Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.38
      1  1.38       dsl /*	$NetBSD: layer_vnops.c,v 1.38 2009/03/14 21:04:25 dsl Exp $	*/
      2   1.1  wrstuden 
      3   1.1  wrstuden /*
      4   1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5   1.1  wrstuden  * All rights reserved.
      6   1.1  wrstuden  *
      7   1.1  wrstuden  * This software was written by William Studenmund of the
      8   1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9   1.1  wrstuden  *
     10   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11   1.1  wrstuden  * modification, are permitted provided that the following conditions
     12   1.1  wrstuden  * are met:
     13   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18   1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19   1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20   1.1  wrstuden  *    products derived from this software without specific prior written
     21   1.1  wrstuden  *    permission.
     22   1.1  wrstuden  *
     23   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24   1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27   1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28   1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  wrstuden  */
     35   1.1  wrstuden /*
     36   1.1  wrstuden  * Copyright (c) 1992, 1993
     37   1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     38   1.1  wrstuden  *
     39   1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     40   1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     41   1.1  wrstuden  *
     42   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     43   1.1  wrstuden  * modification, are permitted provided that the following conditions
     44   1.1  wrstuden  * are met:
     45   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     46   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     47   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     48   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     49   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     50  1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     51   1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     52   1.1  wrstuden  *    without specific prior written permission.
     53   1.1  wrstuden  *
     54   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55   1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56   1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57   1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58   1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59   1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60   1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61   1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62   1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63   1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64   1.1  wrstuden  * SUCH DAMAGE.
     65   1.1  wrstuden  *
     66   1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67   1.1  wrstuden  *
     68   1.1  wrstuden  * Ancestors:
     69   1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  1.31     enami  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     71   1.1  wrstuden  *	...and...
     72   1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     73   1.1  wrstuden  */
     74   1.1  wrstuden 
     75   1.1  wrstuden /*
     76   1.1  wrstuden  * Null Layer vnode routines.
     77   1.1  wrstuden  *
     78   1.1  wrstuden  * (See mount_null(8) for more information.)
     79   1.1  wrstuden  *
     80   1.1  wrstuden  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     81  1.12       wiz  * the core implementation of the null file system and most other stacked
     82   1.1  wrstuden  * fs's. The description below refers to the null file system, but the
     83   1.1  wrstuden  * services provided by the layer* files are useful for all layered fs's.
     84   1.1  wrstuden  *
     85   1.1  wrstuden  * The null layer duplicates a portion of the file system
     86   1.1  wrstuden  * name space under a new name.  In this respect, it is
     87   1.1  wrstuden  * similar to the loopback file system.  It differs from
     88   1.1  wrstuden  * the loopback fs in two respects:  it is implemented using
     89   1.1  wrstuden  * a stackable layers techniques, and it's "null-node"s stack above
     90   1.1  wrstuden  * all lower-layer vnodes, not just over directory vnodes.
     91   1.1  wrstuden  *
     92   1.1  wrstuden  * The null layer has two purposes.  First, it serves as a demonstration
     93   1.1  wrstuden  * of layering by proving a layer which does nothing.  (It actually
     94   1.1  wrstuden  * does everything the loopback file system does, which is slightly
     95   1.1  wrstuden  * more than nothing.)  Second, the null layer can serve as a prototype
     96   1.1  wrstuden  * layer.  Since it provides all necessary layer framework,
     97   1.1  wrstuden  * new file system layers can be created very easily be starting
     98   1.1  wrstuden  * with a null layer.
     99   1.1  wrstuden  *
    100   1.1  wrstuden  * The remainder of the man page examines the null layer as a basis
    101   1.1  wrstuden  * for constructing new layers.
    102   1.1  wrstuden  *
    103   1.1  wrstuden  *
    104   1.1  wrstuden  * INSTANTIATING NEW NULL LAYERS
    105   1.1  wrstuden  *
    106   1.1  wrstuden  * New null layers are created with mount_null(8).
    107   1.1  wrstuden  * Mount_null(8) takes two arguments, the pathname
    108   1.1  wrstuden  * of the lower vfs (target-pn) and the pathname where the null
    109   1.1  wrstuden  * layer will appear in the namespace (alias-pn).  After
    110   1.1  wrstuden  * the null layer is put into place, the contents
    111   1.1  wrstuden  * of target-pn subtree will be aliased under alias-pn.
    112   1.1  wrstuden  *
    113   1.1  wrstuden  * It is conceivable that other overlay filesystems will take different
    114   1.1  wrstuden  * parameters. For instance, data migration or access controll layers might
    115   1.1  wrstuden  * only take one pathname which will serve both as the target-pn and
    116   1.1  wrstuden  * alias-pn described above.
    117   1.1  wrstuden  *
    118   1.1  wrstuden  *
    119   1.1  wrstuden  * OPERATION OF A NULL LAYER
    120   1.1  wrstuden  *
    121   1.1  wrstuden  * The null layer is the minimum file system layer,
    122   1.1  wrstuden  * simply bypassing all possible operations to the lower layer
    123   1.1  wrstuden  * for processing there.  The majority of its activity centers
    124  1.13       wiz  * on the bypass routine, through which nearly all vnode operations
    125   1.1  wrstuden  * pass.
    126   1.1  wrstuden  *
    127   1.1  wrstuden  * The bypass routine accepts arbitrary vnode operations for
    128   1.1  wrstuden  * handling by the lower layer.  It begins by examing vnode
    129   1.1  wrstuden  * operation arguments and replacing any layered nodes by their
    130  1.13       wiz  * lower-layer equivalents.  It then invokes the operation
    131   1.1  wrstuden  * on the lower layer.  Finally, it replaces the layered nodes
    132   1.1  wrstuden  * in the arguments and, if a vnode is return by the operation,
    133   1.1  wrstuden  * stacks a layered node on top of the returned vnode.
