layer_vnops.c revision 1.25 1 1.25 xtraeme /* $NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.1 wrstuden /*
36 1.1 wrstuden * Copyright (c) 1992, 1993
37 1.1 wrstuden * The Regents of the University of California. All rights reserved.
38 1.1 wrstuden *
39 1.1 wrstuden * This code is derived from software contributed to Berkeley by
40 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
41 1.1 wrstuden *
42 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
43 1.1 wrstuden * modification, are permitted provided that the following conditions
44 1.1 wrstuden * are met:
45 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
46 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
47 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
49 1.1 wrstuden * documentation and/or other materials provided with the distribution.
50 1.11 agc * 3. Neither the name of the University nor the names of its contributors
51 1.1 wrstuden * may be used to endorse or promote products derived from this software
52 1.1 wrstuden * without specific prior written permission.
53 1.1 wrstuden *
54 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 wrstuden * SUCH DAMAGE.
65 1.1 wrstuden *
66 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 1.1 wrstuden *
68 1.1 wrstuden * Ancestors:
69 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 1.25 xtraeme * $Id: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $
71 1.1 wrstuden * ...and...
72 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 1.1 wrstuden */
74 1.1 wrstuden
75 1.1 wrstuden /*
76 1.1 wrstuden * Null Layer vnode routines.
77 1.1 wrstuden *
78 1.1 wrstuden * (See mount_null(8) for more information.)
79 1.1 wrstuden *
80 1.1 wrstuden * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 1.12 wiz * the core implementation of the null file system and most other stacked
82 1.1 wrstuden * fs's. The description below refers to the null file system, but the
83 1.1 wrstuden * services provided by the layer* files are useful for all layered fs's.
84 1.1 wrstuden *
85 1.1 wrstuden * The null layer duplicates a portion of the file system
86 1.1 wrstuden * name space under a new name. In this respect, it is
87 1.1 wrstuden * similar to the loopback file system. It differs from
88 1.1 wrstuden * the loopback fs in two respects: it is implemented using
89 1.1 wrstuden * a stackable layers techniques, and it's "null-node"s stack above
90 1.1 wrstuden * all lower-layer vnodes, not just over directory vnodes.
91 1.1 wrstuden *
92 1.1 wrstuden * The null layer has two purposes. First, it serves as a demonstration
93 1.1 wrstuden * of layering by proving a layer which does nothing. (It actually
94 1.1 wrstuden * does everything the loopback file system does, which is slightly
95 1.1 wrstuden * more than nothing.) Second, the null layer can serve as a prototype
96 1.1 wrstuden * layer. Since it provides all necessary layer framework,
97 1.1 wrstuden * new file system layers can be created very easily be starting
98 1.1 wrstuden * with a null layer.
99 1.1 wrstuden *
100 1.1 wrstuden * The remainder of the man page examines the null layer as a basis
101 1.1 wrstuden * for constructing new layers.
102 1.1 wrstuden *
103 1.1 wrstuden *
104 1.1 wrstuden * INSTANTIATING NEW NULL LAYERS
105 1.1 wrstuden *
106 1.1 wrstuden * New null layers are created with mount_null(8).
107 1.1 wrstuden * Mount_null(8) takes two arguments, the pathname
108 1.1 wrstuden * of the lower vfs (target-pn) and the pathname where the null
109 1.1 wrstuden * layer will appear in the namespace (alias-pn). After
110 1.1 wrstuden * the null layer is put into place, the contents
111 1.1 wrstuden * of target-pn subtree will be aliased under alias-pn.
112 1.1 wrstuden *
113 1.1 wrstuden * It is conceivable that other overlay filesystems will take different
114 1.1 wrstuden * parameters. For instance, data migration or access controll layers might
115 1.1 wrstuden * only take one pathname which will serve both as the target-pn and
116 1.1 wrstuden * alias-pn described above.
117 1.1 wrstuden *
118 1.1 wrstuden *
119 1.1 wrstuden * OPERATION OF A NULL LAYER
120 1.1 wrstuden *
121 1.1 wrstuden * The null layer is the minimum file system layer,
122 1.1 wrstuden * simply bypassing all possible operations to the lower layer
123 1.1 wrstuden * for processing there. The majority of its activity centers
124 1.13 wiz * on the bypass routine, through which nearly all vnode operations
125 1.1 wrstuden * pass.
126 1.1 wrstuden *
127 1.1 wrstuden * The bypass routine accepts arbitrary vnode operations for
128 1.1 wrstuden * handling by the lower layer. It begins by examing vnode
129 1.1 wrstuden * operation arguments and replacing any layered nodes by their
130 1.13 wiz * lower-layer equivalents. It then invokes the operation
131 1.1 wrstuden * on the lower layer. Finally, it replaces the layered nodes
132 1.1 wrstuden * in the arguments and, if a vnode is return by the operation,
133 1.1 wrstuden * stacks a layered node on top of the returned vnode.
134 1.1 wrstuden *
135 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
136 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
137 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
138 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
139 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
140 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
141 1.1 wrstuden *
142 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
143 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
145 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
146 1.1 wrstuden * use the layerm_bypass routine.
147 1.1 wrstuden *
148 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
149 1.1 wrstuden * of operations are special cased, and handled by the layered fs. One
150 1.1 wrstuden * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 1.1 wrstuden * layer_fsync, perform layer-specific manipulation in addition to calling
152 1.1 wrstuden * the bypass routine. The other group
153 1.1 wrstuden
154 1.1 wrstuden * Although bypass handles most operations, vop_getattr, vop_lock,
155 1.1 wrstuden * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 1.1 wrstuden * bypassed. Vop_getattr must change the fsid being returned.
