Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.26.12.1
      1  1.26.12.1      tron /*	$NetBSD: layer_vnops.c,v 1.26.12.1 2006/05/24 15:50:43 tron Exp $	*/
      2        1.1  wrstuden 
      3        1.1  wrstuden /*
      4        1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5        1.1  wrstuden  * All rights reserved.
      6        1.1  wrstuden  *
      7        1.1  wrstuden  * This software was written by William Studenmund of the
      8        1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9        1.1  wrstuden  *
     10        1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11        1.1  wrstuden  * modification, are permitted provided that the following conditions
     12        1.1  wrstuden  * are met:
     13        1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14        1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15        1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17        1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18        1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19        1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20        1.1  wrstuden  *    products derived from this software without specific prior written
     21        1.1  wrstuden  *    permission.
     22        1.1  wrstuden  *
     23        1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24        1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25        1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26        1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27        1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28        1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29        1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30        1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31        1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32        1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33        1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34        1.1  wrstuden  */
     35        1.1  wrstuden /*
     36        1.1  wrstuden  * Copyright (c) 1992, 1993
     37        1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     38        1.1  wrstuden  *
     39        1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     40        1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     41        1.1  wrstuden  *
     42        1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     43        1.1  wrstuden  * modification, are permitted provided that the following conditions
     44        1.1  wrstuden  * are met:
     45        1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     46        1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     47        1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     48        1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     49        1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     50       1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     51        1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     52        1.1  wrstuden  *    without specific prior written permission.
     53        1.1  wrstuden  *
     54        1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55        1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56        1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57        1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58        1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59        1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60        1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61        1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62        1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63        1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64        1.1  wrstuden  * SUCH DAMAGE.
     65        1.1  wrstuden  *
     66        1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67        1.1  wrstuden  *
     68        1.1  wrstuden  * Ancestors:
     69        1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  1.26.12.1      tron  *	$Id: layer_vnops.c,v 1.26.12.1 2006/05/24 15:50:43 tron Exp $
     71  1.26.12.1      tron  *	$Id: layer_vnops.c,v 1.26.12.1 2006/05/24 15:50:43 tron Exp $
     72        1.1  wrstuden  *	...and...
     73        1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74        1.1  wrstuden  */
     75        1.1  wrstuden 
     76        1.1  wrstuden /*
     77        1.1  wrstuden  * Null Layer vnode routines.
     78        1.1  wrstuden  *
     79        1.1  wrstuden  * (See mount_null(8) for more information.)
     80        1.1  wrstuden  *
     81        1.1  wrstuden  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     82       1.12       wiz  * the core implementation of the null file system and most other stacked
     83        1.1  wrstuden  * fs's. The description below refers to the null file system, but the
     84        1.1  wrstuden  * services provided by the layer* files are useful for all layered fs's.
     85        1.1  wrstuden  *
     86        1.1  wrstuden  * The null layer duplicates a portion of the file system
     87        1.1  wrstuden  * name space under a new name.  In this respect, it is
     88        1.1  wrstuden  * similar to the loopback file system.  It differs from
     89        1.1  wrstuden  * the loopback fs in two respects:  it is implemented using
     90        1.1  wrstuden  * a stackable layers techniques, and it's "null-node"s stack above
     91        1.1  wrstuden  * all lower-layer vnodes, not just over directory vnodes.
     92        1.1  wrstuden  *
     93        1.1  wrstuden  * The null layer has two purposes.  First, it serves as a demonstration
     94        1.1  wrstuden  * of layering by proving a layer which does nothing.  (It actually
     95        1.1  wrstuden  * does everything the loopback file system does, which is slightly
     96        1.1  wrstuden  * more than nothing.)  Second, the null layer can serve as a prototype
     97        1.1  wrstuden  * layer.  Since it provides all necessary layer framework,
     98        1.1  wrstuden  * new file system layers can be created very easily be starting
     99        1.1  wrstuden  * with a null layer.
    100        1.1  wrstuden  *
    101        1.1  wrstuden  * The remainder of the man page examines the null layer as a basis
    102        1.1  wrstuden  * for constructing new layers.
    103        1.1  wrstuden  *
    104        1.1  wrstuden  *
    105        1.1  wrstuden  * INSTANTIATING NEW NULL LAYERS
    106        1.1  wrstuden  *
    107        1.1  wrstuden  * New null layers are created with mount_null(8).
    108        1.1  wrstuden  * Mount_null(8) takes two arguments, the pathname
    109        1.1  wrstuden  * of the lower vfs (target-pn) and the pathname where the null
    110        1.1  wrstuden  * layer will appear in the namespace (alias-pn).  After
    111        1.1  wrstuden  * the null layer is put into place, the contents
    112        1.1  wrstuden  * of target-pn subtree will be aliased under alias-pn.
    113        1.1  wrstuden  *
    114        1.1  wrstuden  * It is conceivable that other overlay filesystems will take different
    115        1.1  wrstuden  * parameters. For instance, data migration or access controll layers might
    116        1.1  wrstuden  * only take one pathname which will serve both as the target-pn and
    117        1.1  wrstuden  * alias-pn described above.
    118        1.1  wrstuden  *
    119        1.1  wrstuden  *
    120        1.1  wrstuden  * OPERATION OF A NULL LAYER
    121        1.1  wrstuden  *
    122        1.1  wrstuden  * The null layer is the minimum file system layer,
    123        1.1  wrstuden  * simply bypassing all possible operations to the lower layer
    124        1.1  wrstuden  * for processing there.  The majority of its activity centers
    125       1.13       wiz  * on the bypass routine, through which nearly all vnode operations
    126        1.1  wrstuden  * pass.
    127        1.1  wrstuden  *
    128        1.1  wrstuden  * The bypass routine accepts arbitrary vnode operations for
    129        1.1  wrstuden  * handling by the lower layer.  It begins by examing vnode
    130        1.1  wrstuden  * operation arguments and replacing any layered nodes by their
    131       1.13       wiz  * lower-layer equivalents.  It then invokes the operation
    132        1.1  wrstuden  * on the lower layer.  Finally, it replaces the layered nodes
    133        1.1  wrstuden  * in the arguments and, if a vnode is return by the operation,
    134        1.1  wrstuden  * stacks a layered node on top of the returned vnode.
