Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.28.2.2.6.1
      1  1.28.2.2.6.1       riz /*	$NetBSD: layer_vnops.c,v 1.28.2.2.6.1 2012/11/14 20:15:37 riz Exp $	*/
      2           1.1  wrstuden 
      3           1.1  wrstuden /*
      4           1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5           1.1  wrstuden  * All rights reserved.
      6           1.1  wrstuden  *
      7           1.1  wrstuden  * This software was written by William Studenmund of the
      8           1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9           1.1  wrstuden  *
     10           1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11           1.1  wrstuden  * modification, are permitted provided that the following conditions
     12           1.1  wrstuden  * are met:
     13           1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14           1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15           1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16           1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17           1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18           1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19           1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20           1.1  wrstuden  *    products derived from this software without specific prior written
     21           1.1  wrstuden  *    permission.
     22           1.1  wrstuden  *
     23           1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24           1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25           1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26           1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27           1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28           1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29           1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30           1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31           1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32           1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33           1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34           1.1  wrstuden  */
     35           1.1  wrstuden /*
     36           1.1  wrstuden  * Copyright (c) 1992, 1993
     37           1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     38           1.1  wrstuden  *
     39           1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     40           1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     41           1.1  wrstuden  *
     42           1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     43           1.1  wrstuden  * modification, are permitted provided that the following conditions
     44           1.1  wrstuden  * are met:
     45           1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     46           1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     47           1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     48           1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     49           1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     50          1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     51           1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     52           1.1  wrstuden  *    without specific prior written permission.
     53           1.1  wrstuden  *
     54           1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55           1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56           1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57           1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58           1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59           1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60           1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61           1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62           1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63           1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64           1.1  wrstuden  * SUCH DAMAGE.
     65           1.1  wrstuden  *
     66           1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67           1.1  wrstuden  *
     68           1.1  wrstuden  * Ancestors:
     69           1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  1.28.2.2.6.1       riz  *	$Id: layer_vnops.c,v 1.28.2.2.6.1 2012/11/14 20:15:37 riz Exp $
     71  1.28.2.2.6.1       riz  *	$Id: layer_vnops.c,v 1.28.2.2.6.1 2012/11/14 20:15:37 riz Exp $
     72           1.1  wrstuden  *	...and...
     73           1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74           1.1  wrstuden  */
     75           1.1  wrstuden 
     76           1.1  wrstuden /*
     77           1.1  wrstuden  * Null Layer vnode routines.
     78           1.1  wrstuden  *
     79           1.1  wrstuden  * (See mount_null(8) for more information.)
     80           1.1  wrstuden  *
     81           1.1  wrstuden  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     82          1.12       wiz  * the core implementation of the null file system and most other stacked
     83           1.1  wrstuden  * fs's. The description below refers to the null file system, but the
     84           1.1  wrstuden  * services provided by the layer* files are useful for all layered fs's.
     85           1.1  wrstuden  *
     86           1.1  wrstuden  * The null layer duplicates a portion of the file system
     87           1.1  wrstuden  * name space under a new name.  In this respect, it is
     88           1.1  wrstuden  * similar to the loopback file system.  It differs from
     89           1.1  wrstuden  * the loopback fs in two respects:  it is implemented using
     90           1.1  wrstuden  * a stackable layers techniques, and it's "null-node"s stack above
     91           1.1  wrstuden  * all lower-layer vnodes, not just over directory vnodes.
     92           1.1  wrstuden  *
     93           1.1  wrstuden  * The null layer has two purposes.  First, it serves as a demonstration
     94           1.1  wrstuden  * of layering by proving a layer which does nothing.  (It actually
     95           1.1  wrstuden  * does everything the loopback file system does, which is slightly
     96           1.1  wrstuden  * more than nothing.)  Second, the null layer can serve as a prototype
     97           1.1  wrstuden  * layer.  Since it provides all necessary layer framework,
     98           1.1  wrstuden  * new file system layers can be created very easily be starting
     99           1.1  wrstuden  * with a null layer.
    100           1.1  wrstuden  *
    101           1.1  wrstuden  * The remainder of the man page examines the null layer as a basis
    102           1.1  wrstuden  * for constructing new layers.
    103           1.1  wrstuden  *
    104           1.1  wrstuden  *
    105           1.1  wrstuden  * INSTANTIATING NEW NULL LAYERS
    106           1.1  wrstuden  *
    107           1.1  wrstuden  * New null layers are created with mount_null(8).
    108           1.1  wrstuden  * Mount_null(8) takes two arguments, the pathname
    109           1.1  wrstuden  * of the lower vfs (target-pn) and the pathname where the null
    110           1.1  wrstuden  * layer will appear in the namespace (alias-pn).  After
    111           1.1  wrstuden  * the null layer is put into place, the contents
    112           1.1  wrstuden  * of target-pn subtree will be aliased under alias-pn.
    113           1.1  wrstuden  *
    114           1.1  wrstuden  * It is conceivable that other overlay filesystems will take different
    115           1.1  wrstuden  * parameters. For instance, data migration or access controll layers might
    116           1.1  wrstuden  * only take one pathname which will serve both as the target-pn and
    117           1.1  wrstuden  * alias-pn described above.
    118           1.1  wrstuden  *
    119           1.1  wrstuden  *
    120           1.1  wrstuden  * OPERATION OF A NULL LAYER
    121           1.1  wrstuden  *
    122           1.1  wrstuden  * The null layer is the minimum file system layer,
    123           1.1  wrstuden  * simply bypassing all possible operations to the lower layer
    124           1.1  wrstuden  * for processing there.  The majority of its activity centers
    125          1.13       wiz  * on the bypass routine, through which nearly all vnode operations
    126           1.1  wrstuden  * pass.