157 1.1 wrstuden * Vop_lock and vop_unlock must handle any locking for the
158 1.1 wrstuden * current vnode as well as pass the lock request down.
159 1.1 wrstuden * Vop_inactive and vop_reclaim are not bypassed so that
160 1.1 wrstuden * they can handle freeing null-layer specific data. Vop_print
161 1.1 wrstuden * is not bypassed to avoid excessive debugging information.
162 1.1 wrstuden * Also, certain vnode operations change the locking state within
163 1.1 wrstuden * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 1.1 wrstuden * and symlink). Ideally these operations should not change the
165 1.1 wrstuden * lock state, but should be changed to let the caller of the
166 1.1 wrstuden * function unlock them. Otherwise all intermediate vnode layers
167 1.1 wrstuden * (such as union, umapfs, etc) must catch these functions to do
168 1.1 wrstuden * the necessary locking at their layer.
169 1.1 wrstuden *
170 1.1 wrstuden *
171 1.1 wrstuden * INSTANTIATING VNODE STACKS
172 1.1 wrstuden *
173 1.1 wrstuden * Mounting associates the null layer with a lower layer,
174 1.1 wrstuden * effect stacking two VFSes. Vnode stacks are instead
175 1.1 wrstuden * created on demand as files are accessed.
176 1.1 wrstuden *
177 1.1 wrstuden * The initial mount creates a single vnode stack for the
178 1.1 wrstuden * root of the new null layer. All other vnode stacks
179 1.1 wrstuden * are created as a result of vnode operations on
180 1.1 wrstuden * this or other null vnode stacks.
181 1.1 wrstuden *
182 1.13 wiz * New vnode stacks come into existence as a result of
183 1.24 perry * an operation which returns a vnode.
184 1.1 wrstuden * The bypass routine stacks a null-node above the new
185 1.1 wrstuden * vnode before returning it to the caller.
186 1.1 wrstuden *
187 1.1 wrstuden * For example, imagine mounting a null layer with
188 1.1 wrstuden * "mount_null /usr/include /dev/layer/null".
189 1.1 wrstuden * Changing directory to /dev/layer/null will assign
190 1.1 wrstuden * the root null-node (which was created when the null layer was mounted).
191 1.1 wrstuden * Now consider opening "sys". A vop_lookup would be
192 1.1 wrstuden * done on the root null-node. This operation would bypass through
193 1.24 perry * to the lower layer which would return a vnode representing
194 1.1 wrstuden * the UFS "sys". layer_bypass then builds a null-node
195 1.1 wrstuden * aliasing the UFS "sys" and returns this to the caller.
196 1.1 wrstuden * Later operations on the null-node "sys" will repeat this
197 1.1 wrstuden * process when constructing other vnode stacks.
198 1.1 wrstuden *
199 1.1 wrstuden *
200 1.1 wrstuden * CREATING OTHER FILE SYSTEM LAYERS
201 1.1 wrstuden *
202 1.1 wrstuden * One of the easiest ways to construct new file system layers is to make
203 1.1 wrstuden * a copy of the null layer, rename all files and variables, and
204 1.1 wrstuden * then begin modifing the copy. Sed can be used to easily rename
205 1.1 wrstuden * all variables.
206 1.1 wrstuden *
207 1.24 perry * The umap layer is an example of a layer descended from the
208 1.1 wrstuden * null layer.
209 1.1 wrstuden *
210 1.1 wrstuden *
211 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
212 1.1 wrstuden *
213 1.24 perry * There are two techniques to invoke operations on a lower layer
214 1.1 wrstuden * when the operation cannot be completely bypassed. Each method
215 1.1 wrstuden * is appropriate in different situations. In both cases,
216 1.1 wrstuden * it is the responsibility of the aliasing layer to make
217 1.1 wrstuden * the operation arguments "correct" for the lower layer
218 1.1 wrstuden * by mapping an vnode arguments to the lower layer.
219 1.1 wrstuden *
220 1.1 wrstuden * The first approach is to call the aliasing layer's bypass routine.
221 1.1 wrstuden * This method is most suitable when you wish to invoke the operation
222 1.13 wiz * currently being handled on the lower layer. It has the advantage
223 1.1 wrstuden * that the bypass routine already must do argument mapping.
224 1.1 wrstuden * An example of this is null_getattrs in the null layer.
225 1.1 wrstuden *
226 1.13 wiz * A second approach is to directly invoke vnode operations on
227 1.1 wrstuden * the lower layer with the VOP_OPERATIONNAME interface.
228 1.1 wrstuden * The advantage of this method is that it is easy to invoke
229 1.1 wrstuden * arbitrary operations on the lower layer. The disadvantage
230 1.13 wiz * is that vnodes' arguments must be manually mapped.
231 1.1 wrstuden *
232 1.1 wrstuden */
233 1.8 lukem
234 1.8 lukem #include <sys/cdefs.h>
235 1.25 xtraeme __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $");
236 1.1 wrstuden
237 1.1 wrstuden #include <sys/param.h>
238 1.1 wrstuden #include <sys/systm.h>
239 1.1 wrstuden #include <sys/proc.h>
240 1.1 wrstuden #include <sys/time.h>
241 1.1 wrstuden #include <sys/vnode.h>
242 1.1 wrstuden #include <sys/mount.h>
243 1.1 wrstuden #include <sys/namei.h>
244 1.1 wrstuden #include <sys/malloc.h>
245 1.1 wrstuden #include <sys/buf.h>
246 1.1 wrstuden #include <miscfs/genfs/layer.h>
247 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
248 1.1 wrstuden #include <miscfs/genfs/genfs.h>
249 1.1 wrstuden
250 1.1 wrstuden
251 1.1 wrstuden /*
252 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 1.1 wrstuden * routine by John Heidemann.
