrstuden * Later, we'll invoke the operation based on
320 1.1 wrstuden * the first mapped vnode's operation vector.
321 1.1 wrstuden */
322 1.1 wrstuden reles = descp->vdesc_flags;
323 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 1.1 wrstuden break; /* bail out at end of list */
326 1.1 wrstuden vps_p[i] = this_vp_p =
327 1.1 wrstuden VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
328 1.1 wrstuden /*
329 1.1 wrstuden * We're not guaranteed that any but the first vnode
330 1.1 wrstuden * are of our type. Check for and don't map any
331 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
332 1.1 wrstuden */
333 1.1 wrstuden if (i && (*this_vp_p == NULL ||
334 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
335 1.1 wrstuden old_vps[i] = NULL;
336 1.1 wrstuden } else {
337 1.1 wrstuden old_vps[i] = *this_vp_p;
338 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
339 1.1 wrstuden /*
340 1.1 wrstuden * XXX - Several operations have the side effect
341 1.1 wrstuden * of vrele'ing their vp's. We must account for
342 1.1 wrstuden * that. (This should go away in the future.)
343 1.1 wrstuden */
344 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
345 1.1 wrstuden VREF(*this_vp_p);
346 1.1 wrstuden }
347 1.1 wrstuden
348 1.1 wrstuden }
349 1.1 wrstuden
350 1.1 wrstuden /*
351 1.1 wrstuden * Call the operation on the lower layer
352 1.1 wrstuden * with the modified argument structure.
353 1.1 wrstuden */
354 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
355 1.1 wrstuden
356 1.1 wrstuden /*
357 1.1 wrstuden * Maintain the illusion of call-by-value
358 1.1 wrstuden * by restoring vnodes in the argument structure
359 1.1 wrstuden * to their original value.
360 1.1 wrstuden */
361 1.1 wrstuden reles = descp->vdesc_flags;
362 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
363 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
364 1.1 wrstuden break; /* bail out at end of list */
365 1.1 wrstuden if (old_vps[i]) {
366 1.1 wrstuden *(vps_p[i]) = old_vps[i];
367 1.1 wrstuden if (reles & VDESC_VP0_WILLUNLOCK)
368 1.1 wrstuden LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
369 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
370 1.1 wrstuden vrele(*(vps_p[i]));
371 1.1 wrstuden }
372 1.1 wrstuden }
373 1.1 wrstuden
374 1.1 wrstuden /*
375 1.1 wrstuden * Map the possible out-going vpp
376 1.1 wrstuden * (Assumes that the lower layer always returns
377 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
378 1.1 wrstuden */
379 1.1 wrstuden if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
380 1.1 wrstuden !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
381 1.1 wrstuden !error) {
382 1.1 wrstuden /*
383 1.1 wrstuden * XXX - even though some ops have vpp returned vp's,
384 1.1 wrstuden * several ops actually vrele this before returning.
385 1.1 wrstuden * We must avoid these ops.
386 1.1 wrstuden * (This should go away when these ops are regularized.)
387 1.1 wrstuden */
388 1.1 wrstuden if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
389 1.1 wrstuden goto out;
390 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
391 1.1 wrstuden descp->vdesc_vpp_offset,ap);
392 1.1 wrstuden /*
393 1.1 wrstuden * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
394 1.7 assar * vop_mknod, and vop_symlink return vpp's. vop_bmap
395 1.1 wrstuden * doesn't call bypass as the lower vpp is fine (we're just
396 1.1 wrstuden * going to do i/o on it). vop_loookup doesn't call bypass
397 1.1 wrstuden * as a lookup on "." would generate a locking error.
398 1.1 wrstuden * So all the calls which get us here have a locked vpp. :-)
399 1.1 wrstuden */
400 1.1 wrstuden error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
401 1.19 yamt if (error) {
402 1.19 yamt vput(**vppp);
403 1.19 yamt **vppp = NULL;
404 1.19 yamt }
405 1.1 wrstuden }
406 1.1 wrstuden
407 1.1 wrstuden out:
408 1.1 wrstuden return (error);
409 1.1 wrstuden }
410 1.1 wrstuden
411 1.1 wrstuden /*
412 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
413 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
414 1.1 wrstuden * if this layer is mounted read-only.