    135        1.1  wrstuden  *
    136        1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    137        1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    138        1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    139        1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    140        1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    141        1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    142        1.1  wrstuden  *
    143        1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    144        1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    145        1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    146        1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    147        1.1  wrstuden  * use the layerm_bypass routine.
    148        1.1  wrstuden  *
    149        1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    150        1.1  wrstuden  * of operations are special cased, and handled by the layered fs. One
    151        1.1  wrstuden  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    152        1.1  wrstuden  * layer_fsync, perform layer-specific manipulation in addition to calling
    153        1.1  wrstuden  * the bypass routine. The other group
    154        1.1  wrstuden 
    155        1.1  wrstuden  * Although bypass handles most operations, vop_getattr, vop_lock,
    156        1.1  wrstuden  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    157        1.1  wrstuden  * bypassed. Vop_getattr must change the fsid being returned.
    158        1.1  wrstuden  * Vop_lock and vop_unlock must handle any locking for the
    159        1.1  wrstuden  * current vnode as well as pass the lock request down.
    160        1.1  wrstuden  * Vop_inactive and vop_reclaim are not bypassed so that
    161        1.1  wrstuden  * they can handle freeing null-layer specific data. Vop_print
    162        1.1  wrstuden  * is not bypassed to avoid excessive debugging information.
    163        1.1  wrstuden  * Also, certain vnode operations change the locking state within
    164        1.1  wrstuden  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    165        1.1  wrstuden  * and symlink). Ideally these operations should not change the
    166        1.1  wrstuden  * lock state, but should be changed to let the caller of the
    167        1.1  wrstuden  * function unlock them. Otherwise all intermediate vnode layers
    168        1.1  wrstuden  * (such as union, umapfs, etc) must catch these functions to do
    169        1.1  wrstuden  * the necessary locking at their layer.
    170        1.1  wrstuden  *
    171        1.1  wrstuden  *
    172        1.1  wrstuden  * INSTANTIATING VNODE STACKS
    173        1.1  wrstuden  *
    174        1.1  wrstuden  * Mounting associates the null layer with a lower layer,
    175        1.1  wrstuden  * effect stacking two VFSes.  Vnode stacks are instead
    176        1.1  wrstuden  * created on demand as files are accessed.
    177        1.1  wrstuden  *
    178        1.1  wrstuden  * The initial mount creates a single vnode stack for the
    179        1.1  wrstuden  * root of the new null layer.  All other vnode stacks
    180        1.1  wrstuden  * are created as a result of vnode operations on
    181        1.1  wrstuden  * this or other null vnode stacks.
    182        1.1  wrstuden  *
    183       1.13       wiz  * New vnode stacks come into existence as a result of
    184       1.24     perry  * an operation which returns a vnode.
    185        1.1  wrstuden  * The bypass routine stacks a null-node above the new
    186        1.1  wrstuden  * vnode before returning it to the caller.
    187        1.1  wrstuden  *
    188        1.1  wrstuden  * For example, imagine mounting a null layer with
    189        1.1  wrstuden  * "mount_null /usr/include /dev/layer/null".
    190        1.1  wrstuden  * Changing directory to /dev/layer/null will assign
    191        1.1  wrstuden  * the root null-node (which was created when the null layer was mounted).
    192        1.1  wrstuden  * Now consider opening "sys".  A vop_lookup would be
    193        1.1  wrstuden  * done on the root null-node.  This operation would bypass through
    194       1.24     perry  * to the lower layer which would return a vnode representing
    195        1.1  wrstuden  * the UFS "sys".  layer_bypass then builds a null-node
    196        1.1  wrstuden  * aliasing the UFS "sys" and returns this to the caller.
    197        1.1  wrstuden  * Later operations on the null-node "sys" will repeat this
    198        1.1  wrstuden  * process when constructing other vnode stacks.
    199        1.1  wrstuden  *
    200        1.1  wrstuden  *
    201        1.1  wrstuden  * CREATING OTHER FILE SYSTEM LAYERS
    202        1.1  wrstuden  *
    203        1.1  wrstuden  * One of the easiest ways to construct new file system layers is to make
    204        1.1  wrstuden  * a copy of the null layer, rename all files and variables, and
    205        1.1  wrstuden  * then begin modifing the copy.  Sed can be used to easily rename
    206        1.1  wrstuden  * all variables.
    207        1.1  wrstuden  *
    208       1.24     perry  * The umap layer is an example of a layer descended from the
    209        1.1  wrstuden  * null layer.
    210        1.1  wrstuden  *
    211        1.1  wrstuden  *
    212        1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    213        1.1  wrstuden  *
    214       1.24     perry  * There are two techniques to invoke operations on a lower layer
    215        1.1  wrstuden  * when the operation cannot be completely bypassed.  Each method
    216        1.1  wrstuden  * is appropriate in different situations.  In both cases,
    217        1.1  wrstuden  * it is the responsibility of the aliasing layer to make
    218        1.1  wrstuden  * the operation arguments "correct" for the lower layer
    219        1.1  wrstuden  * by mapping an vnode arguments to the lower layer.
    220        1.1  wrstuden  *
    221        1.1  wrstuden  * The first approach is to call the aliasing layer's bypass routine.
    222        1.1  wrstuden  * This method is most suitable when you wish to invoke the operation
    223       1.13       wiz  * currently being handled on the lower layer.  It has the advantage
    224        1.1  wrstuden  * that the bypass routine already must do argument mapping.
    225        1.1  wrstuden  * An example of this is null_getattrs in the null layer.
    226        1.1  wrstuden  *
    227       1.13       wiz  * A second approach is to directly invoke vnode operations on
    228        1.1  wrstuden  * the lower layer with the VOP_OPERATIONNAME interface.