    134   1.1  wrstuden  *
    135   1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    136   1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    137   1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    138   1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    139   1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    140   1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    141   1.1  wrstuden  *
    142   1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    143   1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    144   1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    145   1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    146   1.1  wrstuden  * use the layerm_bypass routine.
    147   1.1  wrstuden  *
    148   1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    149   1.1  wrstuden  * of operations are special cased, and handled by the layered fs. One
    150   1.1  wrstuden  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    151   1.1  wrstuden  * layer_fsync, perform layer-specific manipulation in addition to calling
    152   1.1  wrstuden  * the bypass routine. The other group
    153   1.1  wrstuden 
    154   1.1  wrstuden  * Although bypass handles most operations, vop_getattr, vop_lock,
    155   1.1  wrstuden  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    156   1.1  wrstuden  * bypassed. Vop_getattr must change the fsid being returned.
    157   1.1  wrstuden  * Vop_lock and vop_unlock must handle any locking for the
    158   1.1  wrstuden  * current vnode as well as pass the lock request down.
    159   1.1  wrstuden  * Vop_inactive and vop_reclaim are not bypassed so that
    160   1.1  wrstuden  * they can handle freeing null-layer specific data. Vop_print
    161   1.1  wrstuden  * is not bypassed to avoid excessive debugging information.
    162   1.1  wrstuden  * Also, certain vnode operations change the locking state within
    163   1.1  wrstuden  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    164   1.1  wrstuden  * and symlink). Ideally these operations should not change the
    165   1.1  wrstuden  * lock state, but should be changed to let the caller of the
    166   1.1  wrstuden  * function unlock them. Otherwise all intermediate vnode layers
    167   1.1  wrstuden  * (such as union, umapfs, etc) must catch these functions to do
    168   1.1  wrstuden  * the necessary locking at their layer.
    169   1.1  wrstuden  *
    170   1.1  wrstuden  *
    171   1.1  wrstuden  * INSTANTIATING VNODE STACKS
    172   1.1  wrstuden  *
    173   1.1  wrstuden  * Mounting associates the null layer with a lower layer,
    174   1.1  wrstuden  * effect stacking two VFSes.  Vnode stacks are instead
    175   1.1  wrstuden  * created on demand as files are accessed.
    176   1.1  wrstuden  *
    177   1.1  wrstuden  * The initial mount creates a single vnode stack for the
    178   1.1  wrstuden  * root of the new null layer.  All other vnode stacks
    179   1.1  wrstuden  * are created as a result of vnode operations on
    180   1.1  wrstuden  * this or other null vnode stacks.
    181   1.1  wrstuden  *
    182  1.13       wiz  * New vnode stacks come into existence as a result of
    183  1.24     perry  * an operation which returns a vnode.
    184   1.1  wrstuden  * The bypass routine stacks a null-node above the new
    185   1.1  wrstuden  * vnode before returning it to the caller.
    186   1.1  wrstuden  *
    187   1.1  wrstuden  * For example, imagine mounting a null layer with
    188   1.1  wrstuden  * "mount_null /usr/include /dev/layer/null".
    189   1.1  wrstuden  * Changing directory to /dev/layer/null will assign
    190   1.1  wrstuden  * the root null-node (which was created when the null layer was mounted).
    191   1.1  wrstuden  * Now consider opening "sys".  A vop_lookup would be
    192   1.1  wrstuden  * done on the root null-node.  This operation would bypass through
    193  1.24     perry  * to the lower layer which would return a vnode representing
    194   1.1  wrstuden  * the UFS "sys".  layer_bypass then builds a null-node
    195   1.1  wrstuden  * aliasing the UFS "sys" and returns this to the caller.
    196   1.1  wrstuden  * Later operations on the null-node "sys" will repeat this
    197   1.1  wrstuden  * process when constructing other vnode stacks.
    198   1.1  wrstuden  *
    199   1.1  wrstuden  *
    200   1.1  wrstuden  * CREATING OTHER FILE SYSTEM LAYERS
    201   1.1  wrstuden  *
    202   1.1  wrstuden  * One of the easiest ways to construct new file system layers is to make
    203   1.1  wrstuden  * a copy of the null layer, rename all files and variables, and
    204   1.1  wrstuden  * then begin modifing the copy.  Sed can be used to easily rename
    205   1.1  wrstuden  * all variables.
    206   1.1  wrstuden  *
    207  1.24     perry  * The umap layer is an example of a layer descended from the
    208   1.1  wrstuden  * null layer.
    209   1.1  wrstuden  *
    210   1.1  wrstuden  *
    211   1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    212   1.1  wrstuden  *
    213  1.24     perry  * There are two techniques to invoke operations on a lower layer
    214   1.1  wrstuden  * when the operation cannot be completely bypassed.  Each method
    215   1.1  wrstuden  * is appropriate in different situations.  In both cases,
    216   1.1  wrstuden  * it is the responsibility of the aliasing layer to make
    217   1.1  wrstuden  * the operation arguments "correct" for the lower layer
    218   1.1  wrstuden  * by mapping an vnode arguments to the lower layer.
    219   1.1  wrstuden  *
    220   1.1  wrstuden  * The first approach is to call the aliasing layer's bypass routine.
    221   1.1  wrstuden  * This method is most suitable when you wish to invoke the operation
    222  1.13       wiz  * currently being handled on the lower layer.  It has the advantage
    223   1.1  wrstuden  * that the bypass routine already must do argument mapping.
    224   1.1  wrstuden  * An example of this is null_getattrs in the null layer.