254 1.1 wrstuden * The new element for this version is that the whole nullfs
255 1.1 wrstuden * system gained the concept of locks on the lower node, and locks on
256 1.1 wrstuden * our nodes. When returning from a call to the lower layer, we may
257 1.1 wrstuden * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 1.1 wrstuden * macros provide this functionality.
259 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
260 1.1 wrstuden * safety checks. It should still always work, but it's not as
261 1.1 wrstuden * robust to programmer errors.
262 1.1 wrstuden * Define SAFETY to include some error checking code.
263 1.1 wrstuden *
264 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
265 1.1 wrstuden *
266 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
267 1.1 wrstuden * their arguments. With stacking, the reference counts are held
268 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
269 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
270 1.1 wrstuden * since there are no such side-effects.
271 1.1 wrstuden *
272 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
273 1.1 wrstuden * the passed-in node (typically they vput the node).
274 1.1 wrstuden *
275 1.1 wrstuden * This makes the following assumptions:
276 1.1 wrstuden * - only one returned vpp
277 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
278 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
279 1.1 wrstuden * to determine what implementation of the op should be invoked
280 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
282 1.24 perry */
283 1.1 wrstuden int
284 1.1 wrstuden layer_bypass(v)
285 1.1 wrstuden void *v;
286 1.1 wrstuden {
287 1.1 wrstuden struct vop_generic_args /* {
288 1.1 wrstuden struct vnodeop_desc *a_desc;
289 1.1 wrstuden <other random data follows, presumably>
290 1.1 wrstuden } */ *ap = v;
291 1.25 xtraeme int (**our_vnodeop_p)(void *);
292 1.3 augustss struct vnode **this_vp_p;
293 1.1 wrstuden int error, error1;
294 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
296 1.1 wrstuden struct vnode ***vppp;
297 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
298 1.1 wrstuden int reles, i, flags;
299 1.1 wrstuden
300 1.1 wrstuden #ifdef SAFETY
301 1.1 wrstuden /*
302 1.1 wrstuden * We require at least one vp.
303 1.1 wrstuden */
304 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
305 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 1.20 yamt panic("%s: no vp's in map.\n", __func__);
307 1.1 wrstuden #endif
308 1.1 wrstuden
309 1.20 yamt vps_p[0] =
310 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
311 1.1 wrstuden vp0 = *vps_p[0];
312 1.1 wrstuden flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
313 1.1 wrstuden our_vnodeop_p = vp0->v_op;
314 1.1 wrstuden
315 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
316 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
317 1.1 wrstuden
318 1.1 wrstuden /*
319 1.1 wrstuden * Map the vnodes going in.
320 1.1 wrstuden * Later, we'll invoke the operation based on
321 1.1 wrstuden * the first mapped vnode's operation vector.
322 1.1 wrstuden */
323 1.1 wrstuden reles = descp->vdesc_flags;
324 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
325 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
326 1.1 wrstuden break; /* bail out at end of list */
327 1.24 perry vps_p[i] = this_vp_p =
328 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
329 1.20 yamt ap);
330 1.1 wrstuden /*
331 1.1 wrstuden * We're not guaranteed that any but the first vnode
332 1.1 wrstuden * are of our type. Check for and don't map any
333 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
334 1.1 wrstuden */
335 1.1 wrstuden if (i && (*this_vp_p == NULL ||
336 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
337 1.1 wrstuden old_vps[i] = NULL;
338 1.1 wrstuden } else {
339 1.1 wrstuden old_vps[i] = *this_vp_p;
340 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
341 1.1 wrstuden /*
342 1.1 wrstuden * XXX - Several operations have the side effect
343 1.1 wrstuden * of vrele'ing their vp's. We must account for
344 1.1 wrstuden * that. (This should go away in the future.)
345 1.1 wrstuden */
346 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
347 1.1 wrstuden VREF(*this_vp_p);
348 1.1 wrstuden }
349 1.24 perry
350 1.1 wrstuden }
351 1.1 wrstuden
352 1.1 wrstuden /*
353 1.1 wrstuden * Call the operation on the lower layer
354 1.1 wrstuden * with the modified argument structure.
355 1.1 wrstuden */
356 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
357 1.1 wrstuden
358 1.1 wrstuden /*
359 1.1 wrstuden * Maintain the illusion of call-by-value
360 1.1 wrstuden * by restoring vnodes in the argument structure
361 1.1 wrstuden * to their original value.
362 1.1 wrstuden */
363 1.1 wrstuden reles = descp->vdesc_flags;
364 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
365 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
366 1.1 wrstuden break; /* bail out at end of list */
367 1.1 wrstuden if (old_vps[i]) {
368 1.1 wrstuden *(vps_p[i]) = old_vps[i];
369 1.1 wrstuden if (reles & VDESC_VP0_WILLUNLOCK)
370 1.1 wrstuden LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
371 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
372 1.1 wrstuden vrele(*(vps_p[i]));
373 1.1 wrstuden }
374 1.1 wrstuden }
375 1.1 wrstuden
376 1.1 wrstuden /*
377 1.1 wrstuden * Map the possible out-going vpp
378 1.1 wrstuden * (Assumes that the lower layer always returns
379 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
380 1.1 wrstuden */
381 1.1 wrstuden if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
382 1.1 wrstuden !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
383 1.1 wrstuden !error) {
384 1.1 wrstuden /*
385 1.1 wrstuden * XXX - even though some ops have vpp returned vp's,
386 1.1 wrstuden * several ops actually vrele this before returning.