415 1.1 wrstuden */
416 1.1 wrstuden int
417 1.1 wrstuden layer_lookup(v)
418 1.1 wrstuden void *v;
419 1.1 wrstuden {
420 1.1 wrstuden struct vop_lookup_args /* {
421 1.1 wrstuden struct vnodeop_desc *a_desc;
422 1.1 wrstuden struct vnode * a_dvp;
423 1.1 wrstuden struct vnode ** a_vpp;
424 1.1 wrstuden struct componentname * a_cnp;
425 1.1 wrstuden } */ *ap = v;
426 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
427 1.1 wrstuden int flags = cnp->cn_flags;
428 1.1 wrstuden struct vnode *dvp, *vp, *ldvp;
429 1.1 wrstuden int error, r;
430 1.1 wrstuden
431 1.1 wrstuden dvp = ap->a_dvp;
432 1.1 wrstuden
433 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
434 1.1 wrstuden (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
435 1.1 wrstuden return (EROFS);
436 1.1 wrstuden
437 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
438 1.1 wrstuden ap->a_dvp = ldvp;
439 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
440 1.1 wrstuden vp = *ap->a_vpp;
441 1.18 yamt *ap->a_vpp = NULL;
442 1.1 wrstuden
443 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
444 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
445 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
446 1.1 wrstuden error = EROFS;
447 1.1 wrstuden /*
448 1.1 wrstuden * We must do the same locking and unlocking at this layer as
449 1.1 wrstuden * is done in the layers below us. It used to be we would try
450 1.1 wrstuden * to guess based on what was set with the flags and error codes.
451 1.1 wrstuden *
452 1.1 wrstuden * But that doesn't work. So now we have the underlying VOP_LOOKUP
453 1.1 wrstuden * tell us if it released the parent vnode, and we adjust the
454 1.1 wrstuden * upper node accordingly. We can't just look at the lock states
455 1.1 wrstuden * of the lower nodes as someone else might have come along and
456 1.1 wrstuden * locked the parent node after our call to VOP_LOOKUP locked it.
457 1.1 wrstuden */
458 1.1 wrstuden if ((cnp->cn_flags & PDIRUNLOCK)) {
459 1.1 wrstuden LAYERFS_UPPERUNLOCK(dvp, 0, r);
460 1.1 wrstuden }
461 1.1 wrstuden if (ldvp == vp) {
462 1.1 wrstuden /*
463 1.1 wrstuden * Did lookup on "." or ".." in the root node of a mount point.
464 1.1 wrstuden * So we return dvp after a VREF.
465 1.1 wrstuden */
466 1.1 wrstuden *ap->a_vpp = dvp;
467 1.1 wrstuden VREF(dvp);
468 1.1 wrstuden vrele(vp);
469 1.1 wrstuden } else if (vp != NULL) {
470 1.1 wrstuden error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
471 1.19 yamt if (error) {
472 1.19 yamt vput(vp);
473 1.19 yamt if (cnp->cn_flags & PDIRUNLOCK) {
474 1.19 yamt vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
475 1.19 yamt cnp->cn_flags &= ~PDIRUNLOCK;
476 1.19 yamt }
477 1.19 yamt }
478 1.1 wrstuden }
479 1.1 wrstuden return (error);
480 1.1 wrstuden }
481 1.1 wrstuden
482 1.1 wrstuden /*
483 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
484 1.1 wrstuden */
485 1.1 wrstuden int
486 1.1 wrstuden layer_setattr(v)
487 1.1 wrstuden void *v;
488 1.1 wrstuden {
489 1.1 wrstuden struct vop_setattr_args /* {
490 1.1 wrstuden struct vnodeop_desc *a_desc;
491 1.1 wrstuden struct vnode *a_vp;
492 1.1 wrstuden struct vattr *a_vap;
493 1.1 wrstuden struct ucred *a_cred;
494 1.1 wrstuden struct proc *a_p;
495 1.1 wrstuden } */ *ap = v;
496 1.1 wrstuden struct vnode *vp = ap->a_vp;
497 1.1 wrstuden struct vattr *vap = ap->a_vap;
498 1.1 wrstuden
499 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
500 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
501 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
502 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
503 1.1 wrstuden return (EROFS);
504 1.1 wrstuden if (vap->va_size != VNOVAL) {
505 1.1 wrstuden switch (vp->v_type) {
506 1.1 wrstuden case VDIR:
507 1.1 wrstuden return (EISDIR);
508 1.1 wrstuden case VCHR:
509 1.1 wrstuden case VBLK:
510 1.1 wrstuden case VSOCK:
511 1.1 wrstuden case VFIFO:
512 1.1 wrstuden return (0);
513 1.1 wrstuden case VREG:
514 1.1 wrstuden case VLNK:
515 1.1 wrstuden default:
516 1.1 wrstuden /*
517 1.1 wrstuden * Disallow write attempts if the filesystem is
518 1.1 wrstuden * mounted read-only.