    127           1.1  wrstuden  *
    128           1.1  wrstuden  * The bypass routine accepts arbitrary vnode operations for
    129           1.1  wrstuden  * handling by the lower layer.  It begins by examing vnode
    130           1.1  wrstuden  * operation arguments and replacing any layered nodes by their
    131          1.13       wiz  * lower-layer equivalents.  It then invokes the operation
    132           1.1  wrstuden  * on the lower layer.  Finally, it replaces the layered nodes
    133           1.1  wrstuden  * in the arguments and, if a vnode is return by the operation,
    134           1.1  wrstuden  * stacks a layered node on top of the returned vnode.
    135           1.1  wrstuden  *
    136           1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    137           1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    138           1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    139           1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    140           1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    141           1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    142           1.1  wrstuden  *
    143           1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    144           1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    145           1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    146           1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    147           1.1  wrstuden  * use the layerm_bypass routine.
    148           1.1  wrstuden  *
    149           1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    150           1.1  wrstuden  * of operations are special cased, and handled by the layered fs. One
    151           1.1  wrstuden  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    152           1.1  wrstuden  * layer_fsync, perform layer-specific manipulation in addition to calling
    153           1.1  wrstuden  * the bypass routine. The other group
    154           1.1  wrstuden 
    155           1.1  wrstuden  * Although bypass handles most operations, vop_getattr, vop_lock,
    156           1.1  wrstuden  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    157           1.1  wrstuden  * bypassed. Vop_getattr must change the fsid being returned.
    158           1.1  wrstuden  * Vop_lock and vop_unlock must handle any locking for the
    159           1.1  wrstuden  * current vnode as well as pass the lock request down.
    160           1.1  wrstuden  * Vop_inactive and vop_reclaim are not bypassed so that
    161           1.1  wrstuden  * they can handle freeing null-layer specific data. Vop_print
    162           1.1  wrstuden  * is not bypassed to avoid excessive debugging information.
    163           1.1  wrstuden  * Also, certain vnode operations change the locking state within
    164           1.1  wrstuden  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    165           1.1  wrstuden  * and symlink). Ideally these operations should not change the
    166           1.1  wrstuden  * lock state, but should be changed to let the caller of the
    167           1.1  wrstuden  * function unlock them. Otherwise all intermediate vnode layers
    168           1.1  wrstuden  * (such as union, umapfs, etc) must catch these functions to do
    169           1.1  wrstuden  * the necessary locking at their layer.
    170           1.1  wrstuden  *
    171           1.1  wrstuden  *
    172           1.1  wrstuden  * INSTANTIATING VNODE STACKS
    173           1.1  wrstuden  *
    174           1.1  wrstuden  * Mounting associates the null layer with a lower layer,
    175           1.1  wrstuden  * effect stacking two VFSes.  Vnode stacks are instead
    176           1.1  wrstuden  * created on demand as files are accessed.
    177           1.1  wrstuden  *
    178           1.1  wrstuden  * The initial mount creates a single vnode stack for the
    179           1.1  wrstuden  * root of the new null layer.  All other vnode stacks
    180           1.1  wrstuden  * are created as a result of vnode operations on
    181           1.1  wrstuden  * this or other null vnode stacks.
    182           1.1  wrstuden  *
    183          1.13       wiz  * New vnode stacks come into existence as a result of
    184          1.24     perry  * an operation which returns a vnode.
    185           1.1  wrstuden  * The bypass routine stacks a null-node above the new
    186           1.1  wrstuden  * vnode before returning it to the caller.
    187           1.1  wrstuden  *
    188           1.1  wrstuden  * For example, imagine mounting a null layer with
    189           1.1  wrstuden  * "mount_null /usr/include /dev/layer/null".
    190           1.1  wrstuden  * Changing directory to /dev/layer/null will assign
    191           1.1  wrstuden  * the root null-node (which was created when the null layer was mounted).
    192           1.1  wrstuden  * Now consider opening "sys".  A vop_lookup would be
    193           1.1  wrstuden  * done on the root null-node.  This operation would bypass through
    194          1.24     perry  * to the lower layer which would return a vnode representing
    195           1.1  wrstuden  * the UFS "sys".  layer_bypass then builds a null-node
    196           1.1  wrstuden  * aliasing the UFS "sys" and returns this to the caller.
    197           1.1  wrstuden  * Later operations on the null-node "sys" will repeat this
    198           1.1  wrstuden  * process when constructing other vnode stacks.
    199           1.1  wrstuden  *
    200           1.1  wrstuden  *
    201           1.1  wrstuden  * CREATING OTHER FILE SYSTEM LAYERS
    202           1.1  wrstuden  *
    203           1.1  wrstuden  * One of the easiest ways to construct new file system layers is to make
    204           1.1  wrstuden  * a copy of the null layer, rename all files and variables, and
    205           1.1  wrstuden  * then begin modifing the copy.  Sed can be used to easily rename
    206           1.1  wrstuden  * all variables.
    207           1.1  wrstuden  *
    208          1.24     perry  * The umap layer is an example of a layer descended from the
    209           1.1  wrstuden  * null layer.
    210           1.1  wrstuden  *
    211           1.1  wrstuden  *
    212           1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    213           1.1  wrstuden  *
    214          1.24     perry  * There are two techniques to invoke operations on a lower layer
    215           1.1  wrstuden  * when the operation cannot be completely bypassed.  Each method
    216           1.1  wrstuden  * is appropriate in different situations.  In both cases,
    217           1.1  wrstuden  * it is the responsibility of the aliasing layer to make
    218           1.1  wrstuden  * the operation arguments "correct" for the lower layer
    219           1.1  wrstuden  * by mapping an vnode arguments to the lower layer.
    220           1.1  wrstuden  *
    221           1.1  wrstuden  * The first approach is to call the aliasing layer's bypass routine.
    222           1.1  wrstuden  * This method is most suitable when you wish to invoke the operation
    223          1.13       wiz  * currently being handled on the lower layer.  It has the advantage
    224           1.1  wrstuden  * that the bypass routine already must do argument mapping.
    225           1.1  wrstuden  * An example of this is null_getattrs in the null layer.