    229        1.1  wrstuden  * The advantage of this method is that it is easy to invoke
    230        1.1  wrstuden  * arbitrary operations on the lower layer.  The disadvantage
    231       1.13       wiz  * is that vnodes' arguments must be manually mapped.
    232        1.1  wrstuden  *
    233        1.1  wrstuden  */
    234        1.8     lukem 
    235        1.8     lukem #include <sys/cdefs.h>
    236  1.26.12.1      tron __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.26.12.1 2006/05/24 15:50:43 tron Exp $");
    237        1.1  wrstuden 
    238        1.1  wrstuden #include <sys/param.h>
    239        1.1  wrstuden #include <sys/systm.h>
    240        1.1  wrstuden #include <sys/proc.h>
    241        1.1  wrstuden #include <sys/time.h>
    242        1.1  wrstuden #include <sys/vnode.h>
    243        1.1  wrstuden #include <sys/mount.h>
    244        1.1  wrstuden #include <sys/namei.h>
    245        1.1  wrstuden #include <sys/malloc.h>
    246        1.1  wrstuden #include <sys/buf.h>
    247  1.26.12.1      tron #include <sys/kauth.h>
    248  1.26.12.1      tron 
    249        1.1  wrstuden #include <miscfs/genfs/layer.h>
    250        1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    251        1.1  wrstuden #include <miscfs/genfs/genfs.h>
    252        1.1  wrstuden 
    253        1.1  wrstuden 
    254        1.1  wrstuden /*
    255        1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    256        1.1  wrstuden  *		routine by John Heidemann.
    257        1.1  wrstuden  *	The new element for this version is that the whole nullfs
    258        1.1  wrstuden  * system gained the concept of locks on the lower node, and locks on
    259        1.1  wrstuden  * our nodes. When returning from a call to the lower layer, we may
    260        1.1  wrstuden  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    261        1.1  wrstuden  * macros provide this functionality.
    262        1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    263        1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    264        1.1  wrstuden  * robust to programmer errors.
    265        1.1  wrstuden  *    Define SAFETY to include some error checking code.
    266        1.1  wrstuden  *
    267        1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    268        1.1  wrstuden  *
    269        1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    270        1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    271        1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    272        1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    273        1.1  wrstuden  * since there are no such side-effects.
    274        1.1  wrstuden  *
    275        1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    276        1.1  wrstuden  * the passed-in node (typically they vput the node).
    277        1.1  wrstuden  *
    278        1.1  wrstuden  * This makes the following assumptions:
    279        1.1  wrstuden  * - only one returned vpp
    280        1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    281        1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    282        1.1  wrstuden  *   to determine what implementation of the op should be invoked
    283        1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    284        1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    285       1.24     perry  */
    286        1.1  wrstuden int
    287        1.1  wrstuden layer_bypass(v)
    288        1.1  wrstuden 	void *v;
    289        1.1  wrstuden {
    290        1.1  wrstuden 	struct vop_generic_args /* {
    291        1.1  wrstuden 		struct vnodeop_desc *a_desc;
    292        1.1  wrstuden 		<other random data follows, presumably>
    293        1.1  wrstuden 	} */ *ap = v;
    294       1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    295        1.3  augustss 	struct vnode **this_vp_p;
    296        1.1  wrstuden 	int error, error1;
    297        1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    298        1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    299        1.1  wrstuden 	struct vnode ***vppp;
    300        1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    301        1.1  wrstuden 	int reles, i, flags;
    302        1.1  wrstuden 
    303        1.1  wrstuden #ifdef SAFETY
    304        1.1  wrstuden 	/*
    305        1.1  wrstuden 	 * We require at least one vp.
    306        1.1  wrstuden 	 */
    307        1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    308        1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    309       1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    310        1.1  wrstuden #endif
    311        1.1  wrstuden 
    312       1.20      yamt 	vps_p[0] =
    313       1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    314        1.1  wrstuden 	vp0 = *vps_p[0];
    315        1.1  wrstuden 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    316        1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    317        1.1  wrstuden 
    318        1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    319       1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    320        1.1  wrstuden 
    321        1.1  wrstuden 	/*
    322        1.1  wrstuden 	 * Map the vnodes going in.
    323        1.1  wrstuden 	 * Later, we'll invoke the operation based on
    324        1.1  wrstuden 	 * the first mapped vnode's operation vector.
    325        1.1  wrstuden 	 */
    326        1.1  wrstuden 	reles = descp->vdesc_flags;
    327        1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    328        1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    329        1.1  wrstuden 			break;   /* bail out at end of list */
    330       1.24     perry 		vps_p[i] = this_vp_p =
    331       1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    332       1.20      yamt 		    ap);
    333        1.1  wrstuden 		/*
    334        1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    335        1.1  wrstuden 		 * are of our type.  Check for and don't map any
    336        1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    337        1.1  wrstuden 		 */
    338        1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    339        1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    340        1.1  wrstuden 			old_vps[i] = NULL;
    341        1.1  wrstuden 		} else {
    342        1.1  wrstuden 			old_vps[i] = *this_vp_p;
    343        1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    344        1.1  wrstuden 			/*
    345        1.1  wrstuden 			 * XXX - Several operations have the side effect
    346        1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    347        1.1  wrstuden 			 * that.  (This should go away in the future.)
    348        1.1  wrstuden 			 */
    349        1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    350        1.1  wrstuden 				VREF(*this_vp_p);
    351        1.1  wrstuden 		}
    352       1.24     perry 
    353        1.1  wrstuden 	}
    354        1.1  wrstuden 
    355        1.1  wrstuden 	/*
    356        1.1  wrstuden 	 * Call the operation on the lower layer
    357        1.1  wrstuden 	 * with the modified argument structure.
    358        1.1  wrstuden 	 */
    359        1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    360        1.1  wrstuden 
    361        1.1  wrstuden 	/*
    362        1.1  wrstuden 	 * Maintain the illusion of call-by-value
    363        1.1  wrstuden 	 * by restoring vnodes in the argument structure
    364        1.1  wrstuden 	 * to their original value.