519 1.1 wrstuden */
520 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
521 1.1 wrstuden return (EROFS);
522 1.1 wrstuden }
523 1.1 wrstuden }
524 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
525 1.1 wrstuden }
526 1.1 wrstuden
527 1.1 wrstuden /*
528 1.1 wrstuden * We handle getattr only to change the fsid.
529 1.1 wrstuden */
530 1.1 wrstuden int
531 1.1 wrstuden layer_getattr(v)
532 1.1 wrstuden void *v;
533 1.1 wrstuden {
534 1.1 wrstuden struct vop_getattr_args /* {
535 1.1 wrstuden struct vnode *a_vp;
536 1.1 wrstuden struct vattr *a_vap;
537 1.1 wrstuden struct ucred *a_cred;
538 1.1 wrstuden struct proc *a_p;
539 1.1 wrstuden } */ *ap = v;
540 1.1 wrstuden struct vnode *vp = ap->a_vp;
541 1.1 wrstuden int error;
542 1.1 wrstuden
543 1.1 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
544 1.1 wrstuden return (error);
545 1.1 wrstuden /* Requires that arguments be restored. */
546 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
547 1.1 wrstuden return (0);
548 1.1 wrstuden }
549 1.1 wrstuden
550 1.1 wrstuden int
551 1.1 wrstuden layer_access(v)
552 1.1 wrstuden void *v;
553 1.1 wrstuden {
554 1.1 wrstuden struct vop_access_args /* {
555 1.1 wrstuden struct vnode *a_vp;
556 1.1 wrstuden int a_mode;
557 1.1 wrstuden struct ucred *a_cred;
558 1.1 wrstuden struct proc *a_p;
559 1.1 wrstuden } */ *ap = v;
560 1.1 wrstuden struct vnode *vp = ap->a_vp;
561 1.1 wrstuden mode_t mode = ap->a_mode;
562 1.1 wrstuden
563 1.1 wrstuden /*
564 1.1 wrstuden * Disallow write attempts on read-only layers;
565 1.1 wrstuden * unless the file is a socket, fifo, or a block or
566 1.1 wrstuden * character device resident on the file system.
567 1.1 wrstuden */
568 1.1 wrstuden if (mode & VWRITE) {
569 1.1 wrstuden switch (vp->v_type) {
570 1.1 wrstuden case VDIR:
571 1.1 wrstuden case VLNK:
572 1.1 wrstuden case VREG:
573 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
574 1.1 wrstuden return (EROFS);
575 1.1 wrstuden break;
576 1.1 wrstuden default:
577 1.1 wrstuden break;
578 1.1 wrstuden }
579 1.1 wrstuden }
580 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
581 1.1 wrstuden }
582 1.1 wrstuden
583 1.1 wrstuden /*
584 1.1 wrstuden * We must handle open to be able to catch MNT_NODEV and friends.
585 1.1 wrstuden */
586 1.1 wrstuden int
587 1.1 wrstuden layer_open(v)
588 1.1 wrstuden void *v;
589 1.1 wrstuden {
590 1.1 wrstuden struct vop_open_args *ap = v;
591 1.1 wrstuden struct vnode *vp = ap->a_vp;
592 1.1 wrstuden enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
593 1.1 wrstuden
594 1.1 wrstuden if (((lower_type == VBLK) || (lower_type == VCHR)) &&
595 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
596 1.1 wrstuden return ENXIO;
597 1.1 wrstuden
598 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
599 1.1 wrstuden }
600 1.1 wrstuden
601 1.1 wrstuden /*
602 1.1 wrstuden * We need to process our own vnode lock and then clear the
603 1.1 wrstuden * interlock flag as it applies only to our vnode, not the
604 1.1 wrstuden * vnodes below us on the stack.