    226           1.1  wrstuden  *
    227          1.13       wiz  * A second approach is to directly invoke vnode operations on
    228           1.1  wrstuden  * the lower layer with the VOP_OPERATIONNAME interface.
    229           1.1  wrstuden  * The advantage of this method is that it is easy to invoke
    230           1.1  wrstuden  * arbitrary operations on the lower layer.  The disadvantage
    231          1.13       wiz  * is that vnodes' arguments must be manually mapped.
    232           1.1  wrstuden  *
    233           1.1  wrstuden  */
    234           1.8     lukem 
    235           1.8     lukem #include <sys/cdefs.h>
    236  1.28.2.2.6.1       riz __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.28.2.2.6.1 2012/11/14 20:15:37 riz Exp $");
    237           1.1  wrstuden 
    238           1.1  wrstuden #include <sys/param.h>
    239           1.1  wrstuden #include <sys/systm.h>
    240           1.1  wrstuden #include <sys/proc.h>
    241           1.1  wrstuden #include <sys/time.h>
    242           1.1  wrstuden #include <sys/vnode.h>
    243           1.1  wrstuden #include <sys/mount.h>
    244           1.1  wrstuden #include <sys/namei.h>
    245           1.1  wrstuden #include <sys/malloc.h>
    246           1.1  wrstuden #include <sys/buf.h>
    247          1.27      elad #include <sys/kauth.h>
    248          1.27      elad 
    249           1.1  wrstuden #include <miscfs/genfs/layer.h>
    250           1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    251           1.1  wrstuden #include <miscfs/genfs/genfs.h>
    252           1.1  wrstuden 
    253           1.1  wrstuden 
    254           1.1  wrstuden /*
    255           1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    256           1.1  wrstuden  *		routine by John Heidemann.
    257           1.1  wrstuden  *	The new element for this version is that the whole nullfs
    258           1.1  wrstuden  * system gained the concept of locks on the lower node, and locks on
    259           1.1  wrstuden  * our nodes. When returning from a call to the lower layer, we may
    260           1.1  wrstuden  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    261           1.1  wrstuden  * macros provide this functionality.
    262           1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    263           1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    264           1.1  wrstuden  * robust to programmer errors.
    265           1.1  wrstuden  *    Define SAFETY to include some error checking code.
    266           1.1  wrstuden  *
    267           1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    268           1.1  wrstuden  *
    269           1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    270           1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    271           1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    272           1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    273           1.1  wrstuden  * since there are no such side-effects.
    274           1.1  wrstuden  *
    275           1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    276           1.1  wrstuden  * the passed-in node (typically they vput the node).
    277           1.1  wrstuden  *
    278           1.1  wrstuden  * This makes the following assumptions:
    279           1.1  wrstuden  * - only one returned vpp
    280           1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    281           1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    282           1.1  wrstuden  *   to determine what implementation of the op should be invoked
    283           1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    284           1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    285          1.24     perry  */
    286           1.1  wrstuden int
    287           1.1  wrstuden layer_bypass(v)
    288           1.1  wrstuden 	void *v;
    289           1.1  wrstuden {
    290           1.1  wrstuden 	struct vop_generic_args /* {
    291           1.1  wrstuden 		struct vnodeop_desc *a_desc;
    292           1.1  wrstuden 		<other random data follows, presumably>
    293           1.1  wrstuden 	} */ *ap = v;
    294          1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    295           1.3  augustss 	struct vnode **this_vp_p;
    296           1.1  wrstuden 	int error, error1;
    297           1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    298           1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    299           1.1  wrstuden 	struct vnode ***vppp;
    300           1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    301           1.1  wrstuden 	int reles, i, flags;
    302           1.1  wrstuden 
    303           1.1  wrstuden #ifdef SAFETY
    304           1.1  wrstuden 	/*
    305           1.1  wrstuden 	 * We require at least one vp.
    306           1.1  wrstuden 	 */
    307           1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    308           1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    309          1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    310           1.1  wrstuden #endif
    311           1.1  wrstuden 
    312          1.20      yamt 	vps_p[0] =
    313          1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    314           1.1  wrstuden 	vp0 = *vps_p[0];
    315           1.1  wrstuden 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    316           1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    317           1.1  wrstuden 
    318           1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    319          1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    320           1.1  wrstuden 
    321           1.1  wrstuden 	/*
    322           1.1  wrstuden 	 * Map the vnodes going in.
    323           1.1  wrstuden 	 * Later, we'll invoke the operation based on
    324           1.1  wrstuden 	 * the first mapped vnode's operation vector.
    325           1.1  wrstuden 	 */
    326           1.1  wrstuden 	reles = descp->vdesc_flags;
    327           1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    328           1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    329           1.1  wrstuden 			break;   /* bail out at end of list */
    330          1.24     perry 		vps_p[i] = this_vp_p =
    331          1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    332          1.20      yamt 		    ap);
    333           1.1  wrstuden 		/*
    334           1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    335           1.1  wrstuden 		 * are of our type.  Check for and don't map any
    336           1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    337           1.1  wrstuden 		 */
    338           1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    339           1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    340           1.1  wrstuden 			old_vps[i] = NULL;
    341           1.1  wrstuden 		} else {
    342           1.1  wrstuden 			old_vps[i] = *this_vp_p;
    343           1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    344           1.1  wrstuden 			/*
    345           1.1  wrstuden 			 * XXX - Several operations have the side effect
    346           1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    347           1.1  wrstuden 			 * that.  (This should go away in the future.)
    348           1.1  wrstuden 			 */
    349           1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    350           1.1  wrstuden 				VREF(*this_vp_p);
    351           1.1  wrstuden 		}
    352          1.24     perry 
    353           1.1  wrstuden 	}
    354           1.1  wrstuden 
    355           1.1  wrstuden 	/*
    356           1.1  wrstuden 	 * Call the operation on the lower layer
    357           1.1  wrstuden 	 * with the modified argument structure.
