layer_vnops.c revision 1.38 1 1.38 dsl /* $NetBSD: layer_vnops.c,v 1.38 2009/03/14 21:04:25 dsl Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.1 wrstuden /*
36 1.1 wrstuden * Copyright (c) 1992, 1993
37 1.1 wrstuden * The Regents of the University of California. All rights reserved.
38 1.1 wrstuden *
39 1.1 wrstuden * This code is derived from software contributed to Berkeley by
40 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
41 1.1 wrstuden *
42 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
43 1.1 wrstuden * modification, are permitted provided that the following conditions
44 1.1 wrstuden * are met:
45 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
46 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
47 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
49 1.1 wrstuden * documentation and/or other materials provided with the distribution.
50 1.11 agc * 3. Neither the name of the University nor the names of its contributors
51 1.1 wrstuden * may be used to endorse or promote products derived from this software
52 1.1 wrstuden * without specific prior written permission.
53 1.1 wrstuden *
54 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 wrstuden * SUCH DAMAGE.
65 1.1 wrstuden *
66 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 1.1 wrstuden *
68 1.1 wrstuden * Ancestors:
69 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71 1.1 wrstuden * ...and...
72 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 1.1 wrstuden */
74 1.1 wrstuden
75 1.1 wrstuden /*
76 1.1 wrstuden * Null Layer vnode routines.
77 1.1 wrstuden *
78 1.1 wrstuden * (See mount_null(8) for more information.)
79 1.1 wrstuden *
80 1.1 wrstuden * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 1.12 wiz * the core implementation of the null file system and most other stacked
82 1.1 wrstuden * fs's. The description below refers to the null file system, but the
83 1.1 wrstuden * services provided by the layer* files are useful for all layered fs's.
84 1.1 wrstuden *
85 1.1 wrstuden * The null layer duplicates a portion of the file system
86 1.1 wrstuden * name space under a new name. In this respect, it is
87 1.1 wrstuden * similar to the loopback file system. It differs from
88 1.1 wrstuden * the loopback fs in two respects: it is implemented using
89 1.1 wrstuden * a stackable layers techniques, and it's "null-node"s stack above
90 1.1 wrstuden * all lower-layer vnodes, not just over directory vnodes.
91 1.1 wrstuden *
92 1.1 wrstuden * The null layer has two purposes. First, it serves as a demonstration
93 1.1 wrstuden * of layering by proving a layer which does nothing. (It actually
94 1.1 wrstuden * does everything the loopback file system does, which is slightly
95 1.1 wrstuden * more than nothing.) Second, the null layer can serve as a prototype
96 1.1 wrstuden * layer. Since it provides all necessary layer framework,
97 1.1 wrstuden * new file system layers can be created very easily be starting
98 1.1 wrstuden * with a null layer.
99 1.1 wrstuden *
100 1.1 wrstuden * The remainder of the man page examines the null layer as a basis
101 1.1 wrstuden * for constructing new layers.
102 1.1 wrstuden *
103 1.1 wrstuden *
104 1.1 wrstuden * INSTANTIATING NEW NULL LAYERS
105 1.1 wrstuden *
106 1.1 wrstuden * New null layers are created with mount_null(8).
107 1.1 wrstuden * Mount_null(8) takes two arguments, the pathname
108 1.1 wrstuden * of the lower vfs (target-pn) and the pathname where the null
109 1.1 wrstuden * layer will appear in the namespace (alias-pn). After
110 1.1 wrstuden * the null layer is put into place, the contents
111 1.1 wrstuden * of target-pn subtree will be aliased under alias-pn.
112 1.1 wrstuden *
113 1.1 wrstuden * It is conceivable that other overlay filesystems will take different
114 1.1 wrstuden * parameters. For instance, data migration or access controll layers might
115 1.1 wrstuden * only take one pathname which will serve both as the target-pn and
116 1.1 wrstuden * alias-pn described above.
117 1.1 wrstuden *
118 1.1 wrstuden *
119 1.1 wrstuden * OPERATION OF A NULL LAYER
120 1.1 wrstuden *
121 1.1 wrstuden * The null layer is the minimum file system layer,
122 1.1 wrstuden * simply bypassing all possible operations to the lower layer
123 1.1 wrstuden * for processing there. The majority of its activity centers
124 1.13 wiz * on the bypass routine, through which nearly all vnode operations
125 1.1 wrstuden * pass.
126 1.1 wrstuden *
127 1.1 wrstuden * The bypass routine accepts arbitrary vnode operations for
128 1.1 wrstuden * handling by the lower layer. It begins by examing vnode
129 1.1 wrstuden * operation arguments and replacing any layered nodes by their
130 1.13 wiz * lower-layer equivalents. It then invokes the operation
131 1.1 wrstuden * on the lower layer. Finally, it replaces the layered nodes
132 1.1 wrstuden * in the arguments and, if a vnode is return by the operation,
133 1.1 wrstuden * stacks a layered node on top of the returned vnode.
134 1.1 wrstuden *
135 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
136 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
137 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
138 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
139 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
140 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
141 1.1 wrstuden *
142 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
143 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
145 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
146 1.1 wrstuden * use the layerm_bypass routine.