    225   1.1  wrstuden  *
    226  1.13       wiz  * A second approach is to directly invoke vnode operations on
    227   1.1  wrstuden  * the lower layer with the VOP_OPERATIONNAME interface.
    228   1.1  wrstuden  * The advantage of this method is that it is easy to invoke
    229   1.1  wrstuden  * arbitrary operations on the lower layer.  The disadvantage
    230  1.13       wiz  * is that vnodes' arguments must be manually mapped.
    231   1.1  wrstuden  *
    232   1.1  wrstuden  */
    233   1.8     lukem 
    234   1.8     lukem #include <sys/cdefs.h>
    235  1.38       dsl __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.38 2009/03/14 21:04:25 dsl Exp $");
    236   1.1  wrstuden 
    237   1.1  wrstuden #include <sys/param.h>
    238   1.1  wrstuden #include <sys/systm.h>
    239   1.1  wrstuden #include <sys/proc.h>
    240   1.1  wrstuden #include <sys/time.h>
    241   1.1  wrstuden #include <sys/vnode.h>
    242   1.1  wrstuden #include <sys/mount.h>
    243   1.1  wrstuden #include <sys/namei.h>
    244  1.34        ad #include <sys/kmem.h>
    245   1.1  wrstuden #include <sys/buf.h>
    246  1.27      elad #include <sys/kauth.h>
    247  1.27      elad 
    248   1.1  wrstuden #include <miscfs/genfs/layer.h>
    249   1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    250   1.1  wrstuden #include <miscfs/genfs/genfs.h>
    251   1.1  wrstuden 
    252   1.1  wrstuden 
    253   1.1  wrstuden /*
    254   1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    255   1.1  wrstuden  *		routine by John Heidemann.
    256   1.1  wrstuden  *	The new element for this version is that the whole nullfs
    257   1.1  wrstuden  * system gained the concept of locks on the lower node, and locks on
    258   1.1  wrstuden  * our nodes. When returning from a call to the lower layer, we may
    259   1.1  wrstuden  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    260   1.1  wrstuden  * macros provide this functionality.
    261   1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    262   1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    263   1.1  wrstuden  * robust to programmer errors.
    264   1.1  wrstuden  *
    265   1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    266   1.1  wrstuden  *
    267   1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    268   1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    269   1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    270   1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    271   1.1  wrstuden  * since there are no such side-effects.
    272   1.1  wrstuden  *
    273   1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    274   1.1  wrstuden  * the passed-in node (typically they vput the node).
    275   1.1  wrstuden  *
    276   1.1  wrstuden  * This makes the following assumptions:
    277   1.1  wrstuden  * - only one returned vpp
    278   1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    279   1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    280   1.1  wrstuden  *   to determine what implementation of the op should be invoked
    281   1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    282   1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    283  1.24     perry  */
    284   1.1  wrstuden int
    285  1.38       dsl layer_bypass(void *v)
    286   1.1  wrstuden {
    287   1.1  wrstuden 	struct vop_generic_args /* {
    288   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    289   1.1  wrstuden 		<other random data follows, presumably>
    290   1.1  wrstuden 	} */ *ap = v;
    291  1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    292   1.3  augustss 	struct vnode **this_vp_p;
    293   1.1  wrstuden 	int error, error1;
    294   1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    295   1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    296   1.1  wrstuden 	struct vnode ***vppp;
    297  1.33    dyoung 	struct mount *mp;
    298   1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    299   1.1  wrstuden 	int reles, i, flags;
    300   1.1  wrstuden 
    301  1.37    plunky #ifdef DIAGNOSTIC
    302   1.1  wrstuden 	/*
    303   1.1  wrstuden 	 * We require at least one vp.
    304   1.1  wrstuden 	 */
    305   1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    306   1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    307  1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    308   1.1  wrstuden #endif
    309   1.1  wrstuden 
    310  1.20      yamt 	vps_p[0] =
    311  1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    312   1.1  wrstuden 	vp0 = *vps_p[0];
    313  1.33    dyoung 	mp = vp0->v_mount;
    314  1.33    dyoung 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    315   1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    316   1.1  wrstuden 
    317   1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    318  1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    319   1.1  wrstuden 
    320   1.1  wrstuden 	/*
    321   1.1  wrstuden 	 * Map the vnodes going in.
    322   1.1  wrstuden 	 * Later, we'll invoke the operation based on
    323   1.1  wrstuden 	 * the first mapped vnode's operation vector.
    324   1.1  wrstuden 	 */
    325   1.1  wrstuden 	reles = descp->vdesc_flags;
    326   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    327   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    328   1.1  wrstuden 			break;   /* bail out at end of list */
    329  1.24     perry 		vps_p[i] = this_vp_p =
    330  1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    331  1.20      yamt 		    ap);
    332   1.1  wrstuden 		/*
    333   1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    334   1.1  wrstuden 		 * are of our type.  Check for and don't map any
    335   1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    336   1.1  wrstuden 		 */
    337   1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    338   1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    339   1.1  wrstuden 			old_vps[i] = NULL;
    340   1.1  wrstuden 		} else {
    341   1.1  wrstuden 			old_vps[i] = *this_vp_p;
    342   1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    343   1.1  wrstuden 			/*
    344   1.1  wrstuden 			 * XXX - Several operations have the side effect
    345   1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    346   1.1  wrstuden 			 * that.  (This should go away in the future.)
    347   1.1  wrstuden 			 */
    348   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    349   1.1  wrstuden 				VREF(*this_vp_p);
    350   1.1  wrstuden 		}
    351  1.24     perry 
    352   1.1  wrstuden 	}
    353   1.1  wrstuden 
    354   1.1  wrstuden 	/*
    355   1.1  wrstuden 	 * Call the operation on the lower layer
    356   1.1  wrstuden 	 * with the modified argument structure.