    358           1.1  wrstuden 	 */
    359           1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    360           1.1  wrstuden 
    361           1.1  wrstuden 	/*
    362           1.1  wrstuden 	 * Maintain the illusion of call-by-value
    363           1.1  wrstuden 	 * by restoring vnodes in the argument structure
    364           1.1  wrstuden 	 * to their original value.
    365           1.1  wrstuden 	 */
    366           1.1  wrstuden 	reles = descp->vdesc_flags;
    367           1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    368           1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    369           1.1  wrstuden 			break;   /* bail out at end of list */
    370           1.1  wrstuden 		if (old_vps[i]) {
    371           1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    372           1.1  wrstuden 			if (reles & VDESC_VP0_WILLUNLOCK)
    373           1.1  wrstuden 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    374           1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    375           1.1  wrstuden 				vrele(*(vps_p[i]));
    376           1.1  wrstuden 		}
    377           1.1  wrstuden 	}
    378           1.1  wrstuden 
    379           1.1  wrstuden 	/*
    380           1.1  wrstuden 	 * Map the possible out-going vpp
    381           1.1  wrstuden 	 * (Assumes that the lower layer always returns
    382           1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    383           1.1  wrstuden 	 */
    384           1.1  wrstuden 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    385           1.1  wrstuden 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    386           1.1  wrstuden 	    !error) {
    387           1.1  wrstuden 		/*
    388           1.1  wrstuden 		 * XXX - even though some ops have vpp returned vp's,
    389           1.1  wrstuden 		 * several ops actually vrele this before returning.
    390           1.1  wrstuden 		 * We must avoid these ops.
    391           1.1  wrstuden 		 * (This should go away when these ops are regularized.)
    392           1.1  wrstuden 		 */
    393           1.1  wrstuden 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    394           1.1  wrstuden 			goto out;
    395           1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    396          1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    397           1.1  wrstuden 		/*
    398           1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    399           1.7     assar 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    400           1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    401          1.20      yamt 		 * going to do i/o on it). vop_lookup doesn't call bypass
    402           1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    403           1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    404           1.1  wrstuden 		 */
    405           1.1  wrstuden 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    406          1.19      yamt 		if (error) {
    407          1.19      yamt 			vput(**vppp);
    408          1.19      yamt 			**vppp = NULL;
    409          1.19      yamt 		}
    410           1.1  wrstuden 	}
    411           1.1  wrstuden 
    412           1.1  wrstuden  out:
    413           1.1  wrstuden 	return (error);
    414           1.1  wrstuden }
    415           1.1  wrstuden 
    416           1.1  wrstuden /*
    417           1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    418           1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    419           1.1  wrstuden  * if this layer is mounted read-only.
    420           1.1  wrstuden  */
    421           1.1  wrstuden int
    422           1.1  wrstuden layer_lookup(v)
    423           1.1  wrstuden 	void *v;
    424           1.1  wrstuden {
    425           1.1  wrstuden 	struct vop_lookup_args /* {
    426           1.1  wrstuden 		struct vnodeop_desc *a_desc;
    427           1.1  wrstuden 		struct vnode * a_dvp;
    428           1.1  wrstuden 		struct vnode ** a_vpp;
    429           1.1  wrstuden 		struct componentname * a_cnp;
    430           1.1  wrstuden 	} */ *ap = v;
    431           1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    432           1.1  wrstuden 	int flags = cnp->cn_flags;
    433      1.28.2.1      tron 	struct vnode *dvp, *lvp, *ldvp;
    434      1.28.2.1      tron 	int error;
    435           1.1  wrstuden 
    436           1.1  wrstuden 	dvp = ap->a_dvp;
    437           1.1  wrstuden 
    438           1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    439  1.28.2.2.6.1       riz 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    440  1.28.2.2.6.1       riz 		*ap->a_vpp = NULL;
    441           1.1  wrstuden 		return (EROFS);
    442  1.28.2.2.6.1       riz 	}
    443           1.1  wrstuden 
    444           1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    445           1.1  wrstuden 	ap->a_dvp = ldvp;
    446           1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    447      1.28.2.1      tron 	lvp = *ap->a_vpp;
    448          1.18      yamt 	*ap->a_vpp = NULL;
    449           1.1  wrstuden 
    450           1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    451           1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    452           1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    453           1.1  wrstuden 		error = EROFS;
    454      1.28.2.1      tron 
    455           1.1  wrstuden 	/*
    456          1.24     perry 	 * We must do the same locking and unlocking at this layer as
    457      1.28.2.1      tron 	 * is done in the layers below us.
    458           1.1  wrstuden 	 */
    459      1.28.2.1      tron 	if (ldvp == lvp) {
    460      1.28.2.1      tron 
    461           1.1  wrstuden 		/*
    462           1.1  wrstuden 		 * Did lookup on "." or ".." in the root node of a mount point.
    463           1.1  wrstuden 		 * So we return dvp after a VREF.