387 1.1 wrstuden * We must avoid these ops.
388 1.1 wrstuden * (This should go away when these ops are regularized.)
389 1.1 wrstuden */
390 1.1 wrstuden if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
391 1.1 wrstuden goto out;
392 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
393 1.20 yamt descp->vdesc_vpp_offset, ap);
394 1.1 wrstuden /*
395 1.1 wrstuden * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
396 1.7 assar * vop_mknod, and vop_symlink return vpp's. vop_bmap
397 1.1 wrstuden * doesn't call bypass as the lower vpp is fine (we're just
398 1.20 yamt * going to do i/o on it). vop_lookup doesn't call bypass
399 1.1 wrstuden * as a lookup on "." would generate a locking error.
400 1.1 wrstuden * So all the calls which get us here have a locked vpp. :-)
401 1.1 wrstuden */
402 1.1 wrstuden error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
403 1.19 yamt if (error) {
404 1.19 yamt vput(**vppp);
405 1.19 yamt **vppp = NULL;
406 1.19 yamt }
407 1.1 wrstuden }
408 1.1 wrstuden
409 1.1 wrstuden out:
410 1.1 wrstuden return (error);
411 1.1 wrstuden }
412 1.1 wrstuden
413 1.1 wrstuden /*
414 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
415 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
416 1.1 wrstuden * if this layer is mounted read-only.
417 1.1 wrstuden */
418 1.1 wrstuden int
419 1.1 wrstuden layer_lookup(v)
420 1.1 wrstuden void *v;
421 1.1 wrstuden {
422 1.1 wrstuden struct vop_lookup_args /* {
423 1.1 wrstuden struct vnodeop_desc *a_desc;
424 1.1 wrstuden struct vnode * a_dvp;
425 1.1 wrstuden struct vnode ** a_vpp;
426 1.1 wrstuden struct componentname * a_cnp;
427 1.1 wrstuden } */ *ap = v;
428 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
429 1.1 wrstuden int flags = cnp->cn_flags;
430 1.1 wrstuden struct vnode *dvp, *vp, *ldvp;
431 1.1 wrstuden int error, r;
432 1.1 wrstuden
433 1.1 wrstuden dvp = ap->a_dvp;
434 1.1 wrstuden
435 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
436 1.1 wrstuden (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
437 1.1 wrstuden return (EROFS);
438 1.1 wrstuden
439 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
440 1.1 wrstuden ap->a_dvp = ldvp;
441 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
442 1.1 wrstuden vp = *ap->a_vpp;
443 1.18 yamt *ap->a_vpp = NULL;
444 1.1 wrstuden
445 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
446 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
447 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
448 1.1 wrstuden error = EROFS;
449 1.1 wrstuden /*
450 1.24 perry * We must do the same locking and unlocking at this layer as
451 1.1 wrstuden * is done in the layers below us. It used to be we would try
452 1.1 wrstuden * to guess based on what was set with the flags and error codes.
453 1.1 wrstuden *
454 1.1 wrstuden * But that doesn't work. So now we have the underlying VOP_LOOKUP
455 1.1 wrstuden * tell us if it released the parent vnode, and we adjust the
456 1.1 wrstuden * upper node accordingly. We can't just look at the lock states
457 1.1 wrstuden * of the lower nodes as someone else might have come along and
458 1.1 wrstuden * locked the parent node after our call to VOP_LOOKUP locked it.
459 1.1 wrstuden */
460 1.1 wrstuden if ((cnp->cn_flags & PDIRUNLOCK)) {
461 1.1 wrstuden LAYERFS_UPPERUNLOCK(dvp, 0, r);
462 1.1 wrstuden }
463 1.1 wrstuden if (ldvp == vp) {
464 1.1 wrstuden /*
465 1.1 wrstuden * Did lookup on "." or ".." in the root node of a mount point.
466 1.1 wrstuden * So we return dvp after a VREF.
467 1.1 wrstuden */
468 1.1 wrstuden *ap->a_vpp = dvp;
469 1.1 wrstuden VREF(dvp);
470 1.1 wrstuden vrele(vp);
471 1.1 wrstuden } else if (vp != NULL) {
472 1.1 wrstuden error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
473 1.19 yamt if (error) {
474 1.19 yamt vput(vp);
475 1.19 yamt if (cnp->cn_flags & PDIRUNLOCK) {
476 1.21 wrstuden if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
477 1.21 wrstuden cnp->cn_flags &= ~PDIRUNLOCK;
478 1.19 yamt }
479 1.19 yamt }
480 1.1 wrstuden }
481 1.1 wrstuden return (error);
482 1.1 wrstuden }
483 1.1 wrstuden
484 1.1 wrstuden /*
485 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
486 1.1 wrstuden */
487 1.1 wrstuden int
488 1.1 wrstuden layer_setattr(v)
489 1.1 wrstuden void *v;
490 1.1 wrstuden {
491 1.1 wrstuden struct vop_setattr_args /* {
492 1.1 wrstuden struct vnodeop_desc *a_desc;
493 1.1 wrstuden struct vnode *a_vp;
494 1.1 wrstuden struct vattr *a_vap;
495 1.1 wrstuden struct ucred *a_cred;
496 1.1 wrstuden struct proc *a_p;
497 1.1 wrstuden } */ *ap = v;
498 1.1 wrstuden struct vnode *vp = ap->a_vp;
499 1.1 wrstuden struct vattr *vap = ap->a_vap;
500 1.1 wrstuden
501 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
502 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
503 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
504 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
505 1.1 wrstuden return (EROFS);
506 1.1 wrstuden if (vap->va_size != VNOVAL) {
507 1.1 wrstuden switch (vp->v_type) {
508 1.1 wrstuden case VDIR:
509 1.1 wrstuden return (EISDIR);
510 1.1 wrstuden case VCHR:
511 1.1 wrstuden case VBLK:
512 1.1 wrstuden case VSOCK:
513 1.1 wrstuden case VFIFO:
514 1.1 wrstuden return (0);
515 1.1 wrstuden case VREG:
516 1.1 wrstuden case VLNK:
517 1.1 wrstuden default:
518 1.1 wrstuden /*
519 1.1 wrstuden * Disallow write attempts if the filesystem is
520 1.1 wrstuden * mounted read-only.