    365        1.1  wrstuden 	 */
    366        1.1  wrstuden 	reles = descp->vdesc_flags;
    367        1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    368        1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    369        1.1  wrstuden 			break;   /* bail out at end of list */
    370        1.1  wrstuden 		if (old_vps[i]) {
    371        1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    372        1.1  wrstuden 			if (reles & VDESC_VP0_WILLUNLOCK)
    373        1.1  wrstuden 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    374        1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    375        1.1  wrstuden 				vrele(*(vps_p[i]));
    376        1.1  wrstuden 		}
    377        1.1  wrstuden 	}
    378        1.1  wrstuden 
    379        1.1  wrstuden 	/*
    380        1.1  wrstuden 	 * Map the possible out-going vpp
    381        1.1  wrstuden 	 * (Assumes that the lower layer always returns
    382        1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    383        1.1  wrstuden 	 */
    384        1.1  wrstuden 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    385        1.1  wrstuden 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    386        1.1  wrstuden 	    !error) {
    387        1.1  wrstuden 		/*
    388        1.1  wrstuden 		 * XXX - even though some ops have vpp returned vp's,
    389        1.1  wrstuden 		 * several ops actually vrele this before returning.
    390        1.1  wrstuden 		 * We must avoid these ops.
    391        1.1  wrstuden 		 * (This should go away when these ops are regularized.)
    392        1.1  wrstuden 		 */
    393        1.1  wrstuden 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    394        1.1  wrstuden 			goto out;
    395        1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    396       1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    397        1.1  wrstuden 		/*
    398        1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    399        1.7     assar 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    400        1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    401       1.20      yamt 		 * going to do i/o on it). vop_lookup doesn't call bypass
    402        1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    403        1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    404        1.1  wrstuden 		 */
    405        1.1  wrstuden 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    406       1.19      yamt 		if (error) {
    407       1.19      yamt 			vput(**vppp);
    408       1.19      yamt 			**vppp = NULL;
    409       1.19      yamt 		}
    410        1.1  wrstuden 	}
    411        1.1  wrstuden 
    412        1.1  wrstuden  out:
    413        1.1  wrstuden 	return (error);
    414        1.1  wrstuden }
    415        1.1  wrstuden 
    416        1.1  wrstuden /*
    417        1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    418        1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    419        1.1  wrstuden  * if this layer is mounted read-only.
    420        1.1  wrstuden  */
    421        1.1  wrstuden int
    422        1.1  wrstuden layer_lookup(v)
    423        1.1  wrstuden 	void *v;
    424        1.1  wrstuden {
    425        1.1  wrstuden 	struct vop_lookup_args /* {
    426        1.1  wrstuden 		struct vnodeop_desc *a_desc;
    427        1.1  wrstuden 		struct vnode * a_dvp;
    428        1.1  wrstuden 		struct vnode ** a_vpp;
    429        1.1  wrstuden 		struct componentname * a_cnp;
    430        1.1  wrstuden 	} */ *ap = v;
    431        1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    432        1.1  wrstuden 	int flags = cnp->cn_flags;
    433        1.1  wrstuden 	struct vnode *dvp, *vp, *ldvp;
    434        1.1  wrstuden 	int error, r;
    435        1.1  wrstuden 
    436        1.1  wrstuden 	dvp = ap->a_dvp;
    437        1.1  wrstuden 
    438        1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    439        1.1  wrstuden 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    440        1.1  wrstuden 		return (EROFS);
    441        1.1  wrstuden 
    442        1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    443        1.1  wrstuden 	ap->a_dvp = ldvp;
    444        1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    445        1.1  wrstuden 	vp = *ap->a_vpp;
    446       1.18      yamt 	*ap->a_vpp = NULL;
    447        1.1  wrstuden 
    448        1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    449        1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    450        1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    451        1.1  wrstuden 		error = EROFS;
    452        1.1  wrstuden 	/*
    453       1.24     perry 	 * We must do the same locking and unlocking at this layer as
    454        1.1  wrstuden 	 * is done in the layers below us. It used to be we would try
    455        1.1  wrstuden 	 * to guess based on what was set with the flags and error codes.
    456        1.1  wrstuden 	 *
    457        1.1  wrstuden 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    458        1.1  wrstuden 	 * tell us if it released the parent vnode, and we adjust the
    459        1.1  wrstuden 	 * upper node accordingly. We can't just look at the lock states
    460        1.1  wrstuden 	 * of the lower nodes as someone else might have come along and
    461        1.1  wrstuden 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    462        1.1  wrstuden 	 */
    463        1.1  wrstuden 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    464        1.1  wrstuden 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    465        1.1  wrstuden 	}
    466        1.1  wrstuden 	if (ldvp == vp) {
    467        1.1  wrstuden 		/*
    468        1.1  wrstuden 		 * Did lookup on "." or ".." in the root node of a mount point.
    469        1.1  wrstuden 		 * So we return dvp after a VREF.