    464           1.1  wrstuden 		 */
    465           1.1  wrstuden 		VREF(dvp);
    466      1.28.2.1      tron 		*ap->a_vpp = dvp;
    467      1.28.2.1      tron 		vrele(lvp);
    468      1.28.2.1      tron 	} else if (lvp != NULL) {
    469      1.28.2.1      tron 		/* dvp, ldvp and vp are all locked */
    470      1.28.2.1      tron 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    471          1.19      yamt 		if (error) {
    472      1.28.2.1      tron 			vput(lvp);
    473          1.19      yamt 		}
    474           1.1  wrstuden 	}
    475           1.1  wrstuden 	return (error);
    476           1.1  wrstuden }
    477           1.1  wrstuden 
    478           1.1  wrstuden /*
    479           1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    480           1.1  wrstuden  */
    481           1.1  wrstuden int
    482           1.1  wrstuden layer_setattr(v)
    483           1.1  wrstuden 	void *v;
    484           1.1  wrstuden {
    485           1.1  wrstuden 	struct vop_setattr_args /* {
    486           1.1  wrstuden 		struct vnodeop_desc *a_desc;
    487           1.1  wrstuden 		struct vnode *a_vp;
    488           1.1  wrstuden 		struct vattr *a_vap;
    489          1.27      elad 		kauth_cred_t a_cred;
    490          1.26  christos 		struct lwp *a_l;
    491           1.1  wrstuden 	} */ *ap = v;
    492           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    493           1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    494           1.1  wrstuden 
    495           1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    496           1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    497           1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    498           1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    499           1.1  wrstuden 		return (EROFS);
    500           1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    501           1.1  wrstuden  		switch (vp->v_type) {
    502           1.1  wrstuden  		case VDIR:
    503           1.1  wrstuden  			return (EISDIR);
    504           1.1  wrstuden  		case VCHR:
    505           1.1  wrstuden  		case VBLK:
    506           1.1  wrstuden  		case VSOCK:
    507           1.1  wrstuden  		case VFIFO:
    508           1.1  wrstuden 			return (0);
    509           1.1  wrstuden 		case VREG:
    510           1.1  wrstuden 		case VLNK:
    511           1.1  wrstuden  		default:
    512           1.1  wrstuden 			/*
    513           1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    514           1.1  wrstuden 			 * mounted read-only.
    515           1.1  wrstuden 			 */
    516           1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    517           1.1  wrstuden 				return (EROFS);
    518           1.1  wrstuden 		}
    519           1.1  wrstuden 	}
    520           1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    521           1.1  wrstuden }
    522           1.1  wrstuden 
    523           1.1  wrstuden /*
    524           1.1  wrstuden  *  We handle getattr only to change the fsid.
    525           1.1  wrstuden  */
    526           1.1  wrstuden int
    527           1.1  wrstuden layer_getattr(v)
    528           1.1  wrstuden 	void *v;
    529           1.1  wrstuden {
    530           1.1  wrstuden 	struct vop_getattr_args /* {
    531           1.1  wrstuden 		struct vnode *a_vp;
    532           1.1  wrstuden 		struct vattr *a_vap;
    533          1.27      elad 		kauth_cred_t a_cred;
    534          1.26  christos 		struct lwp *a_l;
    535           1.1  wrstuden 	} */ *ap = v;
    536           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    537           1.1  wrstuden 	int error;
    538           1.1  wrstuden 
    539           1.1  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    540           1.1  wrstuden 		return (error);
    541           1.1  wrstuden 	/* Requires that arguments be restored. */
    542          1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    543           1.1  wrstuden 	return (0);
    544           1.1  wrstuden }
    545           1.1  wrstuden 
    546           1.1  wrstuden int
    547           1.1  wrstuden layer_access(v)
    548           1.1  wrstuden 	void *v;
    549           1.1  wrstuden {
    550           1.1  wrstuden 	struct vop_access_args /* {
    551           1.1  wrstuden 		struct vnode *a_vp;
    552           1.1  wrstuden 		int  a_mode;
    553          1.27      elad 		kauth_cred_t a_cred;
    554          1.26  christos 		struct lwp *a_l;
    555           1.1  wrstuden 	} */ *ap = v;
    556           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    557           1.1  wrstuden 	mode_t mode = ap->a_mode;
    558           1.1  wrstuden 
    559           1.1  wrstuden 	/*
    560           1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    561           1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    562           1.1  wrstuden 	 * character device resident on the file system.
    563           1.1  wrstuden 	 */
    564           1.1  wrstuden 	if (mode & VWRITE) {
    565           1.1  wrstuden 		switch (vp->v_type) {
    566           1.1  wrstuden 		case VDIR:
    567           1.1  wrstuden 		case VLNK:
    568           1.1  wrstuden 		case VREG:
    569           1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    570           1.1  wrstuden 				return (EROFS);
    571           1.1  wrstuden 			break;
    572           1.1  wrstuden 		default:
    573           1.1  wrstuden 			break;
    574           1.1  wrstuden 		}
    575           1.1  wrstuden 	}
    576           1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    577           1.1  wrstuden }
    578           1.1  wrstuden 
    579           1.1  wrstuden /*
    580           1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    581           1.1  wrstuden  */
    582           1.1  wrstuden int
    583           1.1  wrstuden layer_open(v)
    584           1.1  wrstuden 	void *v;
    585           1.1  wrstuden {
    586           1.1  wrstuden 	struct vop_open_args *ap = v;
    587           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    588           1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    589           1.1  wrstuden 
    590           1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    591           1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    592           1.1  wrstuden 		return ENXIO;
    593           1.1  wrstuden 
    594           1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    595           1.1  wrstuden }
    596           1.1  wrstuden 
    597           1.1  wrstuden /*
    598           1.1  wrstuden  * We need to process our own vnode lock and then clear the
    599           1.1  wrstuden  * interlock flag as it applies only to our vnode, not the
    600           1.1  wrstuden  * vnodes below us on the stack.
    601           1.1  wrstuden  */
    602           1.1  wrstuden int
    603           1.1  wrstuden layer_lock(v)
    604           1.1  wrstuden 	void *v;
    605           1.1  wrstuden {
    606           1.1  wrstuden 	struct vop_lock_args /* {
    607           1.1  wrstuden 		struct vnode *a_vp;
    608           1.1  wrstuden 		int a_flags;
    609           1.1  wrstuden 		struct proc *a_p;
    610           1.1  wrstuden 	} */ *ap = v;
    611           1.1  wrstuden 	struct vnode *vp = ap->a_vp, *lowervp;
    612           1.1  wrstuden 	int	flags = ap->a_flags, error;
    613           1.1  wrstuden 
    614           1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    615           1.1  wrstuden 		/*
    616           1.1  wrstuden 		 * The lower level has exported a struct lock to us. Use
    617           1.1  wrstuden 		 * it so that all vnodes in the stack lock and unlock
    618           1.1  wrstuden 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    619           1.1  wrstuden 		 * decommissions the lock - just because our vnode is
    620           1.1  wrstuden 		 * going away doesn't mean the struct lock below us is.