    357   1.1  wrstuden 	 */
    358   1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    359   1.1  wrstuden 
    360   1.1  wrstuden 	/*
    361   1.1  wrstuden 	 * Maintain the illusion of call-by-value
    362   1.1  wrstuden 	 * by restoring vnodes in the argument structure
    363   1.1  wrstuden 	 * to their original value.
    364   1.1  wrstuden 	 */
    365   1.1  wrstuden 	reles = descp->vdesc_flags;
    366   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    367   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    368   1.1  wrstuden 			break;   /* bail out at end of list */
    369   1.1  wrstuden 		if (old_vps[i]) {
    370   1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    371   1.1  wrstuden 			if (reles & VDESC_VP0_WILLUNLOCK)
    372   1.1  wrstuden 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    373   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    374   1.1  wrstuden 				vrele(*(vps_p[i]));
    375   1.1  wrstuden 		}
    376   1.1  wrstuden 	}
    377   1.1  wrstuden 
    378   1.1  wrstuden 	/*
    379   1.1  wrstuden 	 * Map the possible out-going vpp
    380   1.1  wrstuden 	 * (Assumes that the lower layer always returns
    381   1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    382   1.1  wrstuden 	 */
    383   1.1  wrstuden 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    384   1.1  wrstuden 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    385   1.1  wrstuden 	    !error) {
    386   1.1  wrstuden 		/*
    387   1.1  wrstuden 		 * XXX - even though some ops have vpp returned vp's,
    388   1.1  wrstuden 		 * several ops actually vrele this before returning.
    389   1.1  wrstuden 		 * We must avoid these ops.
    390   1.1  wrstuden 		 * (This should go away when these ops are regularized.)
    391   1.1  wrstuden 		 */
    392   1.1  wrstuden 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    393   1.1  wrstuden 			goto out;
    394   1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    395  1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    396   1.1  wrstuden 		/*
    397   1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    398   1.7     assar 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    399   1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    400  1.20      yamt 		 * going to do i/o on it). vop_lookup doesn't call bypass
    401   1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    402   1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    403   1.1  wrstuden 		 */
    404  1.33    dyoung 		error = layer_node_create(mp, **vppp, *vppp);
    405  1.19      yamt 		if (error) {
    406  1.19      yamt 			vput(**vppp);
    407  1.19      yamt 			**vppp = NULL;
    408  1.19      yamt 		}
    409   1.1  wrstuden 	}
    410   1.1  wrstuden 
    411   1.1  wrstuden  out:
    412   1.1  wrstuden 	return (error);
    413   1.1  wrstuden }
    414   1.1  wrstuden 
    415   1.1  wrstuden /*
    416   1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    417   1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    418   1.1  wrstuden  * if this layer is mounted read-only.
    419   1.1  wrstuden  */
    420   1.1  wrstuden int
    421  1.38       dsl layer_lookup(void *v)
    422   1.1  wrstuden {
    423   1.1  wrstuden 	struct vop_lookup_args /* {
    424   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    425   1.1  wrstuden 		struct vnode * a_dvp;
    426   1.1  wrstuden 		struct vnode ** a_vpp;
    427   1.1  wrstuden 		struct componentname * a_cnp;
    428   1.1  wrstuden 	} */ *ap = v;
    429   1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    430   1.1  wrstuden 	int flags = cnp->cn_flags;
    431  1.29       chs 	struct vnode *dvp, *lvp, *ldvp;
    432  1.29       chs 	int error;
    433   1.1  wrstuden 
    434   1.1  wrstuden 	dvp = ap->a_dvp;
    435   1.1  wrstuden 
    436   1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    437   1.1  wrstuden 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    438   1.1  wrstuden 		return (EROFS);
    439   1.1  wrstuden 
    440   1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    441   1.1  wrstuden 	ap->a_dvp = ldvp;
    442   1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    443  1.29       chs 	lvp = *ap->a_vpp;
    444  1.18      yamt 	*ap->a_vpp = NULL;
    445   1.1  wrstuden 
    446   1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    447   1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    448   1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    449   1.1  wrstuden 		error = EROFS;
    450  1.29       chs 
    451   1.1  wrstuden 	/*
    452  1.24     perry 	 * We must do the same locking and unlocking at this layer as
    453  1.29       chs 	 * is done in the layers below us.
    454   1.1  wrstuden 	 */
    455  1.29       chs 	if (ldvp == lvp) {
    456  1.29       chs 
    457   1.1  wrstuden 		/*
    458  1.36  dholland 		 * Got the same object back, because we looked up ".",
    459  1.36  dholland 		 * or ".." in the root node of a mount point.
    460  1.36  dholland 		 * So we make another reference to dvp and return it.