521 1.1 wrstuden */
522 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
523 1.1 wrstuden return (EROFS);
524 1.1 wrstuden }
525 1.1 wrstuden }
526 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
527 1.1 wrstuden }
528 1.1 wrstuden
529 1.1 wrstuden /*
530 1.1 wrstuden * We handle getattr only to change the fsid.
531 1.1 wrstuden */
532 1.1 wrstuden int
533 1.1 wrstuden layer_getattr(v)
534 1.1 wrstuden void *v;
535 1.1 wrstuden {
536 1.1 wrstuden struct vop_getattr_args /* {
537 1.1 wrstuden struct vnode *a_vp;
538 1.1 wrstuden struct vattr *a_vap;
539 1.1 wrstuden struct ucred *a_cred;
540 1.1 wrstuden struct proc *a_p;
541 1.1 wrstuden } */ *ap = v;
542 1.1 wrstuden struct vnode *vp = ap->a_vp;
543 1.1 wrstuden int error;
544 1.1 wrstuden
545 1.1 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
546 1.1 wrstuden return (error);
547 1.1 wrstuden /* Requires that arguments be restored. */
548 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
549 1.1 wrstuden return (0);
550 1.1 wrstuden }
551 1.1 wrstuden
552 1.1 wrstuden int
553 1.1 wrstuden layer_access(v)
554 1.1 wrstuden void *v;
555 1.1 wrstuden {
556 1.1 wrstuden struct vop_access_args /* {
557 1.1 wrstuden struct vnode *a_vp;
558 1.1 wrstuden int a_mode;
559 1.1 wrstuden struct ucred *a_cred;
560 1.1 wrstuden struct proc *a_p;
561 1.1 wrstuden } */ *ap = v;
562 1.1 wrstuden struct vnode *vp = ap->a_vp;
563 1.1 wrstuden mode_t mode = ap->a_mode;
564 1.1 wrstuden
565 1.1 wrstuden /*
566 1.1 wrstuden * Disallow write attempts on read-only layers;
567 1.1 wrstuden * unless the file is a socket, fifo, or a block or
568 1.1 wrstuden * character device resident on the file system.
569 1.1 wrstuden */
570 1.1 wrstuden if (mode & VWRITE) {
571 1.1 wrstuden switch (vp->v_type) {
572 1.1 wrstuden case VDIR:
573 1.1 wrstuden case VLNK:
574 1.1 wrstuden case VREG:
575 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
576 1.1 wrstuden return (EROFS);
577 1.1 wrstuden break;
578 1.1 wrstuden default:
579 1.1 wrstuden break;
580 1.1 wrstuden }
581 1.1 wrstuden }
582 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
583 1.1 wrstuden }
584 1.1 wrstuden
585 1.1 wrstuden /*
586 1.1 wrstuden * We must handle open to be able to catch MNT_NODEV and friends.
587 1.1 wrstuden */
588 1.1 wrstuden int
589 1.1 wrstuden layer_open(v)
590 1.1 wrstuden void *v;
591 1.1 wrstuden {
592 1.1 wrstuden struct vop_open_args *ap = v;
593 1.1 wrstuden struct vnode *vp = ap->a_vp;
594 1.1 wrstuden enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
595 1.1 wrstuden
596 1.1 wrstuden if (((lower_type == VBLK) || (lower_type == VCHR)) &&
597 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
598 1.1 wrstuden return ENXIO;
599 1.1 wrstuden
600 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
601 1.1 wrstuden }
602 1.1 wrstuden
603 1.1 wrstuden /*
604 1.1 wrstuden * We need to process our own vnode lock and then clear the
605 1.1 wrstuden * interlock flag as it applies only to our vnode, not the
606 1.1 wrstuden * vnodes below us on the stack.
607 1.1 wrstuden */
608 1.1 wrstuden int
609 1.1 wrstuden layer_lock(v)
610 1.1 wrstuden void *v;
611 1.1 wrstuden {
612 1.1 wrstuden struct vop_lock_args /* {
613 1.1 wrstuden struct vnode *a_vp;
614 1.1 wrstuden int a_flags;
615 1.1 wrstuden struct proc *a_p;
616 1.1 wrstuden } */ *ap = v;
617 1.1 wrstuden struct vnode *vp = ap->a_vp, *lowervp;
618 1.1 wrstuden int flags = ap->a_flags, error;
619 1.1 wrstuden
620 1.1 wrstuden if (vp->v_vnlock != NULL) {
621 1.1 wrstuden /*
622 1.1 wrstuden * The lower level has exported a struct lock to us. Use
623 1.1 wrstuden * it so that all vnodes in the stack lock and unlock
624 1.1 wrstuden * simultaneously. Note: we don't DRAIN the lock as DRAIN
625 1.1 wrstuden * decommissions the lock - just because our vnode is
626 1.1 wrstuden * going away doesn't mean the struct lock below us is.