    621           1.1  wrstuden 		 * LK_EXCLUSIVE is fine.
    622           1.1  wrstuden 		 */
    623           1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    624           1.1  wrstuden 			return(lockmgr(vp->v_vnlock,
    625           1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    626           1.1  wrstuden 				&vp->v_interlock));
    627           1.1  wrstuden 		} else
    628           1.1  wrstuden 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    629           1.1  wrstuden 	} else {
    630           1.1  wrstuden 		/*
    631           1.1  wrstuden 		 * Ahh well. It would be nice if the fs we're over would
    632           1.1  wrstuden 		 * export a struct lock for us to use, but it doesn't.
    633           1.1  wrstuden 		 *
    634           1.1  wrstuden 		 * To prevent race conditions involving doing a lookup
    635           1.1  wrstuden 		 * on "..", we have to lock the lower node, then lock our
    636           1.1  wrstuden 		 * node. Most of the time it won't matter that we lock our
    637           1.1  wrstuden 		 * node (as any locking would need the lower one locked
    638           1.1  wrstuden 		 * first). But we can LK_DRAIN the upper lock as a step
    639           1.1  wrstuden 		 * towards decomissioning it.
    640           1.1  wrstuden 		 */
    641           1.1  wrstuden 		lowervp = LAYERVPTOLOWERVP(vp);
    642           1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    643           1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    644           1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    645           1.1  wrstuden 		}
    646           1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    647           1.1  wrstuden 			error = VOP_LOCK(lowervp,
    648           1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    649           1.1  wrstuden 		} else
    650           1.1  wrstuden 			error = VOP_LOCK(lowervp, flags);
    651           1.1  wrstuden 		if (error)
    652           1.1  wrstuden 			return (error);
    653           1.1  wrstuden 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    654           1.1  wrstuden 			VOP_UNLOCK(lowervp, 0);
    655           1.1  wrstuden 		}
    656           1.1  wrstuden 		return (error);
    657           1.1  wrstuden 	}
    658           1.1  wrstuden }
    659           1.1  wrstuden 
    660           1.1  wrstuden /*
    661           1.1  wrstuden  */
    662           1.1  wrstuden int
    663           1.1  wrstuden layer_unlock(v)
    664           1.1  wrstuden 	void *v;
    665           1.1  wrstuden {
    666           1.1  wrstuden 	struct vop_unlock_args /* {
    667           1.1  wrstuden 		struct vnode *a_vp;
    668           1.1  wrstuden 		int a_flags;
    669           1.1  wrstuden 		struct proc *a_p;
    670           1.1  wrstuden 	} */ *ap = v;
    671           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    672           1.1  wrstuden 	int	flags = ap->a_flags;
    673           1.1  wrstuden 
    674           1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    675           1.1  wrstuden 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    676           1.1  wrstuden 			&vp->v_interlock));
    677           1.1  wrstuden 	} else {
    678           1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    679           1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    680           1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    681           1.1  wrstuden 		}
    682           1.1  wrstuden 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    683          1.28      elad 		return (lockmgr(&vp->v_lock, flags | LK_RELEASE,
    684           1.1  wrstuden 			&vp->v_interlock));
    685           1.1  wrstuden 	}
    686           1.1  wrstuden }
    687           1.1  wrstuden 
    688           1.1  wrstuden int
    689           1.1  wrstuden layer_islocked(v)
    690           1.1  wrstuden 	void *v;
    691           1.1  wrstuden {
    692           1.1  wrstuden 	struct vop_islocked_args /* {
    693           1.1  wrstuden 		struct vnode *a_vp;
    694           1.1  wrstuden 	} */ *ap = v;
    695           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    696          1.22      yamt 	int lkstatus;
    697           1.1  wrstuden 
    698           1.1  wrstuden 	if (vp->v_vnlock != NULL)
    699          1.22      yamt 		return lockstatus(vp->v_vnlock);
    700          1.22      yamt 
    701          1.22      yamt 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
    702          1.22      yamt 	if (lkstatus)
    703          1.22      yamt 		return lkstatus;
    704          1.22      yamt 
    705          1.22      yamt 	return lockstatus(&vp->v_lock);
    706           1.1  wrstuden }
    707           1.1  wrstuden 
    708           1.1  wrstuden /*
    709           1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    710           1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    711           1.1  wrstuden  * reclaimed; otherwise,
    712           1.1  wrstuden  * pass it through to the underlying layer.
    713           1.1  wrstuden  *
    714           1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    715           1.1  wrstuden  */
    716           1.1  wrstuden 
    717           1.1  wrstuden int
    718           1.1  wrstuden layer_fsync(v)
    719           1.1  wrstuden 	void *v;
    720           1.1  wrstuden {
    721           1.1  wrstuden 	struct vop_fsync_args /* {
    722           1.1  wrstuden 		struct vnode *a_vp;
    723          1.27      elad 		kauth_cred_t a_cred;
    724           1.1  wrstuden 		int  a_flags;
    725           1.4      fvdl 		off_t offlo;
    726           1.4      fvdl 		off_t offhi;
    727          1.26  christos 		struct lwp *a_l;
    728           1.1  wrstuden 	} */ *ap = v;
    729           1.1  wrstuden 
    730           1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    731           1.1  wrstuden 		return 0;
    732           1.1  wrstuden 	}
    733           1.1  wrstuden 
    734           1.1  wrstuden 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    735           1.1  wrstuden }
    736           1.1  wrstuden 
    737           1.1  wrstuden 
    738           1.1  wrstuden int
    739           1.1  wrstuden layer_inactive(v)
    740           1.1  wrstuden 	void *v;
    741           1.1  wrstuden {
    742           1.1  wrstuden 	struct vop_inactive_args /* {
    743           1.1  wrstuden 		struct vnode *a_vp;
    744          1.26  christos 		struct lwp *a_l;
    745           1.1  wrstuden 	} */ *ap = v;
    746           1.5     enami 	struct vnode *vp = ap->a_vp;
    747           1.1  wrstuden 
    748           1.1  wrstuden 	/*
    749           1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    750           1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    751           1.1  wrstuden 	 * so that until then our layer_node is in the
    752           1.1  wrstuden 	 * cache and reusable.