147 1.1 wrstuden *
148 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
149 1.1 wrstuden * of operations are special cased, and handled by the layered fs. One
150 1.1 wrstuden * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 1.1 wrstuden * layer_fsync, perform layer-specific manipulation in addition to calling
152 1.1 wrstuden * the bypass routine. The other group
153 1.1 wrstuden
154 1.1 wrstuden * Although bypass handles most operations, vop_getattr, vop_lock,
155 1.1 wrstuden * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 1.1 wrstuden * bypassed. Vop_getattr must change the fsid being returned.
157 1.1 wrstuden * Vop_lock and vop_unlock must handle any locking for the
158 1.1 wrstuden * current vnode as well as pass the lock request down.
159 1.1 wrstuden * Vop_inactive and vop_reclaim are not bypassed so that
160 1.1 wrstuden * they can handle freeing null-layer specific data. Vop_print
161 1.1 wrstuden * is not bypassed to avoid excessive debugging information.
162 1.1 wrstuden * Also, certain vnode operations change the locking state within
163 1.1 wrstuden * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 1.1 wrstuden * and symlink). Ideally these operations should not change the
165 1.1 wrstuden * lock state, but should be changed to let the caller of the
166 1.1 wrstuden * function unlock them. Otherwise all intermediate vnode layers
167 1.1 wrstuden * (such as union, umapfs, etc) must catch these functions to do
168 1.1 wrstuden * the necessary locking at their layer.
169 1.1 wrstuden *
170 1.1 wrstuden *
171 1.1 wrstuden * INSTANTIATING VNODE STACKS
172 1.1 wrstuden *
173 1.1 wrstuden * Mounting associates the null layer with a lower layer,
174 1.1 wrstuden * effect stacking two VFSes. Vnode stacks are instead
175 1.1 wrstuden * created on demand as files are accessed.
176 1.1 wrstuden *
177 1.1 wrstuden * The initial mount creates a single vnode stack for the
178 1.1 wrstuden * root of the new null layer. All other vnode stacks
179 1.1 wrstuden * are created as a result of vnode operations on
180 1.1 wrstuden * this or other null vnode stacks.
181 1.1 wrstuden *
182 1.13 wiz * New vnode stacks come into existence as a result of
183 1.24 perry * an operation which returns a vnode.
184 1.1 wrstuden * The bypass routine stacks a null-node above the new
185 1.1 wrstuden * vnode before returning it to the caller.
186 1.1 wrstuden *
187 1.1 wrstuden * For example, imagine mounting a null layer with
188 1.1 wrstuden * "mount_null /usr/include /dev/layer/null".
189 1.1 wrstuden * Changing directory to /dev/layer/null will assign
190 1.1 wrstuden * the root null-node (which was created when the null layer was mounted).
191 1.1 wrstuden * Now consider opening "sys". A vop_lookup would be
192 1.1 wrstuden * done on the root null-node. This operation would bypass through
193 1.24 perry * to the lower layer which would return a vnode representing
194 1.1 wrstuden * the UFS "sys". layer_bypass then builds a null-node
195 1.1 wrstuden * aliasing the UFS "sys" and returns this to the caller.
196 1.1 wrstuden * Later operations on the null-node "sys" will repeat this
197 1.1 wrstuden * process when constructing other vnode stacks.
198 1.1 wrstuden *
199 1.1 wrstuden *
200 1.1 wrstuden * CREATING OTHER FILE SYSTEM LAYERS
201 1.1 wrstuden *
202 1.1 wrstuden * One of the easiest ways to construct new file system layers is to make
203 1.1 wrstuden * a copy of the null layer, rename all files and variables, and
204 1.1 wrstuden * then begin modifing the copy. Sed can be used to easily rename
205 1.1 wrstuden * all variables.
206 1.1 wrstuden *
207 1.24 perry * The umap layer is an example of a layer descended from the
208 1.1 wrstuden * null layer.
209 1.1 wrstuden *
210 1.1 wrstuden *
211 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
212 1.1 wrstuden *
213 1.24 perry * There are two techniques to invoke operations on a lower layer
214 1.1 wrstuden * when the operation cannot be completely bypassed. Each method
215 1.1 wrstuden * is appropriate in different situations. In both cases,
216 1.1 wrstuden * it is the responsibility of the aliasing layer to make
217 1.1 wrstuden * the operation arguments "correct" for the lower layer
218 1.1 wrstuden * by mapping an vnode arguments to the lower layer.
219 1.1 wrstuden *
220 1.1 wrstuden * The first approach is to call the aliasing layer's bypass routine.
221 1.1 wrstuden * This method is most suitable when you wish to invoke the operation
222 1.13 wiz * currently being handled on the lower layer. It has the advantage
223 1.1 wrstuden * that the bypass routine already must do argument mapping.
224 1.1 wrstuden * An example of this is null_getattrs in the null layer.
225 1.1 wrstuden *
226 1.13 wiz * A second approach is to directly invoke vnode operations on
227 1.1 wrstuden * the lower layer with the VOP_OPERATIONNAME interface.
228 1.1 wrstuden * The advantage of this method is that it is easy to invoke
229 1.1 wrstuden * arbitrary operations on the lower layer. The disadvantage
230 1.13 wiz * is that vnodes' arguments must be manually mapped.