    470        1.1  wrstuden 		 */
    471        1.1  wrstuden 		*ap->a_vpp = dvp;
    472        1.1  wrstuden 		VREF(dvp);
    473        1.1  wrstuden 		vrele(vp);
    474        1.1  wrstuden 	} else if (vp != NULL) {
    475        1.1  wrstuden 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    476       1.19      yamt 		if (error) {
    477       1.19      yamt 			vput(vp);
    478       1.19      yamt 			if (cnp->cn_flags & PDIRUNLOCK) {
    479       1.21  wrstuden 				if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
    480       1.21  wrstuden 					cnp->cn_flags &= ~PDIRUNLOCK;
    481       1.19      yamt 			}
    482       1.19      yamt 		}
    483        1.1  wrstuden 	}
    484        1.1  wrstuden 	return (error);
    485        1.1  wrstuden }
    486        1.1  wrstuden 
    487        1.1  wrstuden /*
    488        1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    489        1.1  wrstuden  */
    490        1.1  wrstuden int
    491        1.1  wrstuden layer_setattr(v)
    492        1.1  wrstuden 	void *v;
    493        1.1  wrstuden {
    494        1.1  wrstuden 	struct vop_setattr_args /* {
    495        1.1  wrstuden 		struct vnodeop_desc *a_desc;
    496        1.1  wrstuden 		struct vnode *a_vp;
    497        1.1  wrstuden 		struct vattr *a_vap;
    498  1.26.12.1      tron 		kauth_cred_t a_cred;
    499       1.26  christos 		struct lwp *a_l;
    500        1.1  wrstuden 	} */ *ap = v;
    501        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    502        1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    503        1.1  wrstuden 
    504        1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    505        1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    506        1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    507        1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    508        1.1  wrstuden 		return (EROFS);
    509        1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    510        1.1  wrstuden  		switch (vp->v_type) {
    511        1.1  wrstuden  		case VDIR:
    512        1.1  wrstuden  			return (EISDIR);
    513        1.1  wrstuden  		case VCHR:
    514        1.1  wrstuden  		case VBLK:
    515        1.1  wrstuden  		case VSOCK:
    516        1.1  wrstuden  		case VFIFO:
    517        1.1  wrstuden 			return (0);
    518        1.1  wrstuden 		case VREG:
    519        1.1  wrstuden 		case VLNK:
    520        1.1  wrstuden  		default:
    521        1.1  wrstuden 			/*
    522        1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    523        1.1  wrstuden 			 * mounted read-only.
    524        1.1  wrstuden 			 */
    525        1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    526        1.1  wrstuden 				return (EROFS);
    527        1.1  wrstuden 		}
    528        1.1  wrstuden 	}
    529        1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    530        1.1  wrstuden }
    531        1.1  wrstuden 
    532        1.1  wrstuden /*
    533        1.1  wrstuden  *  We handle getattr only to change the fsid.
    534        1.1  wrstuden  */
    535        1.1  wrstuden int
    536        1.1  wrstuden layer_getattr(v)
    537        1.1  wrstuden 	void *v;
    538        1.1  wrstuden {
    539        1.1  wrstuden 	struct vop_getattr_args /* {
    540        1.1  wrstuden 		struct vnode *a_vp;
    541        1.1  wrstuden 		struct vattr *a_vap;
    542  1.26.12.1      tron 		kauth_cred_t a_cred;
    543       1.26  christos 		struct lwp *a_l;
    544        1.1  wrstuden 	} */ *ap = v;
    545        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    546        1.1  wrstuden 	int error;
    547        1.1  wrstuden 
    548        1.1  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    549        1.1  wrstuden 		return (error);
    550        1.1  wrstuden 	/* Requires that arguments be restored. */
    551       1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    552        1.1  wrstuden 	return (0);
    553        1.1  wrstuden }
    554        1.1  wrstuden 
    555        1.1  wrstuden int
    556        1.1  wrstuden layer_access(v)
    557        1.1  wrstuden 	void *v;
    558        1.1  wrstuden {
    559        1.1  wrstuden 	struct vop_access_args /* {
    560        1.1  wrstuden 		struct vnode *a_vp;
    561        1.1  wrstuden 		int  a_mode;
    562  1.26.12.1      tron 		kauth_cred_t a_cred;
    563       1.26  christos 		struct lwp *a_l;
    564        1.1  wrstuden 	} */ *ap = v;
    565        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    566        1.1  wrstuden 	mode_t mode = ap->a_mode;
    567        1.1  wrstuden 
    568        1.1  wrstuden 	/*
    569        1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    570        1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    571        1.1  wrstuden 	 * character device resident on the file system.
    572        1.1  wrstuden 	 */
    573        1.1  wrstuden 	if (mode & VWRITE) {
    574        1.1  wrstuden 		switch (vp->v_type) {
    575        1.1  wrstuden 		case VDIR:
    576        1.1  wrstuden 		case VLNK:
    577        1.1  wrstuden 		case VREG:
    578        1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    579        1.1  wrstuden 				return (EROFS);
    580        1.1  wrstuden 			break;
    581        1.1  wrstuden 		default:
    582        1.1  wrstuden 			break;
    583        1.1  wrstuden 		}
    584        1.1  wrstuden 	}
    585        1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    586        1.1  wrstuden }
    587        1.1  wrstuden 
    588        1.1  wrstuden /*
    589        1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    590        1.1  wrstuden  */
    591        1.1  wrstuden int
    592        1.1  wrstuden layer_open(v)
    593        1.1  wrstuden 	void *v;
    594        1.1  wrstuden {
    595        1.1  wrstuden 	struct vop_open_args *ap = v;
    596        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    597        1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    598        1.1  wrstuden 
    599        1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    600        1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    601        1.1  wrstuden 		return ENXIO;
    602        1.1  wrstuden 
    603        1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    604        1.1  wrstuden }
    605        1.1  wrstuden 
    606        1.1  wrstuden /*
    607        1.1  wrstuden  * We need to process our own vnode lock and then clear the
    608        1.1  wrstuden  * interlock flag as it applies only to our vnode, not the
    609        1.1  wrstuden  * vnodes below us on the stack.
    610        1.1  wrstuden  */
    611        1.1  wrstuden int
    612        1.1  wrstuden layer_lock(v)
    613        1.1  wrstuden 	void *v;
    614        1.1  wrstuden {
    615        1.1  wrstuden 	struct vop_lock_args /* {
    616        1.1  wrstuden 		struct vnode *a_vp;
    617        1.1  wrstuden 		int a_flags;
    618        1.1  wrstuden 		struct proc *a_p;
    619        1.1  wrstuden 	} */ *ap = v;
    620        1.1  wrstuden 	struct vnode *vp = ap->a_vp, *lowervp;
    621        1.1  wrstuden 	int	flags = ap->a_flags, error;
    622        1.1  wrstuden 
    623        1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    624        1.1  wrstuden 		/*
    625        1.1  wrstuden 		 * The lower level has exported a struct lock to us. Use
    626        1.1  wrstuden 		 * it so that all vnodes in the stack lock and unlock
    627        1.1  wrstuden 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    628        1.1  wrstuden 		 * decommissions the lock - just because our vnode is
    629        1.1  wrstuden 		 * going away doesn't mean the struct lock below us is.