605 1.1 wrstuden */
606 1.1 wrstuden int
607 1.1 wrstuden layer_lock(v)
608 1.1 wrstuden void *v;
609 1.1 wrstuden {
610 1.1 wrstuden struct vop_lock_args /* {
611 1.1 wrstuden struct vnode *a_vp;
612 1.1 wrstuden int a_flags;
613 1.1 wrstuden struct proc *a_p;
614 1.1 wrstuden } */ *ap = v;
615 1.1 wrstuden struct vnode *vp = ap->a_vp, *lowervp;
616 1.1 wrstuden int flags = ap->a_flags, error;
617 1.1 wrstuden
618 1.1 wrstuden if (vp->v_vnlock != NULL) {
619 1.1 wrstuden /*
620 1.1 wrstuden * The lower level has exported a struct lock to us. Use
621 1.1 wrstuden * it so that all vnodes in the stack lock and unlock
622 1.1 wrstuden * simultaneously. Note: we don't DRAIN the lock as DRAIN
623 1.1 wrstuden * decommissions the lock - just because our vnode is
624 1.1 wrstuden * going away doesn't mean the struct lock below us is.
625 1.1 wrstuden * LK_EXCLUSIVE is fine.
626 1.1 wrstuden */
627 1.1 wrstuden if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
628 1.1 wrstuden return(lockmgr(vp->v_vnlock,
629 1.1 wrstuden (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
630 1.1 wrstuden &vp->v_interlock));
631 1.1 wrstuden } else
632 1.1 wrstuden return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
633 1.1 wrstuden } else {
634 1.1 wrstuden /*
635 1.1 wrstuden * Ahh well. It would be nice if the fs we're over would
636 1.1 wrstuden * export a struct lock for us to use, but it doesn't.
637 1.1 wrstuden *
638 1.1 wrstuden * To prevent race conditions involving doing a lookup
639 1.1 wrstuden * on "..", we have to lock the lower node, then lock our
640 1.1 wrstuden * node. Most of the time it won't matter that we lock our
641 1.1 wrstuden * node (as any locking would need the lower one locked
642 1.1 wrstuden * first). But we can LK_DRAIN the upper lock as a step
643 1.1 wrstuden * towards decomissioning it.
644 1.1 wrstuden */
645 1.1 wrstuden lowervp = LAYERVPTOLOWERVP(vp);
646 1.1 wrstuden if (flags & LK_INTERLOCK) {
647 1.1 wrstuden simple_unlock(&vp->v_interlock);
648 1.1 wrstuden flags &= ~LK_INTERLOCK;
649 1.1 wrstuden }
650 1.1 wrstuden if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
651 1.1 wrstuden error = VOP_LOCK(lowervp,
652 1.1 wrstuden (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
653 1.1 wrstuden } else
654 1.1 wrstuden error = VOP_LOCK(lowervp, flags);
655 1.1 wrstuden if (error)
656 1.1 wrstuden return (error);
657 1.1 wrstuden if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
658 1.1 wrstuden VOP_UNLOCK(lowervp, 0);
659 1.1 wrstuden }
660 1.1 wrstuden return (error);
661 1.1 wrstuden }
662 1.1 wrstuden }
663 1.1 wrstuden
664 1.1 wrstuden /*
665 1.1 wrstuden */
666 1.1 wrstuden int
667 1.1 wrstuden layer_unlock(v)
668 1.1 wrstuden void *v;
669 1.1 wrstuden {
670 1.1 wrstuden struct vop_unlock_args /* {
671 1.1 wrstuden struct vnode *a_vp;
672 1.1 wrstuden int a_flags;
673 1.1 wrstuden struct proc *a_p;
674 1.1 wrstuden } */ *ap = v;
675 1.1 wrstuden struct vnode *vp = ap->a_vp;
676 1.1 wrstuden int flags = ap->a_flags;
677 1.1 wrstuden
678 1.1 wrstuden if (vp->v_vnlock != NULL) {
679 1.1 wrstuden return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