231 1.1 wrstuden *
232 1.1 wrstuden */
233 1.8 lukem
234 1.8 lukem #include <sys/cdefs.h>
235 1.38 dsl __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.38 2009/03/14 21:04:25 dsl Exp $");
236 1.1 wrstuden
237 1.1 wrstuden #include <sys/param.h>
238 1.1 wrstuden #include <sys/systm.h>
239 1.1 wrstuden #include <sys/proc.h>
240 1.1 wrstuden #include <sys/time.h>
241 1.1 wrstuden #include <sys/vnode.h>
242 1.1 wrstuden #include <sys/mount.h>
243 1.1 wrstuden #include <sys/namei.h>
244 1.34 ad #include <sys/kmem.h>
245 1.1 wrstuden #include <sys/buf.h>
246 1.27 elad #include <sys/kauth.h>
247 1.27 elad
248 1.1 wrstuden #include <miscfs/genfs/layer.h>
249 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
250 1.1 wrstuden #include <miscfs/genfs/genfs.h>
251 1.1 wrstuden
252 1.1 wrstuden
253 1.1 wrstuden /*
254 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255 1.1 wrstuden * routine by John Heidemann.
256 1.1 wrstuden * The new element for this version is that the whole nullfs
257 1.1 wrstuden * system gained the concept of locks on the lower node, and locks on
258 1.1 wrstuden * our nodes. When returning from a call to the lower layer, we may
259 1.1 wrstuden * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
260 1.1 wrstuden * macros provide this functionality.
261 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
262 1.1 wrstuden * safety checks. It should still always work, but it's not as
263 1.1 wrstuden * robust to programmer errors.
264 1.1 wrstuden *
265 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
266 1.1 wrstuden *
267 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
268 1.1 wrstuden * their arguments. With stacking, the reference counts are held
269 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
270 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
271 1.1 wrstuden * since there are no such side-effects.
272 1.1 wrstuden *
273 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
274 1.1 wrstuden * the passed-in node (typically they vput the node).
275 1.1 wrstuden *
276 1.1 wrstuden * This makes the following assumptions:
277 1.1 wrstuden * - only one returned vpp
278 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
279 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
280 1.1 wrstuden * to determine what implementation of the op should be invoked
281 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
282 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
283 1.24 perry */
284 1.1 wrstuden int
285 1.38 dsl layer_bypass(void *v)
286 1.1 wrstuden {
287 1.1 wrstuden struct vop_generic_args /* {
288 1.1 wrstuden struct vnodeop_desc *a_desc;
289 1.1 wrstuden <other random data follows, presumably>
290 1.1 wrstuden } */ *ap = v;
291 1.25 xtraeme int (**our_vnodeop_p)(void *);
292 1.3 augustss struct vnode **this_vp_p;
293 1.1 wrstuden int error, error1;
294 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
296 1.1 wrstuden struct vnode ***vppp;
297 1.33 dyoung struct mount *mp;
298 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
299 1.1 wrstuden int reles, i, flags;
300 1.1 wrstuden
301 1.37 plunky #ifdef DIAGNOSTIC
302 1.1 wrstuden /*
303 1.1 wrstuden * We require at least one vp.
304 1.1 wrstuden */
305 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
306 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
307 1.20 yamt panic("%s: no vp's in map.\n", __func__);
308 1.1 wrstuden #endif
309 1.1 wrstuden
310 1.20 yamt vps_p[0] =
311 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
312 1.1 wrstuden vp0 = *vps_p[0];
313 1.33 dyoung mp = vp0->v_mount;
314 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
315 1.1 wrstuden our_vnodeop_p = vp0->v_op;
316 1.1 wrstuden
317 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
318 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
319 1.1 wrstuden
320 1.1 wrstuden /*
321 1.1 wrstuden * Map the vnodes going in.
322 1.1 wrstuden * Later, we'll invoke the operation based on
323 1.1 wrstuden * the first mapped vnode's operation vector.
324 1.1 wrstuden */
325 1.1 wrstuden reles = descp->vdesc_flags;
326 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
327 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
328 1.1 wrstuden break; /* bail out at end of list */
329 1.24 perry vps_p[i] = this_vp_p =
330 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
331 1.20 yamt ap);
332 1.1 wrstuden /*
333 1.1 wrstuden * We're not guaranteed that any but the first vnode
334 1.1 wrstuden * are of our type. Check for and don't map any
335 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
336 1.1 wrstuden */
337 1.1 wrstuden if (i && (*this_vp_p == NULL ||
338 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
339 1.1 wrstuden old_vps[i] = NULL;
340 1.1 wrstuden } else {
341 1.1 wrstuden old_vps[i] = *this_vp_p;
342 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
343 1.1 wrstuden /*
344 1.1 wrstuden * XXX - Several operations have the side effect
345 1.1 wrstuden * of vrele'ing their vp's. We must account for
346 1.1 wrstuden * that. (This should go away in the future.)
347 1.1 wrstuden */
348 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
349 1.1 wrstuden VREF(*this_vp_p);
350 1.1 wrstuden }
351 1.24 perry
352 1.1 wrstuden }
353 1.1 wrstuden
354 1.1 wrstuden /*
355 1.1 wrstuden * Call the operation on the lower layer
356 1.1 wrstuden * with the modified argument structure.
357 1.1 wrstuden */
358 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
359 1.1 wrstuden
360 1.1 wrstuden /*
361 1.1 wrstuden * Maintain the illusion of call-by-value
362 1.1 wrstuden * by restoring vnodes in the argument structure
363 1.1 wrstuden * to their original value.