    461   1.1  wrstuden 		 */
    462  1.29       chs 		VREF(dvp);
    463   1.1  wrstuden 		*ap->a_vpp = dvp;
    464  1.29       chs 		vrele(lvp);
    465  1.29       chs 	} else if (lvp != NULL) {
    466  1.29       chs 		/* dvp, ldvp and vp are all locked */
    467  1.29       chs 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    468  1.19      yamt 		if (error) {
    469  1.29       chs 			vput(lvp);
    470  1.19      yamt 		}
    471   1.1  wrstuden 	}
    472   1.1  wrstuden 	return (error);
    473   1.1  wrstuden }
    474   1.1  wrstuden 
    475   1.1  wrstuden /*
    476   1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    477   1.1  wrstuden  */
    478   1.1  wrstuden int
    479  1.38       dsl layer_setattr(void *v)
    480   1.1  wrstuden {
    481   1.1  wrstuden 	struct vop_setattr_args /* {
    482   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    483   1.1  wrstuden 		struct vnode *a_vp;
    484   1.1  wrstuden 		struct vattr *a_vap;
    485  1.27      elad 		kauth_cred_t a_cred;
    486  1.26  christos 		struct lwp *a_l;
    487   1.1  wrstuden 	} */ *ap = v;
    488   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    489   1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    490   1.1  wrstuden 
    491   1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    492   1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    493   1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    494   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    495   1.1  wrstuden 		return (EROFS);
    496   1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    497   1.1  wrstuden  		switch (vp->v_type) {
    498   1.1  wrstuden  		case VDIR:
    499   1.1  wrstuden  			return (EISDIR);
    500   1.1  wrstuden  		case VCHR:
    501   1.1  wrstuden  		case VBLK:
    502   1.1  wrstuden  		case VSOCK:
    503   1.1  wrstuden  		case VFIFO:
    504   1.1  wrstuden 			return (0);
    505   1.1  wrstuden 		case VREG:
    506   1.1  wrstuden 		case VLNK:
    507   1.1  wrstuden  		default:
    508   1.1  wrstuden 			/*
    509   1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    510   1.1  wrstuden 			 * mounted read-only.
    511   1.1  wrstuden 			 */
    512   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    513   1.1  wrstuden 				return (EROFS);
    514   1.1  wrstuden 		}
    515   1.1  wrstuden 	}
    516   1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    517   1.1  wrstuden }
    518   1.1  wrstuden 
    519   1.1  wrstuden /*
    520   1.1  wrstuden  *  We handle getattr only to change the fsid.
    521   1.1  wrstuden  */
    522   1.1  wrstuden int
    523  1.38       dsl layer_getattr(void *v)
    524   1.1  wrstuden {
    525   1.1  wrstuden 	struct vop_getattr_args /* {
    526   1.1  wrstuden 		struct vnode *a_vp;
    527   1.1  wrstuden 		struct vattr *a_vap;
    528  1.27      elad 		kauth_cred_t a_cred;
    529  1.26  christos 		struct lwp *a_l;
    530   1.1  wrstuden 	} */ *ap = v;
    531   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    532   1.1  wrstuden 	int error;
    533   1.1  wrstuden 
    534   1.1  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    535   1.1  wrstuden 		return (error);
    536   1.1  wrstuden 	/* Requires that arguments be restored. */
    537  1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    538   1.1  wrstuden 	return (0);
    539   1.1  wrstuden }
    540   1.1  wrstuden 
    541   1.1  wrstuden int
    542  1.38       dsl layer_access(void *v)
    543   1.1  wrstuden {
    544   1.1  wrstuden 	struct vop_access_args /* {
    545   1.1  wrstuden 		struct vnode *a_vp;
    546   1.1  wrstuden 		int  a_mode;
    547  1.27      elad 		kauth_cred_t a_cred;
    548  1.26  christos 		struct lwp *a_l;
    549   1.1  wrstuden 	} */ *ap = v;
    550   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    551   1.1  wrstuden 	mode_t mode = ap->a_mode;
    552   1.1  wrstuden 
    553   1.1  wrstuden 	/*
    554   1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    555   1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    556   1.1  wrstuden 	 * character device resident on the file system.
    557   1.1  wrstuden 	 */
    558   1.1  wrstuden 	if (mode & VWRITE) {
    559   1.1  wrstuden 		switch (vp->v_type) {
    560   1.1  wrstuden 		case VDIR:
    561   1.1  wrstuden 		case VLNK:
    562   1.1  wrstuden 		case VREG:
    563   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    564   1.1  wrstuden 				return (EROFS);
    565   1.1  wrstuden 			break;
    566   1.1  wrstuden 		default:
    567   1.1  wrstuden 			break;
    568   1.1  wrstuden 		}
    569   1.1  wrstuden 	}
    570   1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    571   1.1  wrstuden }
    572   1.1  wrstuden 
    573   1.1  wrstuden /*
    574   1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    575   1.1  wrstuden  */
    576   1.1  wrstuden int
    577  1.38       dsl layer_open(void *v)
    578   1.1  wrstuden {
    579   1.1  wrstuden 	struct vop_open_args *ap = v;
    580   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    581   1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    582   1.1  wrstuden 
    583   1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    584   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    585   1.1  wrstuden 		return ENXIO;
    586   1.1  wrstuden 
    587   1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    588   1.1  wrstuden }
    589   1.1  wrstuden 
    590   1.1  wrstuden /*
    591   1.1  wrstuden  * We need to process our own vnode lock and then clear the
    592   1.1  wrstuden  * interlock flag as it applies only to our vnode, not the
    593   1.1  wrstuden  * vnodes below us on the stack.
    594   1.1  wrstuden  */
    595   1.1  wrstuden int
    596  1.38       dsl layer_lock(void *v)
    597   1.1  wrstuden {
    598   1.1  wrstuden 	struct vop_lock_args /* {
    599   1.1  wrstuden 		struct vnode *a_vp;
    600   1.1  wrstuden 		int a_flags;
    601   1.1  wrstuden 		struct proc *a_p;
    602   1.1  wrstuden 	} */ *ap = v;
    603   1.1  wrstuden 	struct vnode *vp = ap->a_vp, *lowervp;
    604   1.1  wrstuden 	int	flags = ap->a_flags, error;
    605   1.1  wrstuden 
    606  1.35        ad 	if (flags & LK_INTERLOCK) {
    607  1.35        ad 		mutex_exit(&vp->v_interlock);
    608  1.35        ad 		flags &= ~LK_INTERLOCK;
    609  1.35        ad 	}
    610  1.35        ad 
    611   1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    612   1.1  wrstuden 		/*
    613   1.1  wrstuden 		 * The lower level has exported a struct lock to us. Use
    614   1.1  wrstuden 		 * it so that all vnodes in the stack lock and unlock
    615   1.1  wrstuden 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    616   1.1  wrstuden 		 * decommissions the lock - just because our vnode is
    617   1.1  wrstuden 		 * going away doesn't mean the struct lock below us is.