680 1.1 wrstuden &vp->v_interlock));
681 1.1 wrstuden } else {
682 1.1 wrstuden if (flags & LK_INTERLOCK) {
683 1.1 wrstuden simple_unlock(&vp->v_interlock);
684 1.1 wrstuden flags &= ~LK_INTERLOCK;
685 1.1 wrstuden }
686 1.1 wrstuden VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
687 1.1 wrstuden return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
688 1.1 wrstuden &vp->v_interlock));
689 1.1 wrstuden }
690 1.1 wrstuden }
691 1.1 wrstuden
692 1.1 wrstuden /*
693 1.1 wrstuden * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
694 1.1 wrstuden * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
695 1.1 wrstuden */
696 1.1 wrstuden int
697 1.1 wrstuden layer_islocked(v)
698 1.1 wrstuden void *v;
699 1.1 wrstuden {
700 1.1 wrstuden struct vop_islocked_args /* {
701 1.1 wrstuden struct vnode *a_vp;
702 1.1 wrstuden } */ *ap = v;
703 1.1 wrstuden struct vnode *vp = ap->a_vp;
704 1.1 wrstuden
705 1.1 wrstuden if (vp->v_vnlock != NULL)
706 1.1 wrstuden return (lockstatus(vp->v_vnlock));
707 1.1 wrstuden else
708 1.1 wrstuden return (lockstatus(&vp->v_lock));
709 1.1 wrstuden }
710 1.1 wrstuden
711 1.1 wrstuden /*
712 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
713 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
714 1.1 wrstuden * reclaimed; otherwise,
715 1.1 wrstuden * pass it through to the underlying layer.
716 1.1 wrstuden *
717 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
718 1.1 wrstuden */
719 1.1 wrstuden
720 1.1 wrstuden int
721 1.1 wrstuden layer_fsync(v)
722 1.1 wrstuden void *v;
723 1.1 wrstuden {
724 1.1 wrstuden struct vop_fsync_args /* {
725 1.1 wrstuden struct vnode *a_vp;
726 1.1 wrstuden struct ucred *a_cred;
727 1.1 wrstuden int a_flags;
728 1.4 fvdl off_t offlo;
729 1.4 fvdl off_t offhi;
730 1.1 wrstuden struct proc *a_p;
731 1.1 wrstuden } */ *ap = v;
732 1.1 wrstuden
733 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
734 1.1 wrstuden return 0;
735 1.1 wrstuden }
736 1.1 wrstuden
737 1.1 wrstuden return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
738 1.1 wrstuden }
739 1.1 wrstuden
740 1.1 wrstuden
741 1.1 wrstuden int
742 1.1 wrstuden layer_inactive(v)
743 1.1 wrstuden void *v;
744 1.1 wrstuden {
745 1.1 wrstuden struct vop_inactive_args /* {
746 1.1 wrstuden struct vnode *a_vp;
747 1.1 wrstuden struct proc *a_p;
748 1.1 wrstuden } */ *ap = v;
749 1.5 enami struct vnode *vp = ap->a_vp;
750 1.1 wrstuden
751 1.1 wrstuden /*
752 1.1 wrstuden * Do nothing (and _don't_ bypass).
753 1.1 wrstuden * Wait to vrele lowervp until reclaim,
754 1.1 wrstuden * so that until then our layer_node is in the
755 1.1 wrstuden * cache and reusable.
756 1.1 wrstuden *
757 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
758 1.1 wrstuden * the lowervp and then trying to reactivate it
759 1.1 wrstuden * with capabilities (v_id)
760 1.1 wrstuden * like they do in the name lookup cache code.
761 1.1 wrstuden * That's too much work for now.
762 1.1 wrstuden */
763 1.5 enami VOP_UNLOCK(vp, 0);
764 1.5 enami
765 1.16 wrstuden /*
766 1.16 wrstuden * ..., but don't cache the device node. Also, if we did a
767 1.16 wrstuden * remove, don't cache the node.