364 1.1 wrstuden */
365 1.1 wrstuden reles = descp->vdesc_flags;
366 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
367 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
368 1.1 wrstuden break; /* bail out at end of list */
369 1.1 wrstuden if (old_vps[i]) {
370 1.1 wrstuden *(vps_p[i]) = old_vps[i];
371 1.1 wrstuden if (reles & VDESC_VP0_WILLUNLOCK)
372 1.1 wrstuden LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
373 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
374 1.1 wrstuden vrele(*(vps_p[i]));
375 1.1 wrstuden }
376 1.1 wrstuden }
377 1.1 wrstuden
378 1.1 wrstuden /*
379 1.1 wrstuden * Map the possible out-going vpp
380 1.1 wrstuden * (Assumes that the lower layer always returns
381 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
382 1.1 wrstuden */
383 1.1 wrstuden if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
384 1.1 wrstuden !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
385 1.1 wrstuden !error) {
386 1.1 wrstuden /*
387 1.1 wrstuden * XXX - even though some ops have vpp returned vp's,
388 1.1 wrstuden * several ops actually vrele this before returning.
389 1.1 wrstuden * We must avoid these ops.
390 1.1 wrstuden * (This should go away when these ops are regularized.)
391 1.1 wrstuden */
392 1.1 wrstuden if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
393 1.1 wrstuden goto out;
394 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
395 1.20 yamt descp->vdesc_vpp_offset, ap);
396 1.1 wrstuden /*
397 1.1 wrstuden * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
398 1.7 assar * vop_mknod, and vop_symlink return vpp's. vop_bmap
399 1.1 wrstuden * doesn't call bypass as the lower vpp is fine (we're just
400 1.20 yamt * going to do i/o on it). vop_lookup doesn't call bypass
401 1.1 wrstuden * as a lookup on "." would generate a locking error.
402 1.1 wrstuden * So all the calls which get us here have a locked vpp. :-)
403 1.1 wrstuden */
404 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp);
405 1.19 yamt if (error) {
406 1.19 yamt vput(**vppp);
407 1.19 yamt **vppp = NULL;
408 1.19 yamt }
409 1.1 wrstuden }
410 1.1 wrstuden
411 1.1 wrstuden out:
412 1.1 wrstuden return (error);
413 1.1 wrstuden }
414 1.1 wrstuden
415 1.1 wrstuden /*
416 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
417 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
418 1.1 wrstuden * if this layer is mounted read-only.
419 1.1 wrstuden */
420 1.1 wrstuden int
421 1.38 dsl layer_lookup(void *v)
422 1.1 wrstuden {
423 1.1 wrstuden struct vop_lookup_args /* {
424 1.1 wrstuden struct vnodeop_desc *a_desc;
425 1.1 wrstuden struct vnode * a_dvp;
426 1.1 wrstuden struct vnode ** a_vpp;
427 1.1 wrstuden struct componentname * a_cnp;
428 1.1 wrstuden } */ *ap = v;
429 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
430 1.1 wrstuden int flags = cnp->cn_flags;
431 1.29 chs struct vnode *dvp, *lvp, *ldvp;
432 1.29 chs int error;
433 1.1 wrstuden
434 1.1 wrstuden dvp = ap->a_dvp;
435 1.1 wrstuden
436 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
437 1.1 wrstuden (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
438 1.1 wrstuden return (EROFS);
439 1.1 wrstuden
440 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
441 1.1 wrstuden ap->a_dvp = ldvp;
442 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
443 1.29 chs lvp = *ap->a_vpp;
444 1.18 yamt *ap->a_vpp = NULL;
445 1.1 wrstuden
446 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
447 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
448 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
449 1.1 wrstuden error = EROFS;
450 1.29 chs
451 1.1 wrstuden /*
452 1.24 perry * We must do the same locking and unlocking at this layer as
453 1.29 chs * is done in the layers below us.
454 1.1 wrstuden */
455 1.29 chs if (ldvp == lvp) {
456 1.29 chs
457 1.1 wrstuden /*
458 1.36 dholland * Got the same object back, because we looked up ".",
459 1.36 dholland * or ".." in the root node of a mount point.
460 1.36 dholland * So we make another reference to dvp and return it.
461 1.1 wrstuden */
462 1.29 chs VREF(dvp);
463 1.1 wrstuden *ap->a_vpp = dvp;
464 1.29 chs vrele(lvp);
465 1.29 chs } else if (lvp != NULL) {
466 1.29 chs /* dvp, ldvp and vp are all locked */
467 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
468 1.19 yamt if (error) {
469 1.29 chs vput(lvp);
470 1.19 yamt }
471 1.1 wrstuden }
472 1.1 wrstuden return (error);
473 1.1 wrstuden }
474 1.1 wrstuden
475 1.1 wrstuden /*
476 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
477 1.1 wrstuden */
478 1.1 wrstuden int
479 1.38 dsl layer_setattr(void *v)
480 1.1 wrstuden {
481 1.1 wrstuden struct vop_setattr_args /* {
482 1.1 wrstuden struct vnodeop_desc *a_desc;
483 1.1 wrstuden struct vnode *a_vp;
484 1.1 wrstuden struct vattr *a_vap;
485 1.27 elad kauth_cred_t a_cred;
486 1.26 christos struct lwp *a_l;
487 1.1 wrstuden } */ *ap = v;
488 1.1 wrstuden struct vnode *vp = ap->a_vp;
489 1.1 wrstuden struct vattr *vap = ap->a_vap;
490 1.1 wrstuden
491 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
492 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
493 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
494 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
495 1.1 wrstuden return (EROFS);
496 1.1 wrstuden if (vap->va_size != VNOVAL) {
497 1.1 wrstuden switch (vp->v_type) {
498 1.1 wrstuden case VDIR:
499 1.1 wrstuden return (EISDIR);
500 1.1 wrstuden case VCHR:
501 1.1 wrstuden case VBLK:
502 1.1 wrstuden case VSOCK:
503 1.1 wrstuden case VFIFO:
504 1.1 wrstuden return (0);
505 1.1 wrstuden case VREG:
506 1.1 wrstuden case VLNK:
507 1.1 wrstuden default:
508 1.1 wrstuden /*
509 1.1 wrstuden * Disallow write attempts if the filesystem is
510 1.1 wrstuden * mounted read-only.