    630        1.1  wrstuden 		 * LK_EXCLUSIVE is fine.
    631        1.1  wrstuden 		 */
    632        1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    633        1.1  wrstuden 			return(lockmgr(vp->v_vnlock,
    634        1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    635        1.1  wrstuden 				&vp->v_interlock));
    636        1.1  wrstuden 		} else
    637        1.1  wrstuden 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    638        1.1  wrstuden 	} else {
    639        1.1  wrstuden 		/*
    640        1.1  wrstuden 		 * Ahh well. It would be nice if the fs we're over would
    641        1.1  wrstuden 		 * export a struct lock for us to use, but it doesn't.
    642        1.1  wrstuden 		 *
    643        1.1  wrstuden 		 * To prevent race conditions involving doing a lookup
    644        1.1  wrstuden 		 * on "..", we have to lock the lower node, then lock our
    645        1.1  wrstuden 		 * node. Most of the time it won't matter that we lock our
    646        1.1  wrstuden 		 * node (as any locking would need the lower one locked
    647        1.1  wrstuden 		 * first). But we can LK_DRAIN the upper lock as a step
    648        1.1  wrstuden 		 * towards decomissioning it.
    649        1.1  wrstuden 		 */
    650        1.1  wrstuden 		lowervp = LAYERVPTOLOWERVP(vp);
    651        1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    652        1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    653        1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    654        1.1  wrstuden 		}
    655        1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    656        1.1  wrstuden 			error = VOP_LOCK(lowervp,
    657        1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    658        1.1  wrstuden 		} else
    659        1.1  wrstuden 			error = VOP_LOCK(lowervp, flags);
    660        1.1  wrstuden 		if (error)
    661        1.1  wrstuden 			return (error);
    662        1.1  wrstuden 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    663        1.1  wrstuden 			VOP_UNLOCK(lowervp, 0);
    664        1.1  wrstuden 		}
    665        1.1  wrstuden 		return (error);
    666        1.1  wrstuden 	}
    667        1.1  wrstuden }
    668        1.1  wrstuden 
    669        1.1  wrstuden /*
    670        1.1  wrstuden  */
    671        1.1  wrstuden int
    672        1.1  wrstuden layer_unlock(v)
    673        1.1  wrstuden 	void *v;
    674        1.1  wrstuden {
    675        1.1  wrstuden 	struct vop_unlock_args /* {
    676        1.1  wrstuden 		struct vnode *a_vp;
    677        1.1  wrstuden 		int a_flags;
    678        1.1  wrstuden 		struct proc *a_p;
    679        1.1  wrstuden 	} */ *ap = v;
    680        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    681        1.1  wrstuden 	int	flags = ap->a_flags;
    682        1.1  wrstuden 
    683        1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    684        1.1  wrstuden 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    685        1.1  wrstuden 			&vp->v_interlock));
    686        1.1  wrstuden 	} else {
    687        1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    688        1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    689        1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    690        1.1  wrstuden 		}
    691        1.1  wrstuden 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    692        1.1  wrstuden 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    693        1.1  wrstuden 			&vp->v_interlock));
    694        1.1  wrstuden 	}
    695        1.1  wrstuden }
    696        1.1  wrstuden 
    697        1.1  wrstuden int
    698        1.1  wrstuden layer_islocked(v)
    699        1.1  wrstuden 	void *v;
    700        1.1  wrstuden {
    701        1.1  wrstuden 	struct vop_islocked_args /* {
    702        1.1  wrstuden 		struct vnode *a_vp;
    703        1.1  wrstuden 	} */ *ap = v;
    704        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    705       1.22      yamt 	int lkstatus;
    706        1.1  wrstuden 
    707        1.1  wrstuden 	if (vp->v_vnlock != NULL)
    708       1.22      yamt 		return lockstatus(vp->v_vnlock);
    709       1.22      yamt 
    710       1.22      yamt 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
    711       1.22      yamt 	if (lkstatus)
    712       1.22      yamt 		return lkstatus;
    713       1.22      yamt 
    714       1.22      yamt 	return lockstatus(&vp->v_lock);
    715        1.1  wrstuden }
    716        1.1  wrstuden 
    717        1.1  wrstuden /*
    718        1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    719        1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    720        1.1  wrstuden  * reclaimed; otherwise,
    721        1.1  wrstuden  * pass it through to the underlying layer.
    722        1.1  wrstuden  *
    723        1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    724        1.1  wrstuden  */
    725        1.1  wrstuden 
    726        1.1  wrstuden int
    727        1.1  wrstuden layer_fsync(v)
    728        1.1  wrstuden 	void *v;
    729        1.1  wrstuden {
    730        1.1  wrstuden 	struct vop_fsync_args /* {
    731        1.1  wrstuden 		struct vnode *a_vp;
    732  1.26.12.1      tron 		kauth_cred_t a_cred;
    733        1.1  wrstuden 		int  a_flags;
    734        1.4      fvdl 		off_t offlo;
    735        1.4      fvdl 		off_t offhi;
    736       1.26  christos 		struct lwp *a_l;
    737        1.1  wrstuden 	} */ *ap = v;
    738        1.1  wrstuden 
    739        1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    740        1.1  wrstuden 		return 0;
    741        1.1  wrstuden 	}
    742        1.1  wrstuden 
    743        1.1  wrstuden 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    744        1.1  wrstuden }
    745        1.1  wrstuden 
    746        1.1  wrstuden 
    747        1.1  wrstuden int
    748        1.1  wrstuden layer_inactive(v)
    749        1.1  wrstuden 	void *v;
    750        1.1  wrstuden {
    751        1.1  wrstuden 	struct vop_inactive_args /* {
    752        1.1  wrstuden 		struct vnode *a_vp;
    753       1.26  christos 		struct lwp *a_l;
    754        1.1  wrstuden 	} */ *ap = v;
    755        1.5     enami 	struct vnode *vp = ap->a_vp;
    756        1.1  wrstuden 
    757        1.1  wrstuden 	/*
    758        1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    759        1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    760        1.1  wrstuden 	 * so that until then our layer_node is in the
    761        1.1  wrstuden 	 * cache and reusable.