768 1.16 wrstuden */
769 1.16 wrstuden if (vp->v_type == VBLK || vp->v_type == VCHR
770 1.16 wrstuden || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
771 1.5 enami vgone(vp);
772 1.1 wrstuden return (0);
773 1.1 wrstuden }
774 1.1 wrstuden
775 1.1 wrstuden int
776 1.16 wrstuden layer_remove(v)
777 1.16 wrstuden void *v;
778 1.16 wrstuden {
779 1.16 wrstuden struct vop_remove_args /* {
780 1.16 wrstuden struct vonde *a_dvp;
781 1.16 wrstuden struct vnode *a_vp;
782 1.16 wrstuden struct componentname *a_cnp;
783 1.16 wrstuden } */ *ap = v;
784 1.16 wrstuden
785 1.16 wrstuden int error;
786 1.16 wrstuden struct vnode *vp = ap->a_vp;
787 1.16 wrstuden
788 1.16 wrstuden vref(vp);
789 1.16 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
790 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
791 1.16 wrstuden
792 1.16 wrstuden vrele(vp);
793 1.16 wrstuden
794 1.16 wrstuden return (error);
795 1.16 wrstuden }
796 1.16 wrstuden
797 1.16 wrstuden int
798 1.17 yamt layer_rename(v)
799 1.17 yamt void *v;
800 1.17 yamt {
801 1.17 yamt struct vop_rename_args /* {
802 1.17 yamt struct vnode *a_fdvp;
803 1.17 yamt struct vnode *a_fvp;
804 1.17 yamt struct componentname *a_fcnp;
805 1.17 yamt struct vnode *a_tdvp;
806 1.17 yamt struct vnode *a_tvp;
807 1.17 yamt struct componentname *a_tcnp;
808 1.17 yamt } */ *ap = v;
809 1.17 yamt
810 1.17 yamt int error;
811 1.17 yamt struct vnode *fdvp = ap->a_fdvp;
812 1.17 yamt struct vnode *tvp;
813 1.17 yamt
814 1.17 yamt tvp = ap->a_tvp;
815 1.17 yamt if (tvp) {
816 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
817 1.17 yamt tvp = NULL;
818 1.17 yamt else
819 1.17 yamt vref(tvp);
820 1.17 yamt }
821 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
822 1.17 yamt if (tvp) {
823 1.17 yamt if (error == 0)
824 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
825 1.17 yamt vrele(tvp);
826 1.17 yamt }
827 1.17 yamt
828 1.17 yamt return (error);
829 1.17 yamt }
830 1.17 yamt
831 1.17 yamt int
832 1.1 wrstuden layer_reclaim(v)
833 1.1 wrstuden void *v;
834 1.1 wrstuden {
835 1.1 wrstuden struct vop_reclaim_args /* {
836 1.1 wrstuden struct vnode *a_vp;
837 1.1 wrstuden struct proc *a_p;
838 1.1 wrstuden } */ *ap = v;
839 1.1 wrstuden struct vnode *vp = ap->a_vp;
840 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
841 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
842 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
843 1.1 wrstuden
844 1.1 wrstuden /*
845 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
846 1.1 wrstuden * decomissioned, so we have to be careful about calling
847 1.1 wrstuden * VOP's on ourself. Even if we turned a LK_DRAIN into an
848 1.1 wrstuden * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
849 1.1 wrstuden * set.
850 1.1 wrstuden */
851 1.1 wrstuden /* After this assignment, this node will not be re-used. */
852 1.1 wrstuden if ((vp == lmp->layerm_rootvp)) {
853 1.1 wrstuden /*
854 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
855 1.1 wrstuden * that someone forcably unmunted the underlying fs.
856 1.1 wrstuden *
857 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
858 1.1 wrstuden */
859 1.1 wrstuden lmp->layerm_rootvp = NULL;
860 1.1 wrstuden }
861 1.1 wrstuden xp->layer_lowervp = NULL;
862 1.1 wrstuden simple_lock(&lmp->layerm_hashlock);
863 1.1 wrstuden LIST_REMOVE(xp, layer_hash);
864 1.1 wrstuden simple_unlock(&lmp->layerm_hashlock);
865 1.1 wrstuden FREE(vp->v_data, M_TEMP);
866 1.1 wrstuden vp->v_data = NULL;
867 1.1 wrstuden vrele (lowervp);
868 1.1 wrstuden return (0);
869 1.1 wrstuden }
870 1.1 wrstuden
871 1.1 wrstuden /*
872 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
873 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
874 1.1 wrstuden * i/o. :-)
875 1.1 wrstuden */
876 1.1 wrstuden int
877 1.1 wrstuden layer_bmap(v)
878 1.1 wrstuden void *v;
879 1.1 wrstuden {
880 1.1 wrstuden struct vop_bmap_args /* {
881 1.1 wrstuden struct vnode *a_vp;
882 1.1 wrstuden daddr_t a_bn;
883 1.1 wrstuden struct vnode **a_vpp;
884 1.1 wrstuden daddr_t *a_bnp;
885 1.1 wrstuden int *a_runp;
886 1.1 wrstuden } */ *ap = v;
887 1.1 wrstuden struct vnode *vp;
888 1.1 wrstuden
889 1.1 wrstuden ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
890 1.1 wrstuden
891 1.1 wrstuden return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
892 1.1 wrstuden }
893 1.1 wrstuden
894 1.1 wrstuden int
895 1.1 wrstuden layer_print(v)
896 1.1 wrstuden void *v;
897 1.1 wrstuden {
898 1.1 wrstuden struct vop_print_args /* {
899 1.1 wrstuden struct vnode *a_vp;
900 1.1 wrstuden } */ *ap = v;
901 1.3 augustss struct vnode *vp = ap->a_vp;
902 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
903 1.1 wrstuden return (0);
904 1.1 wrstuden }
905 1.1 wrstuden
906 1.1 wrstuden /*
907 1.14 hannken * XXX - vop_bwrite must be hand coded because it has no
908 1.1 wrstuden * vnode in its arguments.