    618   1.1  wrstuden 		 * LK_EXCLUSIVE is fine.
    619   1.1  wrstuden 		 */
    620  1.35        ad 		return (vlockmgr(vp->v_vnlock, flags));
    621   1.1  wrstuden 	} else {
    622   1.1  wrstuden 		/*
    623   1.1  wrstuden 		 * Ahh well. It would be nice if the fs we're over would
    624   1.1  wrstuden 		 * export a struct lock for us to use, but it doesn't.
    625   1.1  wrstuden 		 *
    626   1.1  wrstuden 		 * To prevent race conditions involving doing a lookup
    627   1.1  wrstuden 		 * on "..", we have to lock the lower node, then lock our
    628   1.1  wrstuden 		 * node. Most of the time it won't matter that we lock our
    629   1.1  wrstuden 		 * node (as any locking would need the lower one locked
    630  1.34        ad 		 * first).
    631   1.1  wrstuden 		 */
    632   1.1  wrstuden 		lowervp = LAYERVPTOLOWERVP(vp);
    633  1.34        ad 		error = VOP_LOCK(lowervp, flags);
    634   1.1  wrstuden 		if (error)
    635   1.1  wrstuden 			return (error);
    636  1.35        ad 		if ((error = vlockmgr(&vp->v_lock, flags))) {
    637   1.1  wrstuden 			VOP_UNLOCK(lowervp, 0);
    638   1.1  wrstuden 		}
    639   1.1  wrstuden 		return (error);
    640   1.1  wrstuden 	}
    641   1.1  wrstuden }
    642   1.1  wrstuden 
    643   1.1  wrstuden /*
    644   1.1  wrstuden  */
    645   1.1  wrstuden int
    646  1.38       dsl layer_unlock(void *v)
    647   1.1  wrstuden {
    648   1.1  wrstuden 	struct vop_unlock_args /* {
    649   1.1  wrstuden 		struct vnode *a_vp;
    650   1.1  wrstuden 		int a_flags;
    651   1.1  wrstuden 		struct proc *a_p;
    652   1.1  wrstuden 	} */ *ap = v;
    653   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    654   1.1  wrstuden 	int	flags = ap->a_flags;
    655   1.1  wrstuden 
    656  1.35        ad 	if (flags & LK_INTERLOCK) {
    657  1.35        ad 		mutex_exit(&vp->v_interlock);
    658  1.35        ad 		flags &= ~LK_INTERLOCK;
    659  1.35        ad 	}
    660  1.35        ad 
    661   1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    662  1.35        ad 		return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
    663   1.1  wrstuden 	} else {
    664   1.1  wrstuden 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    665  1.35        ad 		return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
    666   1.1  wrstuden 	}
    667   1.1  wrstuden }
    668   1.1  wrstuden 
    669   1.1  wrstuden int
    670  1.38       dsl layer_islocked(void *v)
    671   1.1  wrstuden {
    672   1.1  wrstuden 	struct vop_islocked_args /* {
    673   1.1  wrstuden 		struct vnode *a_vp;
    674   1.1  wrstuden 	} */ *ap = v;
    675   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    676  1.22      yamt 	int lkstatus;
    677   1.1  wrstuden 
    678   1.1  wrstuden 	if (vp->v_vnlock != NULL)
    679  1.35        ad 		return vlockstatus(vp->v_vnlock);
    680  1.22      yamt 
    681  1.22      yamt 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
    682  1.22      yamt 	if (lkstatus)
    683  1.22      yamt 		return lkstatus;
    684  1.22      yamt 
    685  1.35        ad 	return vlockstatus(&vp->v_lock);
    686   1.1  wrstuden }
    687   1.1  wrstuden 
    688   1.1  wrstuden /*
    689   1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    690   1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    691   1.1  wrstuden  * reclaimed; otherwise,
    692   1.1  wrstuden  * pass it through to the underlying layer.
    693   1.1  wrstuden  *
    694   1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    695   1.1  wrstuden  */
    696   1.1  wrstuden 
    697   1.1  wrstuden int
    698  1.38       dsl layer_fsync(void *v)
    699   1.1  wrstuden {
    700   1.1  wrstuden 	struct vop_fsync_args /* {
    701   1.1  wrstuden 		struct vnode *a_vp;
    702  1.27      elad 		kauth_cred_t a_cred;
    703   1.1  wrstuden 		int  a_flags;
    704   1.4      fvdl 		off_t offlo;
    705   1.4      fvdl 		off_t offhi;
    706  1.26  christos 		struct lwp *a_l;
    707   1.1  wrstuden 	} */ *ap = v;
    708   1.1  wrstuden 
    709   1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    710   1.1  wrstuden 		return 0;
    711   1.1  wrstuden 	}
    712   1.1  wrstuden 
    713   1.1  wrstuden 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    714   1.1  wrstuden }
    715   1.1  wrstuden 
    716   1.1  wrstuden 
    717   1.1  wrstuden int
    718  1.38       dsl layer_inactive(void *v)
    719   1.1  wrstuden {
    720   1.1  wrstuden 	struct vop_inactive_args /* {
    721   1.1  wrstuden 		struct vnode *a_vp;
    722  1.34        ad 		bool *a_recycle;
    723   1.1  wrstuden 	} */ *ap = v;
    724   1.5     enami 	struct vnode *vp = ap->a_vp;
    725   1.1  wrstuden 
    726   1.1  wrstuden 	/*
    727  1.34        ad 	 * ..., but don't cache the device node. Also, if we did a
    728  1.34        ad 	 * remove, don't cache the node.