    762        1.1  wrstuden 	 *
    763        1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    764        1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    765        1.1  wrstuden 	 * with capabilities (v_id)
    766        1.1  wrstuden 	 * like they do in the name lookup cache code.
    767        1.1  wrstuden 	 * That's too much work for now.
    768        1.1  wrstuden 	 */
    769        1.5     enami 	VOP_UNLOCK(vp, 0);
    770        1.5     enami 
    771       1.16  wrstuden 	/*
    772       1.16  wrstuden 	 * ..., but don't cache the device node. Also, if we did a
    773       1.16  wrstuden 	 * remove, don't cache the node.
    774       1.16  wrstuden 	 */
    775       1.16  wrstuden 	if (vp->v_type == VBLK || vp->v_type == VCHR
    776       1.16  wrstuden 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
    777        1.5     enami 		vgone(vp);
    778        1.1  wrstuden 	return (0);
    779        1.1  wrstuden }
    780        1.1  wrstuden 
    781        1.1  wrstuden int
    782       1.16  wrstuden layer_remove(v)
    783       1.16  wrstuden 	void *v;
    784       1.16  wrstuden {
    785       1.16  wrstuden 	struct vop_remove_args /* {
    786       1.16  wrstuden 		struct vonde		*a_dvp;
    787       1.16  wrstuden 		struct vnode		*a_vp;
    788       1.16  wrstuden 		struct componentname	*a_cnp;
    789       1.16  wrstuden 	} */ *ap = v;
    790       1.16  wrstuden 
    791       1.16  wrstuden 	int		error;
    792       1.16  wrstuden 	struct vnode	*vp = ap->a_vp;
    793       1.16  wrstuden 
    794       1.16  wrstuden 	vref(vp);
    795       1.16  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    796       1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    797       1.16  wrstuden 
    798       1.16  wrstuden 	vrele(vp);
    799       1.16  wrstuden 
    800       1.16  wrstuden 	return (error);
    801       1.16  wrstuden }
    802       1.16  wrstuden 
    803       1.16  wrstuden int
    804       1.17      yamt layer_rename(v)
    805       1.17      yamt 	void *v;
    806       1.17      yamt {
    807       1.17      yamt 	struct vop_rename_args  /* {
    808       1.17      yamt 		struct vnode		*a_fdvp;
    809       1.17      yamt 		struct vnode		*a_fvp;
    810       1.17      yamt 		struct componentname	*a_fcnp;
    811       1.17      yamt 		struct vnode		*a_tdvp;
    812       1.17      yamt 		struct vnode		*a_tvp;
    813       1.17      yamt 		struct componentname	*a_tcnp;
    814       1.17      yamt 	} */ *ap = v;
    815       1.17      yamt 
    816       1.17      yamt 	int error;
    817       1.17      yamt 	struct vnode *fdvp = ap->a_fdvp;
    818       1.17      yamt 	struct vnode *tvp;
    819       1.17      yamt 
    820       1.17      yamt 	tvp = ap->a_tvp;
    821       1.17      yamt 	if (tvp) {
    822       1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    823       1.17      yamt 			tvp = NULL;
    824       1.17      yamt 		else
    825       1.17      yamt 			vref(tvp);
    826       1.17      yamt 	}
    827       1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    828       1.17      yamt 	if (tvp) {
    829       1.17      yamt 		if (error == 0)
    830       1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    831       1.17      yamt 		vrele(tvp);
    832       1.17      yamt 	}
    833       1.17      yamt 
    834       1.17      yamt 	return (error);
    835       1.17      yamt }
    836       1.17      yamt 
    837       1.17      yamt int
    838       1.23   hannken layer_rmdir(v)
    839       1.23   hannken 	void *v;
    840       1.23   hannken {
    841       1.23   hannken 	struct vop_rmdir_args /* {
    842       1.23   hannken 		struct vnode		*a_dvp;
    843       1.23   hannken 		struct vnode		*a_vp;
    844       1.23   hannken 		struct componentname	*a_cnp;
    845       1.23   hannken 	} */ *ap = v;
    846       1.23   hannken 	int		error;
    847       1.23   hannken 	struct vnode	*vp = ap->a_vp;
    848       1.23   hannken 
    849       1.23   hannken 	vref(vp);
    850       1.23   hannken 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    851       1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    852       1.23   hannken 
    853       1.23   hannken 	vrele(vp);
    854       1.23   hannken 
    855       1.23   hannken 	return (error);
    856       1.23   hannken }
    857       1.23   hannken 
    858       1.23   hannken int
    859        1.1  wrstuden layer_reclaim(v)
    860        1.1  wrstuden 	void *v;
    861        1.1  wrstuden {
    862        1.1  wrstuden 	struct vop_reclaim_args /* {
    863        1.1  wrstuden 		struct vnode *a_vp;
    864       1.26  christos 		struct lwp *a_l;
    865        1.1  wrstuden 	} */ *ap = v;
    866        1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    867        1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    868        1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    869        1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    870        1.1  wrstuden 
    871        1.1  wrstuden 	/*
    872        1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    873        1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    874        1.1  wrstuden 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    875        1.1  wrstuden 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    876        1.1  wrstuden 	 * set.