511 1.1 wrstuden */
512 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
513 1.1 wrstuden return (EROFS);
514 1.1 wrstuden }
515 1.1 wrstuden }
516 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
517 1.1 wrstuden }
518 1.1 wrstuden
519 1.1 wrstuden /*
520 1.1 wrstuden * We handle getattr only to change the fsid.
521 1.1 wrstuden */
522 1.1 wrstuden int
523 1.38 dsl layer_getattr(void *v)
524 1.1 wrstuden {
525 1.1 wrstuden struct vop_getattr_args /* {
526 1.1 wrstuden struct vnode *a_vp;
527 1.1 wrstuden struct vattr *a_vap;
528 1.27 elad kauth_cred_t a_cred;
529 1.26 christos struct lwp *a_l;
530 1.1 wrstuden } */ *ap = v;
531 1.1 wrstuden struct vnode *vp = ap->a_vp;
532 1.1 wrstuden int error;
533 1.1 wrstuden
534 1.1 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
535 1.1 wrstuden return (error);
536 1.1 wrstuden /* Requires that arguments be restored. */
537 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
538 1.1 wrstuden return (0);
539 1.1 wrstuden }
540 1.1 wrstuden
541 1.1 wrstuden int
542 1.38 dsl layer_access(void *v)
543 1.1 wrstuden {
544 1.1 wrstuden struct vop_access_args /* {
545 1.1 wrstuden struct vnode *a_vp;
546 1.1 wrstuden int a_mode;
547 1.27 elad kauth_cred_t a_cred;
548 1.26 christos struct lwp *a_l;
549 1.1 wrstuden } */ *ap = v;
550 1.1 wrstuden struct vnode *vp = ap->a_vp;
551 1.1 wrstuden mode_t mode = ap->a_mode;
552 1.1 wrstuden
553 1.1 wrstuden /*
554 1.1 wrstuden * Disallow write attempts on read-only layers;
555 1.1 wrstuden * unless the file is a socket, fifo, or a block or
556 1.1 wrstuden * character device resident on the file system.
557 1.1 wrstuden */
558 1.1 wrstuden if (mode & VWRITE) {
559 1.1 wrstuden switch (vp->v_type) {
560 1.1 wrstuden case VDIR:
561 1.1 wrstuden case VLNK:
562 1.1 wrstuden case VREG:
563 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
564 1.1 wrstuden return (EROFS);
565 1.1 wrstuden break;
566 1.1 wrstuden default:
567 1.1 wrstuden break;
568 1.1 wrstuden }
569 1.1 wrstuden }
570 1.1 wrstuden return (LAYERFS_DO_BYPASS(vp, ap));
571 1.1 wrstuden }
572 1.1 wrstuden
573 1.1 wrstuden /*
574 1.1 wrstuden * We must handle open to be able to catch MNT_NODEV and friends.
575 1.1 wrstuden */
576 1.1 wrstuden int
577 1.38 dsl layer_open(void *v)
578 1.1 wrstuden {
579 1.1 wrstuden struct vop_open_args *ap = v;
580 1.1 wrstuden struct vnode *vp = ap->a_vp;
581 1.1 wrstuden enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
582 1.1 wrstuden
583 1.1 wrstuden if (((lower_type == VBLK) || (lower_type == VCHR)) &&
584 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
585 1.1 wrstuden return ENXIO;
586 1.1 wrstuden
587 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
588 1.1 wrstuden }
589 1.1 wrstuden
590 1.1 wrstuden /*
591 1.1 wrstuden * We need to process our own vnode lock and then clear the
592 1.1 wrstuden * interlock flag as it applies only to our vnode, not the
593 1.1 wrstuden * vnodes below us on the stack.
594 1.1 wrstuden */
595 1.1 wrstuden int
596 1.38 dsl layer_lock(void *v)
597 1.1 wrstuden {
598 1.1 wrstuden struct vop_lock_args /* {
599 1.1 wrstuden struct vnode *a_vp;
600 1.1 wrstuden int a_flags;
601 1.1 wrstuden struct proc *a_p;
602 1.1 wrstuden } */ *ap = v;
603 1.1 wrstuden struct vnode *vp = ap->a_vp, *lowervp;
604 1.1 wrstuden int flags = ap->a_flags, error;
605 1.1 wrstuden
606 1.35 ad if (flags & LK_INTERLOCK) {
607 1.35 ad mutex_exit(&vp->v_interlock);
608 1.35 ad flags &= ~LK_INTERLOCK;
609 1.35 ad }
610 1.35 ad
611 1.1 wrstuden if (vp->v_vnlock != NULL) {
612 1.1 wrstuden /*
613 1.1 wrstuden * The lower level has exported a struct lock to us. Use
614 1.1 wrstuden * it so that all vnodes in the stack lock and unlock
615 1.1 wrstuden * simultaneously. Note: we don't DRAIN the lock as DRAIN
616 1.1 wrstuden * decommissions the lock - just because our vnode is
617 1.1 wrstuden * going away doesn't mean the struct lock below us is.
