Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.48
      1  1.48     rmind /*	$NetBSD: layer_vnops.c,v 1.48 2011/06/12 03:35:58 rmind Exp $	*/
      2   1.1  wrstuden 
      3   1.1  wrstuden /*
      4   1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5   1.1  wrstuden  * All rights reserved.
      6   1.1  wrstuden  *
      7   1.1  wrstuden  * This software was written by William Studenmund of the
      8   1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9   1.1  wrstuden  *
     10   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11   1.1  wrstuden  * modification, are permitted provided that the following conditions
     12   1.1  wrstuden  * are met:
     13   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18   1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19   1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20   1.1  wrstuden  *    products derived from this software without specific prior written
     21   1.1  wrstuden  *    permission.
     22   1.1  wrstuden  *
     23   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24   1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25   1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26   1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27   1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28   1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34   1.1  wrstuden  */
     35  1.42     rmind 
     36   1.1  wrstuden /*
     37   1.1  wrstuden  * Copyright (c) 1992, 1993
     38   1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     39   1.1  wrstuden  *
     40   1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     41   1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     42   1.1  wrstuden  *
     43   1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     44   1.1  wrstuden  * modification, are permitted provided that the following conditions
     45   1.1  wrstuden  * are met:
     46   1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     47   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     48   1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     50   1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     51  1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     52   1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     53   1.1  wrstuden  *    without specific prior written permission.
     54   1.1  wrstuden  *
     55   1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.1  wrstuden  * SUCH DAMAGE.
     66   1.1  wrstuden  *
     67   1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68   1.1  wrstuden  *
     69   1.1  wrstuden  * Ancestors:
     70   1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  1.31     enami  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72   1.1  wrstuden  *	...and...
     73   1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74   1.1  wrstuden  */
     75   1.1  wrstuden 
     76   1.1  wrstuden /*
     77  1.42     rmind  * Generic layer vnode operations.
     78   1.1  wrstuden  *
     79  1.42     rmind  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  1.42     rmind  * the core implementation of stacked file-systems.
     81   1.1  wrstuden  *
     82  1.42     rmind  * The layerfs duplicates a portion of the file system name space under
     83  1.42     rmind  * a new name.  In this respect, it is similar to the loopback file system.
     84  1.42     rmind  * It differs from the loopback fs in two respects: it is implemented using
     85  1.42     rmind  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  1.42     rmind  * lower-layer vnodes, not just over directory vnodes.
     87  1.42     rmind  *
     88  1.42     rmind  * OPERATION OF LAYERFS
     89  1.42     rmind  *
     90  1.42     rmind  * The layerfs is the minimum file system layer, bypassing all possible
     91  1.42     rmind  * operations to the lower layer for processing there.  The majority of its
     92  1.42     rmind  * activity centers on the bypass routine, through which nearly all vnode
     93  1.42     rmind  * operations pass.
     94  1.42     rmind  *
     95  1.42     rmind  * The bypass routine accepts arbitrary vnode operations for handling by
     96  1.42     rmind  * the lower layer.  It begins by examining vnode operation arguments and
     97  1.42     rmind  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  1.42     rmind  * invokes an operation on the lower layer.  Finally, it replaces the
     99  1.42     rmind  * layered nodes in the arguments and, if a vnode is returned by the
    100  1.42     rmind  * operation, stacks a layered node on top of the returned vnode.
    101   1.1  wrstuden  *
    102   1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    103   1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    104   1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    105   1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    106   1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    107   1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    108   1.1  wrstuden  *
    109   1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    110   1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111   1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    112   1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    113  1.42     rmind  * use the layerm_bypass() routine.
    114   1.1  wrstuden  *
    115   1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    116  1.42     rmind  * of operations are special cased and handled by the layerfs.  For instance,
    117  1.42     rmind  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  1.42     rmind  * and layer_unlock() must handle any locking for the current vnode as well
    119  1.42     rmind  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  1.42     rmind  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  1.42     rmind  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  1.42     rmind  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  1.42     rmind  * these operations should not change the lock state, but should be changed
    124  1.42     rmind  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  1.42     rmind  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126   1.1  wrstuden  * the necessary locking at their layer.
    127   1.1  wrstuden  *
    128  1.42     rmind  * INSTANTIATING VNODE STACKS
    129   1.1  wrstuden  *
    130  1.42     rmind  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  1.42     rmind  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  1.42     rmind  * the root of the new layerfs.  All other vnode stacks are created as a
    133  1.42     rmind  * result of vnode operations on this or other layerfs vnode stacks.
    134   1.1  wrstuden  *
    135  1.42     rmind  * New vnode stacks come into existence as a result of an operation which
    136  1.42     rmind  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137   1.1  wrstuden  * vnode before returning it to the caller.
    138   1.1  wrstuden  *
    139  1.42     rmind  * For example, imagine mounting a null layer with:
    140   1.1  wrstuden  *
    141  1.42     rmind  *	"mount_null /usr/include /dev/layer/null"
    142   1.1  wrstuden  *
    143  1.42     rmind  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  1.42     rmind  * which was created when the null layer was mounted).  Now consider opening
    145  1.42     rmind  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  1.42     rmind  * This operation would bypass through to the lower layer which would return
    147  1.42     rmind  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  1.42     rmind  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  1.42     rmind  * Later operations on the layerfs-node "sys" will repeat this process when
    150  1.42     rmind  * constructing other vnode stacks.