627 1.1 wrstuden * LK_EXCLUSIVE is fine.
628 1.1 wrstuden */
629 1.1 wrstuden if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
630 1.1 wrstuden return(lockmgr(vp->v_vnlock,
631 1.1 wrstuden (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
632 1.1 wrstuden &vp->v_interlock));
633 1.1 wrstuden } else
634 1.1 wrstuden return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
635 1.1 wrstuden } else {
636 1.1 wrstuden /*
637 1.1 wrstuden * Ahh well. It would be nice if the fs we're over would
638 1.1 wrstuden * export a struct lock for us to use, but it doesn't.
639 1.1 wrstuden *
640 1.1 wrstuden * To prevent race conditions involving doing a lookup
641 1.1 wrstuden * on "..", we have to lock the lower node, then lock our
642 1.1 wrstuden * node. Most of the time it won't matter that we lock our
643 1.1 wrstuden * node (as any locking would need the lower one locked
644 1.1 wrstuden * first). But we can LK_DRAIN the upper lock as a step
645 1.1 wrstuden * towards decomissioning it.
646 1.1 wrstuden */
647 1.1 wrstuden lowervp = LAYERVPTOLOWERVP(vp);
648 1.1 wrstuden if (flags & LK_INTERLOCK) {
649 1.1 wrstuden simple_unlock(&vp->v_interlock);
650 1.1 wrstuden flags &= ~LK_INTERLOCK;
651 1.1 wrstuden }
652 1.1 wrstuden if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
653 1.1 wrstuden error = VOP_LOCK(lowervp,
654 1.1 wrstuden (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
655 1.1 wrstuden } else
656 1.1 wrstuden error = VOP_LOCK(lowervp, flags);
657 1.1 wrstuden if (error)
658 1.1 wrstuden return (error);
659 1.1 wrstuden if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
660 1.1 wrstuden VOP_UNLOCK(lowervp, 0);
661 1.1 wrstuden }
662 1.1 wrstuden return (error);
663 1.1 wrstuden }
664 1.1 wrstuden }
665 1.1 wrstuden
666 1.1 wrstuden /*
667 1.1 wrstuden */
668 1.1 wrstuden int
669 1.1 wrstuden layer_unlock(v)
670 1.1 wrstuden void *v;
671 1.1 wrstuden {
672 1.1 wrstuden struct vop_unlock_args /* {
673 1.1 wrstuden struct vnode *a_vp;
674 1.1 wrstuden int a_flags;
675 1.1 wrstuden struct proc *a_p;
676 1.1 wrstuden } */ *ap = v;
677 1.1 wrstuden struct vnode *vp = ap->a_vp;
678 1.1 wrstuden int flags = ap->a_flags;
679 1.1 wrstuden
680 1.1 wrstuden if (vp->v_vnlock != NULL) {
681 1.1 wrstuden return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
682 1.1 wrstuden &vp->v_interlock));
683 1.1 wrstuden } else {
684 1.1 wrstuden if (flags & LK_INTERLOCK) {
685 1.1 wrstuden simple_unlock(&vp->v_interlock);
686 1.1 wrstuden flags &= ~LK_INTERLOCK;
687 1.1 wrstuden }
688 1.1 wrstuden VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
689 1.1 wrstuden return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
690 1.1 wrstuden &vp->v_interlock));
691 1.1 wrstuden }
692 1.1 wrstuden }
693 1.1 wrstuden
694 1.1 wrstuden int
695 1.1 wrstuden layer_islocked(v)
696 1.1 wrstuden void *v;
697 1.1 wrstuden {
698 1.1 wrstuden struct vop_islocked_args /* {
699 1.1 wrstuden struct vnode *a_vp;
700 1.1 wrstuden } */ *ap = v;
701 1.1 wrstuden struct vnode *vp = ap->a_vp;
702 1.22 yamt int lkstatus;
703 1.1 wrstuden
704 1.1 wrstuden if (vp->v_vnlock != NULL)
705 1.22 yamt return lockstatus(vp->v_vnlock);
706 1.22 yamt
707 1.22 yamt lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
708 1.22 yamt if (lkstatus)
709 1.22 yamt return lkstatus;
710 1.22 yamt
711 1.22 yamt return lockstatus(&vp->v_lock);
712 1.1 wrstuden }
713 1.1 wrstuden
714 1.1 wrstuden /*
715 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
716 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
717 1.1 wrstuden * reclaimed; otherwise,
718 1.1 wrstuden * pass it through to the underlying layer.
719 1.1 wrstuden *
720 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
721 1.1 wrstuden */
722 1.1 wrstuden
723 1.1 wrstuden int
724 1.1 wrstuden layer_fsync(v)
725 1.1 wrstuden void *v;
726 1.1 wrstuden {
727 1.1 wrstuden struct vop_fsync_args /* {
728 1.1 wrstuden struct vnode *a_vp;
729 1.1 wrstuden struct ucred *a_cred;
730 1.1 wrstuden int a_flags;
731 1.4 fvdl off_t offlo;
732 1.4 fvdl off_t offhi;
733 1.1 wrstuden struct proc *a_p;
734 1.1 wrstuden } */ *ap = v;
735 1.1 wrstuden
736 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
737 1.1 wrstuden return 0;
738 1.1 wrstuden }
739 1.1 wrstuden
740 1.1 wrstuden return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
741 1.1 wrstuden }
742 1.1 wrstuden
743 1.1 wrstuden
744 1.1 wrstuden int
745 1.1 wrstuden layer_inactive(v)
746 1.1 wrstuden void *v;
747 1.1 wrstuden {
748 1.1 wrstuden struct vop_inactive_args /* {
749 1.1 wrstuden struct vnode *a_vp;
750 1.1 wrstuden struct proc *a_p;
751 1.1 wrstuden } */ *ap = v;
752 1.5 enami struct vnode *vp = ap->a_vp;
753 1.1 wrstuden
754 1.1 wrstuden /*
755 1.1 wrstuden * Do nothing (and _don't_ bypass).