    877        1.1  wrstuden 	 */
    878        1.1  wrstuden 	/* After this assignment, this node will not be re-used. */
    879        1.1  wrstuden 	if ((vp == lmp->layerm_rootvp)) {
    880        1.1  wrstuden 		/*
    881        1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    882        1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    883        1.1  wrstuden 		 *
    884        1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    885        1.1  wrstuden 		 */
    886        1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    887        1.1  wrstuden 	}
    888        1.1  wrstuden 	xp->layer_lowervp = NULL;
    889        1.1  wrstuden 	simple_lock(&lmp->layerm_hashlock);
    890        1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    891        1.1  wrstuden 	simple_unlock(&lmp->layerm_hashlock);
    892        1.1  wrstuden 	FREE(vp->v_data, M_TEMP);
    893        1.1  wrstuden 	vp->v_data = NULL;
    894        1.1  wrstuden 	vrele (lowervp);
    895        1.1  wrstuden 	return (0);
    896        1.1  wrstuden }
    897        1.1  wrstuden 
    898        1.1  wrstuden /*
    899        1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    900        1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    901        1.1  wrstuden  * i/o. :-)
    902        1.1  wrstuden  */
    903        1.1  wrstuden int
    904        1.1  wrstuden layer_bmap(v)
    905        1.1  wrstuden 	void *v;
    906        1.1  wrstuden {
    907        1.1  wrstuden 	struct vop_bmap_args /* {
    908        1.1  wrstuden 		struct vnode *a_vp;
    909        1.1  wrstuden 		daddr_t  a_bn;
    910        1.1  wrstuden 		struct vnode **a_vpp;
    911        1.1  wrstuden 		daddr_t *a_bnp;
    912        1.1  wrstuden 		int *a_runp;
    913        1.1  wrstuden 	} */ *ap = v;
    914        1.1  wrstuden 	struct vnode *vp;
    915        1.1  wrstuden 
    916        1.1  wrstuden 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    917        1.1  wrstuden 
    918        1.1  wrstuden 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    919        1.1  wrstuden }
    920        1.1  wrstuden 
    921        1.1  wrstuden int
    922        1.1  wrstuden layer_print(v)
    923        1.1  wrstuden 	void *v;
    924        1.1  wrstuden {
    925        1.1  wrstuden 	struct vop_print_args /* {
    926        1.1  wrstuden 		struct vnode *a_vp;
    927        1.1  wrstuden 	} */ *ap = v;
    928        1.3  augustss 	struct vnode *vp = ap->a_vp;
    929        1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    930        1.1  wrstuden 	return (0);
    931        1.1  wrstuden }
    932        1.1  wrstuden 
    933        1.1  wrstuden /*
    934       1.14   hannken  * XXX - vop_bwrite must be hand coded because it has no
    935        1.1  wrstuden  * vnode in its arguments.
    936        1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    937        1.1  wrstuden  */
    938        1.1  wrstuden int
    939        1.1  wrstuden layer_bwrite(v)
    940        1.1  wrstuden 	void *v;
    941        1.1  wrstuden {
    942        1.1  wrstuden 	struct vop_bwrite_args /* {
    943        1.1  wrstuden 		struct buf *a_bp;
    944        1.1  wrstuden 	} */ *ap = v;
    945        1.1  wrstuden 	struct buf *bp = ap->a_bp;
    946        1.1  wrstuden 	int error;
    947        1.1  wrstuden 	struct vnode *savedvp;
    948        1.1  wrstuden 
    949        1.1  wrstuden 	savedvp = bp->b_vp;
    950        1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    951        1.1  wrstuden 
    952        1.1  wrstuden 	error = VOP_BWRITE(bp);
    953        1.1  wrstuden 
    954        1.1  wrstuden 	bp->b_vp = savedvp;
    955        1.1  wrstuden 
    956        1.1  wrstuden 	return (error);
    957       1.10       chs }
    958       1.10       chs 
    959       1.10       chs int
    960       1.10       chs layer_getpages(v)
    961       1.10       chs 	void *v;
    962       1.10       chs {
    963       1.10       chs 	struct vop_getpages_args /* {
    964       1.10       chs 		struct vnode *a_vp;
    965       1.10       chs 		voff_t a_offset;
    966       1.10       chs 		struct vm_page **a_m;
    967       1.10       chs 		int *a_count;
    968       1.10       chs 		int a_centeridx;
    969       1.10       chs 		vm_prot_t a_access_type;
    970       1.10       chs 		int a_advice;
    971       1.10       chs 		int a_flags;
    972       1.10       chs 	} */ *ap = v;
    973       1.10       chs 	struct vnode *vp = ap->a_vp;
    974       1.10       chs 	int error;
    975       1.10       chs 
    976       1.10       chs 	/*
    977       1.10       chs 	 * just pass the request on to the underlying layer.
    978       1.10       chs 	 */
    979       1.10       chs 
    980       1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    981       1.10       chs 		return EBUSY;
    982       1.10       chs 	}
    983       1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    984       1.10       chs 	simple_unlock(&vp->v_interlock);
    985       1.10       chs 	simple_lock(&ap->a_vp->v_interlock);
    986       1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    987       1.10       chs 	return error;
    988       1.10       chs }
    989       1.10       chs 
    990       1.10       chs int
    991       1.10       chs layer_putpages(v)
    992       1.10       chs 	void *v;
    993       1.10       chs {
    994       1.10       chs 	struct vop_putpages_args /* {
    995       1.10       chs 		struct vnode *a_vp;
    996       1.10       chs 		voff_t a_offlo;
    997       1.10       chs 		voff_t a_offhi;
    998       1.10       chs 		int a_flags;
    999       1.10       chs 	} */ *ap = v;
   1000       1.10       chs 	struct vnode *vp = ap->a_vp;
   1001       1.10       chs 	int error;
   1002       1.10       chs 
   1003       1.10       chs 	/*
   1004       1.10       chs 	 * just pass the request on to the underlying layer.
   1005       1.10       chs 	 */
   1006       1.10       chs 
   1007       1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
   1008       1.10       chs 	simple_unlock(&vp->v_interlock);
   1009       1.10       chs 	simple_lock(&ap->a_vp->v_interlock);
   1010       1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
   1011       1.10       chs 	return error;
   1012        1.1  wrstuden }
   1013