    729  1.34        ad 	 */
    730  1.34        ad 	*ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
    731  1.34        ad 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
    732  1.34        ad 
    733  1.34        ad 	/*
    734   1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    735   1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    736   1.1  wrstuden 	 * so that until then our layer_node is in the
    737   1.1  wrstuden 	 * cache and reusable.
    738   1.1  wrstuden 	 *
    739   1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    740   1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    741   1.1  wrstuden 	 * with capabilities (v_id)
    742   1.1  wrstuden 	 * like they do in the name lookup cache code.
    743   1.1  wrstuden 	 * That's too much work for now.
    744   1.1  wrstuden 	 */
    745   1.5     enami 	VOP_UNLOCK(vp, 0);
    746   1.5     enami 
    747   1.1  wrstuden 	return (0);
    748   1.1  wrstuden }
    749   1.1  wrstuden 
    750   1.1  wrstuden int
    751  1.38       dsl layer_remove(void *v)
    752  1.16  wrstuden {
    753  1.16  wrstuden 	struct vop_remove_args /* {
    754  1.16  wrstuden 		struct vonde		*a_dvp;
    755  1.16  wrstuden 		struct vnode		*a_vp;
    756  1.16  wrstuden 		struct componentname	*a_cnp;
    757  1.16  wrstuden 	} */ *ap = v;
    758  1.16  wrstuden 
    759  1.16  wrstuden 	int		error;
    760  1.16  wrstuden 	struct vnode	*vp = ap->a_vp;
    761  1.16  wrstuden 
    762  1.16  wrstuden 	vref(vp);
    763  1.16  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    764  1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    765  1.16  wrstuden 
    766  1.16  wrstuden 	vrele(vp);
    767  1.16  wrstuden 
    768  1.16  wrstuden 	return (error);
    769  1.16  wrstuden }
    770  1.16  wrstuden 
    771  1.16  wrstuden int
    772  1.38       dsl layer_rename(void *v)
    773  1.17      yamt {
    774  1.17      yamt 	struct vop_rename_args  /* {
    775  1.17      yamt 		struct vnode		*a_fdvp;
    776  1.17      yamt 		struct vnode		*a_fvp;
    777  1.17      yamt 		struct componentname	*a_fcnp;
    778  1.17      yamt 		struct vnode		*a_tdvp;
    779  1.17      yamt 		struct vnode		*a_tvp;
    780  1.17      yamt 		struct componentname	*a_tcnp;
    781  1.17      yamt 	} */ *ap = v;
    782  1.17      yamt 
    783  1.17      yamt 	int error;
    784  1.17      yamt 	struct vnode *fdvp = ap->a_fdvp;
    785  1.17      yamt 	struct vnode *tvp;
    786  1.17      yamt 
    787  1.17      yamt 	tvp = ap->a_tvp;
    788  1.17      yamt 	if (tvp) {
    789  1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    790  1.17      yamt 			tvp = NULL;
    791  1.17      yamt 		else
    792  1.17      yamt 			vref(tvp);
    793  1.17      yamt 	}
    794  1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    795  1.17      yamt 	if (tvp) {
    796  1.17      yamt 		if (error == 0)
    797  1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    798  1.17      yamt 		vrele(tvp);
    799  1.17      yamt 	}
    800  1.17      yamt 
    801  1.17      yamt 	return (error);
    802  1.17      yamt }
    803  1.17      yamt 
    804  1.17      yamt int
    805  1.38       dsl layer_rmdir(void *v)
    806  1.23   hannken {
    807  1.23   hannken 	struct vop_rmdir_args /* {
    808  1.23   hannken 		struct vnode		*a_dvp;
    809  1.23   hannken 		struct vnode		*a_vp;
    810  1.23   hannken 		struct componentname	*a_cnp;
    811  1.23   hannken 	} */ *ap = v;
    812  1.23   hannken 	int		error;
    813  1.23   hannken 	struct vnode	*vp = ap->a_vp;
    814  1.23   hannken 
    815  1.23   hannken 	vref(vp);
    816  1.23   hannken 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    817  1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    818  1.23   hannken 
    819  1.23   hannken 	vrele(vp);
    820  1.23   hannken 
    821  1.23   hannken 	return (error);
    822  1.23   hannken }
    823  1.23   hannken 
    824  1.23   hannken int
    825  1.38       dsl layer_reclaim(void *v)
    826   1.1  wrstuden {
    827   1.1  wrstuden 	struct vop_reclaim_args /* {
    828   1.1  wrstuden 		struct vnode *a_vp;
    829  1.26  christos 		struct lwp *a_l;
    830   1.1  wrstuden 	} */ *ap = v;
    831   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    832   1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    833   1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    834   1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    835   1.1  wrstuden 
    836   1.1  wrstuden 	/*
    837   1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    838   1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    839  1.34        ad 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    840   1.1  wrstuden 	 */
    841   1.1  wrstuden 	/* After this assignment, this node will not be re-used. */
    842   1.1  wrstuden 	if ((vp == lmp->layerm_rootvp)) {
    843   1.1  wrstuden 		/*
    844   1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    845   1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    846   1.1  wrstuden 		 *
    847   1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    848   1.1  wrstuden 		 */
    849   1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    850   1.1  wrstuden 	}