756 1.1 wrstuden * Wait to vrele lowervp until reclaim,
757 1.1 wrstuden * so that until then our layer_node is in the
758 1.1 wrstuden * cache and reusable.
759 1.1 wrstuden *
760 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
761 1.1 wrstuden * the lowervp and then trying to reactivate it
762 1.1 wrstuden * with capabilities (v_id)
763 1.1 wrstuden * like they do in the name lookup cache code.
764 1.1 wrstuden * That's too much work for now.
765 1.1 wrstuden */
766 1.5 enami VOP_UNLOCK(vp, 0);
767 1.5 enami
768 1.16 wrstuden /*
769 1.16 wrstuden * ..., but don't cache the device node. Also, if we did a
770 1.16 wrstuden * remove, don't cache the node.
771 1.16 wrstuden */
772 1.16 wrstuden if (vp->v_type == VBLK || vp->v_type == VCHR
773 1.16 wrstuden || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
774 1.5 enami vgone(vp);
775 1.1 wrstuden return (0);
776 1.1 wrstuden }
777 1.1 wrstuden
778 1.1 wrstuden int
779 1.16 wrstuden layer_remove(v)
780 1.16 wrstuden void *v;
781 1.16 wrstuden {
782 1.16 wrstuden struct vop_remove_args /* {
783 1.16 wrstuden struct vonde *a_dvp;
784 1.16 wrstuden struct vnode *a_vp;
785 1.16 wrstuden struct componentname *a_cnp;
786 1.16 wrstuden } */ *ap = v;
787 1.16 wrstuden
788 1.16 wrstuden int error;
789 1.16 wrstuden struct vnode *vp = ap->a_vp;
790 1.16 wrstuden
791 1.16 wrstuden vref(vp);
792 1.16 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
793 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
794 1.16 wrstuden
795 1.16 wrstuden vrele(vp);
796 1.16 wrstuden
797 1.16 wrstuden return (error);
798 1.16 wrstuden }
799 1.16 wrstuden
800 1.16 wrstuden int
801 1.17 yamt layer_rename(v)
802 1.17 yamt void *v;
803 1.17 yamt {
804 1.17 yamt struct vop_rename_args /* {
805 1.17 yamt struct vnode *a_fdvp;
806 1.17 yamt struct vnode *a_fvp;
807 1.17 yamt struct componentname *a_fcnp;
808 1.17 yamt struct vnode *a_tdvp;
809 1.17 yamt struct vnode *a_tvp;
810 1.17 yamt struct componentname *a_tcnp;
811 1.17 yamt } */ *ap = v;
812 1.17 yamt
813 1.17 yamt int error;
814 1.17 yamt struct vnode *fdvp = ap->a_fdvp;
815 1.17 yamt struct vnode *tvp;
816 1.17 yamt
817 1.17 yamt tvp = ap->a_tvp;
818 1.17 yamt if (tvp) {
819 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
820 1.17 yamt tvp = NULL;
821 1.17 yamt else
822 1.17 yamt vref(tvp);
823 1.17 yamt }
824 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
825 1.17 yamt if (tvp) {
826 1.17 yamt if (error == 0)
827 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
828 1.17 yamt vrele(tvp);
829 1.17 yamt }
830 1.17 yamt
831 1.17 yamt return (error);
832 1.17 yamt }
833 1.17 yamt
834 1.17 yamt int
835 1.23 hannken layer_rmdir(v)
836 1.23 hannken void *v;
837 1.23 hannken {
838 1.23 hannken struct vop_rmdir_args /* {
839 1.23 hannken struct vnode *a_dvp;
840 1.23 hannken struct vnode *a_vp;
841 1.23 hannken struct componentname *a_cnp;
842 1.23 hannken } */ *ap = v;
843 1.23 hannken int error;
844 1.23 hannken struct vnode *vp = ap->a_vp;
845 1.23 hannken
846 1.23 hannken vref(vp);
847 1.23 hannken if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
848 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
849 1.23 hannken
850 1.23 hannken vrele(vp);
851 1.23 hannken
852 1.23 hannken return (error);
853 1.23 hannken }
854 1.23 hannken
855 1.23 hannken int
856 1.1 wrstuden layer_reclaim(v)
857 1.1 wrstuden void *v;
858 1.1 wrstuden {
859 1.1 wrstuden struct vop_reclaim_args /* {
860 1.1 wrstuden struct vnode *a_vp;
861 1.1 wrstuden struct proc *a_p;
862 1.1 wrstuden } */ *ap = v;
863 1.1 wrstuden struct vnode *vp = ap->a_vp;
864 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
865 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
866 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
867 1.1 wrstuden
868 1.1 wrstuden /*
869 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
870 1.1 wrstuden * decomissioned, so we have to be careful about calling
871 1.1 wrstuden * VOP's on ourself. Even if we turned a LK_DRAIN into an
872 1.1 wrstuden * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
873 1.1 wrstuden * set.
874 1.1 wrstuden */
875 1.1 wrstuden /* After this assignment, this node will not be re-used. */
876 1.1 wrstuden if ((vp == lmp->layerm_rootvp)) {
877 1.1 wrstuden /*
878 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
879 1.1 wrstuden * that someone forcably unmunted the underlying fs.