618 1.1 wrstuden * LK_EXCLUSIVE is fine.
619 1.1 wrstuden */
620 1.35 ad return (vlockmgr(vp->v_vnlock, flags));
621 1.1 wrstuden } else {
622 1.1 wrstuden /*
623 1.1 wrstuden * Ahh well. It would be nice if the fs we're over would
624 1.1 wrstuden * export a struct lock for us to use, but it doesn't.
625 1.1 wrstuden *
626 1.1 wrstuden * To prevent race conditions involving doing a lookup
627 1.1 wrstuden * on "..", we have to lock the lower node, then lock our
628 1.1 wrstuden * node. Most of the time it won't matter that we lock our
629 1.1 wrstuden * node (as any locking would need the lower one locked
630 1.34 ad * first).
631 1.1 wrstuden */
632 1.1 wrstuden lowervp = LAYERVPTOLOWERVP(vp);
633 1.34 ad error = VOP_LOCK(lowervp, flags);
634 1.1 wrstuden if (error)
635 1.1 wrstuden return (error);
636 1.35 ad if ((error = vlockmgr(&vp->v_lock, flags))) {
637 1.1 wrstuden VOP_UNLOCK(lowervp, 0);
638 1.1 wrstuden }
639 1.1 wrstuden return (error);
640 1.1 wrstuden }
641 1.1 wrstuden }
642 1.1 wrstuden
643 1.1 wrstuden /*
644 1.1 wrstuden */
645 1.1 wrstuden int
646 1.38 dsl layer_unlock(void *v)
647 1.1 wrstuden {
648 1.1 wrstuden struct vop_unlock_args /* {
649 1.1 wrstuden struct vnode *a_vp;
650 1.1 wrstuden int a_flags;
651 1.1 wrstuden struct proc *a_p;
652 1.1 wrstuden } */ *ap = v;
653 1.1 wrstuden struct vnode *vp = ap->a_vp;
654 1.1 wrstuden int flags = ap->a_flags;
655 1.1 wrstuden
656 1.35 ad if (flags & LK_INTERLOCK) {
657 1.35 ad mutex_exit(&vp->v_interlock);
658 1.35 ad flags &= ~LK_INTERLOCK;
659 1.35 ad }
660 1.35 ad
661 1.1 wrstuden if (vp->v_vnlock != NULL) {
662 1.35 ad return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
663 1.1 wrstuden } else {
664 1.1 wrstuden VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
665 1.35 ad return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
666 1.1 wrstuden }
667 1.1 wrstuden }
668 1.1 wrstuden
669 1.1 wrstuden int
670 1.38 dsl layer_islocked(void *v)
671 1.1 wrstuden {
672 1.1 wrstuden struct vop_islocked_args /* {
673 1.1 wrstuden struct vnode *a_vp;
674 1.1 wrstuden } */ *ap = v;
675 1.1 wrstuden struct vnode *vp = ap->a_vp;
676 1.22 yamt int lkstatus;
677 1.1 wrstuden
678 1.1 wrstuden if (vp->v_vnlock != NULL)
679 1.35 ad return vlockstatus(vp->v_vnlock);
680 1.22 yamt
681 1.22 yamt lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
682 1.22 yamt if (lkstatus)
683 1.22 yamt return lkstatus;
684 1.22 yamt
685 1.35 ad return vlockstatus(&vp->v_lock);
686 1.1 wrstuden }
687 1.1 wrstuden
688 1.1 wrstuden /*
689 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
690 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
691 1.1 wrstuden * reclaimed; otherwise,
692 1.1 wrstuden * pass it through to the underlying layer.
693 1.1 wrstuden *
694 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
695 1.1 wrstuden */
696 1.1 wrstuden
697 1.1 wrstuden int
698 1.38 dsl layer_fsync(void *v)
699 1.1 wrstuden {
700 1.1 wrstuden struct vop_fsync_args /* {
701 1.1 wrstuden struct vnode *a_vp;
702 1.27 elad kauth_cred_t a_cred;
703 1.1 wrstuden int a_flags;
704 1.4 fvdl off_t offlo;
705 1.4 fvdl off_t offhi;
706 1.26 christos struct lwp *a_l;
707 1.1 wrstuden } */ *ap = v;
708 1.1 wrstuden
709 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
710 1.1 wrstuden return 0;
711 1.1 wrstuden }
712 1.1 wrstuden
713 1.1 wrstuden return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
714 1.1 wrstuden }
715 1.1 wrstuden
716 1.1 wrstuden
717 1.1 wrstuden int
718 1.38 dsl layer_inactive(void *v)
719 1.1 wrstuden {
720 1.1 wrstuden struct vop_inactive_args /* {
721 1.1 wrstuden struct vnode *a_vp;
722 1.34 ad bool *a_recycle;
723 1.1 wrstuden } */ *ap = v;
724 1.5 enami struct vnode *vp = ap->a_vp;
725 1.1 wrstuden
726 1.1 wrstuden /*
727 1.34 ad * ..., but don't cache the device node. Also, if we did a
728 1.34 ad * remove, don't cache the node.