    753           1.1  wrstuden 	 *
    754           1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    755           1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    756           1.1  wrstuden 	 * with capabilities (v_id)
    757           1.1  wrstuden 	 * like they do in the name lookup cache code.
    758           1.1  wrstuden 	 * That's too much work for now.
    759           1.1  wrstuden 	 */
    760           1.5     enami 	VOP_UNLOCK(vp, 0);
    761           1.5     enami 
    762          1.16  wrstuden 	/*
    763          1.16  wrstuden 	 * ..., but don't cache the device node. Also, if we did a
    764          1.16  wrstuden 	 * remove, don't cache the node.
    765          1.16  wrstuden 	 */
    766          1.16  wrstuden 	if (vp->v_type == VBLK || vp->v_type == VCHR
    767          1.16  wrstuden 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
    768           1.5     enami 		vgone(vp);
    769           1.1  wrstuden 	return (0);
    770           1.1  wrstuden }
    771           1.1  wrstuden 
    772           1.1  wrstuden int
    773          1.16  wrstuden layer_remove(v)
    774          1.16  wrstuden 	void *v;
    775          1.16  wrstuden {
    776          1.16  wrstuden 	struct vop_remove_args /* {
    777          1.16  wrstuden 		struct vonde		*a_dvp;
    778          1.16  wrstuden 		struct vnode		*a_vp;
    779          1.16  wrstuden 		struct componentname	*a_cnp;
    780          1.16  wrstuden 	} */ *ap = v;
    781          1.16  wrstuden 
    782          1.16  wrstuden 	int		error;
    783          1.16  wrstuden 	struct vnode	*vp = ap->a_vp;
    784          1.16  wrstuden 
    785          1.16  wrstuden 	vref(vp);
    786          1.16  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    787          1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    788          1.16  wrstuden 
    789          1.16  wrstuden 	vrele(vp);
    790          1.16  wrstuden 
    791          1.16  wrstuden 	return (error);
    792          1.16  wrstuden }
    793          1.16  wrstuden 
    794          1.16  wrstuden int
    795          1.17      yamt layer_rename(v)
    796          1.17      yamt 	void *v;
    797          1.17      yamt {
    798          1.17      yamt 	struct vop_rename_args  /* {
    799          1.17      yamt 		struct vnode		*a_fdvp;
    800          1.17      yamt 		struct vnode		*a_fvp;
    801          1.17      yamt 		struct componentname	*a_fcnp;
    802          1.17      yamt 		struct vnode		*a_tdvp;
    803          1.17      yamt 		struct vnode		*a_tvp;
    804          1.17      yamt 		struct componentname	*a_tcnp;
    805          1.17      yamt 	} */ *ap = v;
    806          1.17      yamt 
    807          1.17      yamt 	int error;
    808          1.17      yamt 	struct vnode *fdvp = ap->a_fdvp;
    809          1.17      yamt 	struct vnode *tvp;
    810          1.17      yamt 
    811          1.17      yamt 	tvp = ap->a_tvp;
    812          1.17      yamt 	if (tvp) {
    813          1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    814          1.17      yamt 			tvp = NULL;
    815          1.17      yamt 		else
    816          1.17      yamt 			vref(tvp);
    817          1.17      yamt 	}
    818          1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    819          1.17      yamt 	if (tvp) {
    820          1.17      yamt 		if (error == 0)
    821          1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    822          1.17      yamt 		vrele(tvp);
    823          1.17      yamt 	}
    824          1.17      yamt 
    825          1.17      yamt 	return (error);
    826          1.17      yamt }
    827          1.17      yamt 
    828          1.17      yamt int
    829          1.23   hannken layer_rmdir(v)
    830          1.23   hannken 	void *v;
    831          1.23   hannken {
    832          1.23   hannken 	struct vop_rmdir_args /* {
    833          1.23   hannken 		struct vnode		*a_dvp;
    834          1.23   hannken 		struct vnode		*a_vp;
    835          1.23   hannken 		struct componentname	*a_cnp;
    836          1.23   hannken 	} */ *ap = v;
    837          1.23   hannken 	int		error;
    838          1.23   hannken 	struct vnode	*vp = ap->a_vp;
    839          1.23   hannken 
    840          1.23   hannken 	vref(vp);
    841          1.23   hannken 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    842          1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    843          1.23   hannken 
    844          1.23   hannken 	vrele(vp);
    845          1.23   hannken 
    846          1.23   hannken 	return (error);
    847          1.23   hannken }
    848          1.23   hannken 
    849          1.23   hannken int
    850           1.1  wrstuden layer_reclaim(v)
    851           1.1  wrstuden 	void *v;
    852           1.1  wrstuden {
    853           1.1  wrstuden 	struct vop_reclaim_args /* {
    854           1.1  wrstuden 		struct vnode *a_vp;
    855          1.26  christos 		struct lwp *a_l;
    856           1.1  wrstuden 	} */ *ap = v;
    857           1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    858           1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    859           1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    860           1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    861           1.1  wrstuden 
    862           1.1  wrstuden 	/*
    863           1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    864           1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    865           1.1  wrstuden 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    866           1.1  wrstuden 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    867           1.1  wrstuden 	 * set.