909 1.1 wrstuden * This goes away with a merged VM/buffer cache.
910 1.1 wrstuden */
911 1.1 wrstuden int
912 1.1 wrstuden layer_bwrite(v)
913 1.1 wrstuden void *v;
914 1.1 wrstuden {
915 1.1 wrstuden struct vop_bwrite_args /* {
916 1.1 wrstuden struct buf *a_bp;
917 1.1 wrstuden } */ *ap = v;
918 1.1 wrstuden struct buf *bp = ap->a_bp;
919 1.1 wrstuden int error;
920 1.1 wrstuden struct vnode *savedvp;
921 1.1 wrstuden
922 1.1 wrstuden savedvp = bp->b_vp;
923 1.1 wrstuden bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
924 1.1 wrstuden
925 1.1 wrstuden error = VOP_BWRITE(bp);
926 1.1 wrstuden
927 1.1 wrstuden bp->b_vp = savedvp;
928 1.1 wrstuden
929 1.1 wrstuden return (error);
930 1.10 chs }
931 1.10 chs
932 1.10 chs int
933 1.10 chs layer_getpages(v)
934 1.10 chs void *v;
935 1.10 chs {
936 1.10 chs struct vop_getpages_args /* {
937 1.10 chs struct vnode *a_vp;
938 1.10 chs voff_t a_offset;
939 1.10 chs struct vm_page **a_m;
940 1.10 chs int *a_count;
941 1.10 chs int a_centeridx;
942 1.10 chs vm_prot_t a_access_type;
943 1.10 chs int a_advice;
944 1.10 chs int a_flags;
945 1.10 chs } */ *ap = v;
946 1.10 chs struct vnode *vp = ap->a_vp;
947 1.10 chs int error;
948 1.10 chs
949 1.10 chs /*
950 1.10 chs * just pass the request on to the underlying layer.
951 1.10 chs */
952 1.10 chs
953 1.10 chs if (ap->a_flags & PGO_LOCKED) {
954 1.10 chs return EBUSY;
955 1.10 chs }
956 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
957 1.10 chs simple_unlock(&vp->v_interlock);
958 1.10 chs simple_lock(&ap->a_vp->v_interlock);
959 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
960 1.10 chs return error;
961 1.10 chs }
962 1.10 chs
963 1.10 chs int
964 1.10 chs layer_putpages(v)
965 1.10 chs void *v;
966 1.10 chs {
967 1.10 chs struct vop_putpages_args /* {
968 1.10 chs struct vnode *a_vp;
969 1.10 chs voff_t a_offlo;
970 1.10 chs voff_t a_offhi;
971 1.10 chs int a_flags;
972 1.10 chs } */ *ap = v;
973 1.10 chs struct vnode *vp = ap->a_vp;
974 1.10 chs int error;
975 1.10 chs
976 1.10 chs /*
977 1.10 chs * just pass the request on to the underlying layer.
978 1.10 chs */
979 1.10 chs
980 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
981 1.10 chs simple_unlock(&vp->v_interlock);
982 1.10 chs simple_lock(&ap->a_vp->v_interlock);
983 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
984 1.10 chs return error;
985 1.1 wrstuden }
986