729 1.34 ad */
730 1.34 ad *ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
731 1.34 ad || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
732 1.34 ad
733 1.34 ad /*
734 1.1 wrstuden * Do nothing (and _don't_ bypass).
735 1.1 wrstuden * Wait to vrele lowervp until reclaim,
736 1.1 wrstuden * so that until then our layer_node is in the
737 1.1 wrstuden * cache and reusable.
738 1.1 wrstuden *
739 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
740 1.1 wrstuden * the lowervp and then trying to reactivate it
741 1.1 wrstuden * with capabilities (v_id)
742 1.1 wrstuden * like they do in the name lookup cache code.
743 1.1 wrstuden * That's too much work for now.
744 1.1 wrstuden */
745 1.5 enami VOP_UNLOCK(vp, 0);
746 1.5 enami
747 1.1 wrstuden return (0);
748 1.1 wrstuden }
749 1.1 wrstuden
750 1.1 wrstuden int
751 1.38 dsl layer_remove(void *v)
752 1.16 wrstuden {
753 1.16 wrstuden struct vop_remove_args /* {
754 1.16 wrstuden struct vonde *a_dvp;
755 1.16 wrstuden struct vnode *a_vp;
756 1.16 wrstuden struct componentname *a_cnp;
757 1.16 wrstuden } */ *ap = v;
758 1.16 wrstuden
759 1.16 wrstuden int error;
760 1.16 wrstuden struct vnode *vp = ap->a_vp;
761 1.16 wrstuden
762 1.16 wrstuden vref(vp);
763 1.16 wrstuden if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
764 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
765 1.16 wrstuden
766 1.16 wrstuden vrele(vp);
767 1.16 wrstuden
768 1.16 wrstuden return (error);
769 1.16 wrstuden }
770 1.16 wrstuden
771 1.16 wrstuden int
772 1.38 dsl layer_rename(void *v)
773 1.17 yamt {
774 1.17 yamt struct vop_rename_args /* {
775 1.17 yamt struct vnode *a_fdvp;
776 1.17 yamt struct vnode *a_fvp;
777 1.17 yamt struct componentname *a_fcnp;
778 1.17 yamt struct vnode *a_tdvp;
779 1.17 yamt struct vnode *a_tvp;
780 1.17 yamt struct componentname *a_tcnp;
781 1.17 yamt } */ *ap = v;
782 1.17 yamt
783 1.17 yamt int error;
784 1.17 yamt struct vnode *fdvp = ap->a_fdvp;
785 1.17 yamt struct vnode *tvp;
786 1.17 yamt
787 1.17 yamt tvp = ap->a_tvp;
788 1.17 yamt if (tvp) {
789 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
790 1.17 yamt tvp = NULL;
791 1.17 yamt else
792 1.17 yamt vref(tvp);
793 1.17 yamt }
794 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
795 1.17 yamt if (tvp) {
796 1.17 yamt if (error == 0)
797 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
798 1.17 yamt vrele(tvp);
799 1.17 yamt }
800 1.17 yamt
801 1.17 yamt return (error);
802 1.17 yamt }
803 1.17 yamt
804 1.17 yamt int
805 1.38 dsl layer_rmdir(void *v)
806 1.23 hannken {
807 1.23 hannken struct vop_rmdir_args /* {
808 1.23 hannken struct vnode *a_dvp;
809 1.23 hannken struct vnode *a_vp;
810 1.23 hannken struct componentname *a_cnp;
811 1.23 hannken } */ *ap = v;
812 1.23 hannken int error;
813 1.23 hannken struct vnode *vp = ap->a_vp;
814 1.23 hannken
815 1.23 hannken vref(vp);
816 1.23 hannken if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
817 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
818 1.23 hannken
819 1.23 hannken vrele(vp);
820 1.23 hannken
821 1.23 hannken return (error);
822 1.23 hannken }
823 1.23 hannken
824 1.23 hannken int
825 1.38 dsl layer_reclaim(void *v)
826 1.1 wrstuden {
827 1.1 wrstuden struct vop_reclaim_args /* {
828 1.1 wrstuden struct vnode *a_vp;
829 1.26 christos struct lwp *a_l;
830 1.1 wrstuden } */ *ap = v;
831 1.1 wrstuden struct vnode *vp = ap->a_vp;
832 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
833 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
834 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
835 1.1 wrstuden
836 1.1 wrstuden /*
837 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
838 1.1 wrstuden * decomissioned, so we have to be careful about calling
839 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set.
840 1.1 wrstuden */
841 1.1 wrstuden /* After this assignment, this node will not be re-used. */
842 1.1 wrstuden if ((vp == lmp->layerm_rootvp)) {
843 1.1 wrstuden /*
844 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
845 1.1 wrstuden * that someone forcably unmunted the underlying fs.