    868           1.1  wrstuden 	 */
    869           1.1  wrstuden 	/* After this assignment, this node will not be re-used. */
    870           1.1  wrstuden 	if ((vp == lmp->layerm_rootvp)) {
    871           1.1  wrstuden 		/*
    872           1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    873           1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    874           1.1  wrstuden 		 *
    875           1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    876           1.1  wrstuden 		 */
    877           1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    878           1.1  wrstuden 	}
    879           1.1  wrstuden 	xp->layer_lowervp = NULL;
    880           1.1  wrstuden 	simple_lock(&lmp->layerm_hashlock);
    881           1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    882           1.1  wrstuden 	simple_unlock(&lmp->layerm_hashlock);
    883           1.1  wrstuden 	FREE(vp->v_data, M_TEMP);
    884           1.1  wrstuden 	vp->v_data = NULL;
    885      1.28.2.1      tron 	vrele(lowervp);
    886           1.1  wrstuden 	return (0);
    887           1.1  wrstuden }
    888           1.1  wrstuden 
    889           1.1  wrstuden /*
    890           1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    891           1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    892           1.1  wrstuden  * i/o. :-)
    893           1.1  wrstuden  */
    894           1.1  wrstuden int
    895           1.1  wrstuden layer_bmap(v)
    896           1.1  wrstuden 	void *v;
    897           1.1  wrstuden {
    898           1.1  wrstuden 	struct vop_bmap_args /* {
    899           1.1  wrstuden 		struct vnode *a_vp;
    900           1.1  wrstuden 		daddr_t  a_bn;
    901           1.1  wrstuden 		struct vnode **a_vpp;
    902           1.1  wrstuden 		daddr_t *a_bnp;
    903           1.1  wrstuden 		int *a_runp;
    904           1.1  wrstuden 	} */ *ap = v;
    905           1.1  wrstuden 	struct vnode *vp;
    906           1.1  wrstuden 
    907           1.1  wrstuden 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    908           1.1  wrstuden 
    909           1.1  wrstuden 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    910           1.1  wrstuden }
    911           1.1  wrstuden 
    912           1.1  wrstuden int
    913           1.1  wrstuden layer_print(v)
    914           1.1  wrstuden 	void *v;
    915           1.1  wrstuden {
    916           1.1  wrstuden 	struct vop_print_args /* {
    917           1.1  wrstuden 		struct vnode *a_vp;
    918           1.1  wrstuden 	} */ *ap = v;
    919           1.3  augustss 	struct vnode *vp = ap->a_vp;
    920           1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    921           1.1  wrstuden 	return (0);
    922           1.1  wrstuden }
    923           1.1  wrstuden 
    924           1.1  wrstuden /*
    925          1.14   hannken  * XXX - vop_bwrite must be hand coded because it has no
    926           1.1  wrstuden  * vnode in its arguments.
    927           1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    928           1.1  wrstuden  */
    929           1.1  wrstuden int
    930           1.1  wrstuden layer_bwrite(v)
    931           1.1  wrstuden 	void *v;
    932           1.1  wrstuden {
    933           1.1  wrstuden 	struct vop_bwrite_args /* {
    934           1.1  wrstuden 		struct buf *a_bp;
    935           1.1  wrstuden 	} */ *ap = v;
    936           1.1  wrstuden 	struct buf *bp = ap->a_bp;
    937           1.1  wrstuden 	int error;
    938           1.1  wrstuden 	struct vnode *savedvp;
    939           1.1  wrstuden 
    940           1.1  wrstuden 	savedvp = bp->b_vp;
    941           1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    942           1.1  wrstuden 
    943           1.1  wrstuden 	error = VOP_BWRITE(bp);
    944           1.1  wrstuden 
    945           1.1  wrstuden 	bp->b_vp = savedvp;
    946           1.1  wrstuden 
    947           1.1  wrstuden 	return (error);
    948          1.10       chs }
    949          1.10       chs 
    950          1.10       chs int
    951          1.10       chs layer_getpages(v)
    952          1.10       chs 	void *v;
    953          1.10       chs {
    954          1.10       chs 	struct vop_getpages_args /* {
    955          1.10       chs 		struct vnode *a_vp;
    956          1.10       chs 		voff_t a_offset;
    957          1.10       chs 		struct vm_page **a_m;
    958          1.10       chs 		int *a_count;
    959          1.10       chs 		int a_centeridx;
    960          1.10       chs 		vm_prot_t a_access_type;
    961          1.10       chs 		int a_advice;
    962          1.10       chs 		int a_flags;
    963          1.10       chs 	} */ *ap = v;
    964          1.10       chs 	struct vnode *vp = ap->a_vp;
    965          1.10       chs 	int error;
    966          1.10       chs 
    967          1.10       chs 	/*
    968          1.10       chs 	 * just pass the request on to the underlying layer.
    969          1.10       chs 	 */
    970          1.10       chs 
    971          1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    972          1.10       chs 		return EBUSY;
    973          1.10       chs 	}
    974          1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    975          1.10       chs 	simple_unlock(&vp->v_interlock);
    976          1.10       chs 	simple_lock(&ap->a_vp->v_interlock);
    977          1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    978          1.10       chs 	return error;
    979          1.10       chs }
    980          1.10       chs 
    981          1.10       chs int
    982          1.10       chs layer_putpages(v)
    983          1.10       chs 	void *v;
    984          1.10       chs {
    985          1.10       chs 	struct vop_putpages_args /* {
    986          1.10       chs 		struct vnode *a_vp;
    987          1.10       chs 		voff_t a_offlo;
    988          1.10       chs 		voff_t a_offhi;
    989          1.10       chs 		int a_flags;
    990          1.10       chs 	} */ *ap = v;
    991          1.10       chs 	struct vnode *vp = ap->a_vp;
    992          1.10       chs 	int error;
    993          1.10       chs 
    994          1.10       chs 	/*
    995          1.10       chs 	 * just pass the request on to the underlying layer.
    996          1.10       chs 	 */
    997          1.10       chs 
    998          1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    999          1.10       chs 	simple_unlock(&vp->v_interlock);
   1000      1.28.2.2    bouyer 	if (ap->a_flags & PGO_RECLAIM) {
   1001      1.28.2.2    bouyer 		return 0;
   1002      1.28.2.2    bouyer 	}
   1003          1.10       chs 	simple_lock(&ap->a_vp->v_interlock);
   1004          1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
   1005          1.10       chs 	return error;
   1006           1.1  wrstuden }
   1007