    851   1.1  wrstuden 	xp->layer_lowervp = NULL;
    852  1.32        ad 	mutex_enter(&lmp->layerm_hashlock);
    853   1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    854  1.32        ad 	mutex_exit(&lmp->layerm_hashlock);
    855  1.34        ad 	kmem_free(vp->v_data, lmp->layerm_size);
    856   1.1  wrstuden 	vp->v_data = NULL;
    857  1.29       chs 	vrele(lowervp);
    858  1.34        ad 
    859   1.1  wrstuden 	return (0);
    860   1.1  wrstuden }
    861   1.1  wrstuden 
    862   1.1  wrstuden /*
    863   1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    864   1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    865   1.1  wrstuden  * i/o. :-)
    866   1.1  wrstuden  */
    867   1.1  wrstuden int
    868  1.38       dsl layer_bmap(void *v)
    869   1.1  wrstuden {
    870   1.1  wrstuden 	struct vop_bmap_args /* {
    871   1.1  wrstuden 		struct vnode *a_vp;
    872   1.1  wrstuden 		daddr_t  a_bn;
    873   1.1  wrstuden 		struct vnode **a_vpp;
    874   1.1  wrstuden 		daddr_t *a_bnp;
    875   1.1  wrstuden 		int *a_runp;
    876   1.1  wrstuden 	} */ *ap = v;
    877   1.1  wrstuden 	struct vnode *vp;
    878   1.1  wrstuden 
    879   1.1  wrstuden 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    880   1.1  wrstuden 
    881   1.1  wrstuden 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    882   1.1  wrstuden }
    883   1.1  wrstuden 
    884   1.1  wrstuden int
    885  1.38       dsl layer_print(void *v)
    886   1.1  wrstuden {
    887   1.1  wrstuden 	struct vop_print_args /* {
    888   1.1  wrstuden 		struct vnode *a_vp;
    889   1.1  wrstuden 	} */ *ap = v;
    890   1.3  augustss 	struct vnode *vp = ap->a_vp;
    891   1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    892   1.1  wrstuden 	return (0);
    893   1.1  wrstuden }
    894   1.1  wrstuden 
    895   1.1  wrstuden /*
    896  1.14   hannken  * XXX - vop_bwrite must be hand coded because it has no
    897   1.1  wrstuden  * vnode in its arguments.
    898   1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    899   1.1  wrstuden  */
    900   1.1  wrstuden int
    901  1.38       dsl layer_bwrite(void *v)
    902   1.1  wrstuden {
    903   1.1  wrstuden 	struct vop_bwrite_args /* {
    904   1.1  wrstuden 		struct buf *a_bp;
    905   1.1  wrstuden 	} */ *ap = v;
    906   1.1  wrstuden 	struct buf *bp = ap->a_bp;
    907   1.1  wrstuden 	int error;
    908   1.1  wrstuden 	struct vnode *savedvp;
    909   1.1  wrstuden 
    910   1.1  wrstuden 	savedvp = bp->b_vp;
    911   1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    912   1.1  wrstuden 
    913   1.1  wrstuden 	error = VOP_BWRITE(bp);
    914   1.1  wrstuden 
    915   1.1  wrstuden 	bp->b_vp = savedvp;
    916   1.1  wrstuden 
    917   1.1  wrstuden 	return (error);
    918  1.10       chs }
    919  1.10       chs 
    920  1.10       chs int
    921  1.38       dsl layer_getpages(void *v)
    922  1.10       chs {
    923  1.10       chs 	struct vop_getpages_args /* {
    924  1.10       chs 		struct vnode *a_vp;
    925  1.10       chs 		voff_t a_offset;
    926  1.10       chs 		struct vm_page **a_m;
    927  1.10       chs 		int *a_count;
    928  1.10       chs 		int a_centeridx;
    929  1.10       chs 		vm_prot_t a_access_type;
    930  1.10       chs 		int a_advice;
    931  1.10       chs 		int a_flags;
    932  1.10       chs 	} */ *ap = v;
    933  1.10       chs 	struct vnode *vp = ap->a_vp;
    934  1.10       chs 	int error;
    935  1.10       chs 
    936  1.10       chs 	/*
    937  1.10       chs 	 * just pass the request on to the underlying layer.
    938  1.10       chs 	 */
    939  1.10       chs 
    940  1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    941  1.10       chs 		return EBUSY;
    942  1.10       chs 	}
    943  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    944  1.34        ad 	mutex_exit(&vp->v_interlock);
    945  1.34        ad 	mutex_enter(&ap->a_vp->v_interlock);
    946  1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    947  1.10       chs 	return error;
    948  1.10       chs }
    949  1.10       chs 
    950  1.10       chs int
    951  1.38       dsl layer_putpages(void *v)
    952  1.10       chs {
    953  1.10       chs 	struct vop_putpages_args /* {
    954  1.10       chs 		struct vnode *a_vp;
    955  1.10       chs 		voff_t a_offlo;
    956  1.10       chs 		voff_t a_offhi;
    957  1.10       chs 		int a_flags;
    958  1.10       chs 	} */ *ap = v;
    959  1.10       chs 	struct vnode *vp = ap->a_vp;
    960  1.10       chs 	int error;
    961  1.10       chs 
    962  1.10       chs 	/*
    963  1.10       chs 	 * just pass the request on to the underlying layer.
    964  1.10       chs 	 */
    965  1.10       chs 
    966  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    967  1.34        ad 	mutex_exit(&vp->v_interlock);
    968  1.30       chs 	if (ap->a_flags & PGO_RECLAIM) {
    969  1.30       chs 		return 0;
    970  1.30       chs 	}
    971  1.34        ad 	mutex_enter(&ap->a_vp->v_interlock);
    972  1.10       chs 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    973  1.10       chs 	return error;
    974   1.1  wrstuden }
    975