846 1.1 wrstuden *
847 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
848 1.1 wrstuden */
849 1.1 wrstuden lmp->layerm_rootvp = NULL;
850 1.1 wrstuden }
851 1.1 wrstuden xp->layer_lowervp = NULL;
852 1.32 ad mutex_enter(&lmp->layerm_hashlock);
853 1.1 wrstuden LIST_REMOVE(xp, layer_hash);
854 1.32 ad mutex_exit(&lmp->layerm_hashlock);
855 1.34 ad kmem_free(vp->v_data, lmp->layerm_size);
856 1.1 wrstuden vp->v_data = NULL;
857 1.29 chs vrele(lowervp);
858 1.34 ad
859 1.1 wrstuden return (0);
860 1.1 wrstuden }
861 1.1 wrstuden
862 1.1 wrstuden /*
863 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
864 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
865 1.1 wrstuden * i/o. :-)
866 1.1 wrstuden */
867 1.1 wrstuden int
868 1.38 dsl layer_bmap(void *v)
869 1.1 wrstuden {
870 1.1 wrstuden struct vop_bmap_args /* {
871 1.1 wrstuden struct vnode *a_vp;
872 1.1 wrstuden daddr_t a_bn;
873 1.1 wrstuden struct vnode **a_vpp;
874 1.1 wrstuden daddr_t *a_bnp;
875 1.1 wrstuden int *a_runp;
876 1.1 wrstuden } */ *ap = v;
877 1.1 wrstuden struct vnode *vp;
878 1.1 wrstuden
879 1.1 wrstuden ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
880 1.1 wrstuden
881 1.1 wrstuden return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
882 1.1 wrstuden }
883 1.1 wrstuden
884 1.1 wrstuden int
885 1.38 dsl layer_print(void *v)
886 1.1 wrstuden {
887 1.1 wrstuden struct vop_print_args /* {
888 1.1 wrstuden struct vnode *a_vp;
889 1.1 wrstuden } */ *ap = v;
890 1.3 augustss struct vnode *vp = ap->a_vp;
891 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
892 1.1 wrstuden return (0);
893 1.1 wrstuden }
894 1.1 wrstuden
895 1.1 wrstuden /*
896 1.14 hannken * XXX - vop_bwrite must be hand coded because it has no
897 1.1 wrstuden * vnode in its arguments.
898 1.1 wrstuden * This goes away with a merged VM/buffer cache.
899 1.1 wrstuden */
900 1.1 wrstuden int
901 1.38 dsl layer_bwrite(void *v)
902 1.1 wrstuden {
903 1.1 wrstuden struct vop_bwrite_args /* {
904 1.1 wrstuden struct buf *a_bp;
905 1.1 wrstuden } */ *ap = v;
906 1.1 wrstuden struct buf *bp = ap->a_bp;
907 1.1 wrstuden int error;
908 1.1 wrstuden struct vnode *savedvp;
909 1.1 wrstuden
910 1.1 wrstuden savedvp = bp->b_vp;
911 1.1 wrstuden bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
912 1.1 wrstuden
913 1.1 wrstuden error = VOP_BWRITE(bp);
914 1.1 wrstuden
915 1.1 wrstuden bp->b_vp = savedvp;
916 1.1 wrstuden
917 1.1 wrstuden return (error);
918 1.10 chs }
919 1.10 chs
920 1.10 chs int
921 1.38 dsl layer_getpages(void *v)
922 1.10 chs {
923 1.10 chs struct vop_getpages_args /* {
924 1.10 chs struct vnode *a_vp;
925 1.10 chs voff_t a_offset;
926 1.10 chs struct vm_page **a_m;
927 1.10 chs int *a_count;
928 1.10 chs int a_centeridx;
929 1.10 chs vm_prot_t a_access_type;
930 1.10 chs int a_advice;
931 1.10 chs int a_flags;
932 1.10 chs } */ *ap = v;
933 1.10 chs struct vnode *vp = ap->a_vp;
934 1.10 chs int error;
935 1.10 chs
936 1.10 chs /*
937 1.10 chs * just pass the request on to the underlying layer.
938 1.10 chs */
939 1.10 chs
940 1.10 chs if (ap->a_flags & PGO_LOCKED) {
941 1.10 chs return EBUSY;
942 1.10 chs }
943 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
944 1.34 ad mutex_exit(&vp->v_interlock);
945 1.34 ad mutex_enter(&ap->a_vp->v_interlock);
946 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
947 1.10 chs return error;
948 1.10 chs }
949 1.10 chs
950 1.10 chs int
951 1.38 dsl layer_putpages(void *v)
952 1.10 chs {
953 1.10 chs struct vop_putpages_args /* {
954 1.10 chs struct vnode *a_vp;
955 1.10 chs voff_t a_offlo;
956 1.10 chs voff_t a_offhi;
957 1.10 chs int a_flags;
958 1.10 chs } */ *ap = v;
959 1.10 chs struct vnode *vp = ap->a_vp;
960 1.10 chs int error;
961 1.10 chs
962 1.10 chs /*
963 1.10 chs * just pass the request on to the underlying layer.
964 1.10 chs */
965 1.10 chs
966 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
967 1.34 ad mutex_exit(&vp->v_interlock);
968 1.30 chs if (ap->a_flags & PGO_RECLAIM) {
969 1.30 chs return 0;
970 1.30 chs }
971 1.34 ad mutex_enter(&ap->a_vp->v_interlock);
972 1.10 chs error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
973 1.10 chs return error;
974 1.1 wrstuden }
975