880 1.1 wrstuden *
881 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
882 1.1 wrstuden */
883 1.1 wrstuden lmp->layerm_rootvp = NULL;
884 1.1 wrstuden }
885 1.1 wrstuden xp->layer_lowervp = NULL;
886 1.1 wrstuden simple_lock(&lmp->layerm_hashlock);
887 1.1 wrstuden LIST_REMOVE(xp, layer_hash);
888 1.1 wrstuden simple_unlock(&lmp->layerm_hashlock);
889 1.1 wrstuden FREE(vp->v_data, M_TEMP);
890 1.1 wrstuden vp->v_data = NULL;
891 1.1 wrstuden vrele (lowervp);
892 1.1 wrstuden return (0);
893 1.1 wrstuden }
894 1.1 wrstuden
895 1.1 wrstuden /*
896 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
897 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
898 1.1 wrstuden * i/o. :-)
899 1.1 wrstuden */
900 1.1 wrstuden int
901 1.1 wrstuden layer_bmap(v)
902 1.1 wrstuden void *v;
903 1.1 wrstuden {
904 1.1 wrstuden struct vop_bmap_args /* {
905 1.1 wrstuden struct vnode *a_vp;
906 1.1 wrstuden daddr_t a_bn;
907 1.1 wrstuden struct vnode **a_vpp;
908 1.1 wrstuden daddr_t *a_bnp;
909 1.1 wrstuden int *a_runp;
910 1.1 wrstuden } */ *ap = v;
911 1.1 wrstuden struct vnode *vp;
912 1.1 wrstuden
913 1.1 wrstuden ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
914 1.1 wrstuden
915 1.1 wrstuden return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
916 1.1 wrstuden }
917 1.1 wrstuden
918 1.1 wrstuden int
919 1.1 wrstuden layer_print(v)
920 1.1 wrstuden void *v;
921 1.1 wrstuden {
922 1.1 wrstuden struct vop_print_args /* {
923 1.1 wrstuden struct vnode *a_vp;
924 1.1 wrstuden } */ *ap = v;
925 1.3 augustss struct vnode *vp = ap->a_vp;
926 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
927 1.1 wrstuden return (0);
928 1.1 wrstuden }
929 1.1 wrstuden
930 1.1 wrstuden /*
931 1.14 hannken * XXX - vop_bwrite must be hand coded because it has no
932 1.1 wrstuden * vnode in its arguments.
933 1.1 wrstuden * This goes away with a merged VM/buffer cache.
934 1.1 wrstuden */
935 1.1 wrstuden int
936 1.1 wrstuden layer_bwrite(v)
937 1.1 wrstuden void *v;
938 1.1 wrstuden {
939 1.1 wrstuden struct vop_bwrite_args /* {
940 1.1 wrstuden struct buf *a_bp;
941 1.1 wrstuden } */ *ap = v;
942 1.1 wrstuden struct buf *bp = ap->a_bp;
943 1.1 wrstuden int error;
944 1.1 wrstuden struct vnode *savedvp;
945 1.1 wrstuden
946 1.1 wrstuden savedvp = bp->b_vp;
947 1.1 wrstuden bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
948 1.1 wrstuden
949 1.1 wrstuden error = VOP_BWRITE(bp);
950 1.1 wrstuden
951 1.1 wrstuden bp->b_vp = savedvp;
952 1.1 wrstuden
953 1.1 wrstuden return (error);
954 1.10 chs }
955 1.10 chs
956 1.10 chs int
957 1.10 chs layer_getpages(v)
958 1.10 chs void *v;
959 1.10 chs {
960 1.10 chs struct vop_getpages_args /* {
961 1.10 chs struct vnode *a_vp;
962 1.10 chs voff_t a_offset;
963 1.10 chs struct vm_page **a_m;
964 1.10 chs int *a_count;
965 1.10 chs int a_centeridx;
966 1.10 chs vm_prot_t a_access_type;
967 1.10 chs int a_advice;
968 1.10 chs int a_flags;
969 1.10 chs } */ *ap = v;
970 1.10 chs struct vnode *vp = ap->a_vp;
971 1.10 chs int error;
972 1.10 chs
973 1.10 chs /*
974 1.10 chs * just pass the request on to the underlying layer.
975 1.10 chs */
976 1.10 chs
977 1.10 chs if (ap->a_flags & PGO_LOCKED) {
978 1.10 chs return EBUSY;
979 1.10 chs }
980 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
981 1.10 chs simple_unlock(&vp->v_interlock);
982 1.10 chs simple_lock(&ap->a_vp->v_interlock);
983 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
984 1.10 chs return error;
985 1.10 chs }
986 1.10 chs
987 1.10 chs int
988 1.10 chs layer_putpages(v)
989 1.10 chs void *v;
990 1.10 chs {
991 1.10 chs struct vop_putpages_args /* {
992 1.10 chs struct vnode *a_vp;
993 1.10 chs voff_t a_offlo;
994 1.10 chs voff_t a_offhi;
995 1.10 chs int a_flags;
996 1.10 chs } */ *ap = v;
997 1.10 chs struct vnode *vp = ap->a_vp;
998 1.10 chs int error;
999 1.10 chs
1000 1.10 chs /*
1001 1.10 chs * just pass the request on to the underlying layer.
1002 1.10 chs */
1003 1.10 chs
1004 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
1005 1.10 chs simple_unlock(&vp->v_interlock);
1006 1.10 chs simple_lock(&ap->a_vp->v_interlock);
1007 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1008 1.10 chs return error;
1009 1.1 wrstuden }
1010