    151   1.1  wrstuden  *
    152   1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    153   1.1  wrstuden  *
    154  1.42     rmind  * There are two techniques to invoke operations on a lower layer when the
    155  1.42     rmind  * operation cannot be completely bypassed.  Each method is appropriate in
    156  1.42     rmind  * different situations.  In both cases, it is the responsibility of the
    157  1.42     rmind  * aliasing layer to make the operation arguments "correct" for the lower
    158  1.42     rmind  * layer by mapping any vnode arguments to the lower layer.
    159  1.42     rmind  *
    160  1.42     rmind  * The first approach is to call the aliasing layer's bypass routine.  This
    161  1.42     rmind  * method is most suitable when you wish to invoke the operation currently
    162  1.42     rmind  * being handled on the lower layer.  It has the advantage that the bypass
    163  1.42     rmind  * routine already must do argument mapping.  An example of this is
    164  1.42     rmind  * layer_getattr().
    165  1.42     rmind  *
    166  1.42     rmind  * A second approach is to directly invoke vnode operations on the lower
    167  1.42     rmind  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  1.42     rmind  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  1.42     rmind  * The disadvantage is that vnode's arguments must be manually mapped.
    170   1.1  wrstuden  */
    171   1.8     lukem 
    172   1.8     lukem #include <sys/cdefs.h>
    173  1.48     rmind __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.48 2011/06/12 03:35:58 rmind Exp $");
    174   1.1  wrstuden 
    175   1.1  wrstuden #include <sys/param.h>
    176   1.1  wrstuden #include <sys/systm.h>
    177   1.1  wrstuden #include <sys/proc.h>
    178   1.1  wrstuden #include <sys/time.h>
    179   1.1  wrstuden #include <sys/vnode.h>
    180   1.1  wrstuden #include <sys/mount.h>
    181   1.1  wrstuden #include <sys/namei.h>
    182  1.34        ad #include <sys/kmem.h>
    183   1.1  wrstuden #include <sys/buf.h>
    184  1.27      elad #include <sys/kauth.h>
    185  1.27      elad 
    186   1.1  wrstuden #include <miscfs/genfs/layer.h>
    187   1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    188   1.1  wrstuden #include <miscfs/genfs/genfs.h>
    189   1.1  wrstuden 
    190   1.1  wrstuden /*
    191   1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    192   1.1  wrstuden  *		routine by John Heidemann.
    193   1.1  wrstuden  *	The new element for this version is that the whole nullfs
    194  1.40   hannken  * system gained the concept of locks on the lower node.
    195   1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    196   1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    197   1.1  wrstuden  * robust to programmer errors.
    198   1.1  wrstuden  *
    199   1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    200   1.1  wrstuden  *
    201   1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    202   1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    203   1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    204   1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    205   1.1  wrstuden  * since there are no such side-effects.
    206   1.1  wrstuden  *
    207   1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    208   1.1  wrstuden  * the passed-in node (typically they vput the node).
    209   1.1  wrstuden  *
    210   1.1  wrstuden  * This makes the following assumptions:
    211   1.1  wrstuden  * - only one returned vpp
    212   1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    213   1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    214   1.1  wrstuden  *   to determine what implementation of the op should be invoked
    215   1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    216   1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    217  1.24     perry  */
    218   1.1  wrstuden int
    219  1.38       dsl layer_bypass(void *v)
    220   1.1  wrstuden {
    221   1.1  wrstuden 	struct vop_generic_args /* {
    222   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    223   1.1  wrstuden 		<other random data follows, presumably>
    224   1.1  wrstuden 	} */ *ap = v;
    225  1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    226   1.3  augustss 	struct vnode **this_vp_p;
    227  1.40   hannken 	int error;
    228   1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    229   1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    230   1.1  wrstuden 	struct vnode ***vppp;
    231  1.33    dyoung 	struct mount *mp;
    232   1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    233   1.1  wrstuden 	int reles, i, flags;
    234   1.1  wrstuden 
    235  1.37    plunky #ifdef DIAGNOSTIC
    236   1.1  wrstuden 	/*
    237   1.1  wrstuden 	 * We require at least one vp.
    238   1.1  wrstuden 	 */
    239   1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    240   1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    241  1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    242   1.1  wrstuden #endif
    243   1.1  wrstuden 
    244  1.20      yamt 	vps_p[0] =
    245  1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    246   1.1  wrstuden 	vp0 = *vps_p[0];
    247  1.33    dyoung 	mp = vp0->v_mount;
    248  1.33    dyoung 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    249   1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    250   1.1  wrstuden 
    251   1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    252  1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    253   1.1  wrstuden 
    254   1.1  wrstuden 	/*
    255   1.1  wrstuden 	 * Map the vnodes going in.
    256   1.1  wrstuden 	 * Later, we'll invoke the operation based on
    257   1.1  wrstuden 	 * the first mapped vnode's operation vector.
    258   1.1  wrstuden 	 */
    259   1.1  wrstuden 	reles = descp->vdesc_flags;
    260   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    261   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    262   1.1  wrstuden 			break;   /* bail out at end of list */
    263  1.24     perry 		vps_p[i] = this_vp_p =
    264  1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    265  1.20      yamt 		    ap);
    266   1.1  wrstuden 		/*
    267   1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    268   1.1  wrstuden 		 * are of our type.  Check for and don't map any
    269   1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    270   1.1  wrstuden 		 */
    271   1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    272   1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    273   1.1  wrstuden 			old_vps[i] = NULL;
    274   1.1  wrstuden 		} else {
    275   1.1  wrstuden 			old_vps[i] = *this_vp_p;
    276   1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    277   1.1  wrstuden 			/*
    278   1.1  wrstuden 			 * XXX - Several operations have the side effect
    279   1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    280   1.1  wrstuden 			 * that.  (This should go away in the future.)
    281   1.1  wrstuden 			 */
    282   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    283  1.39     pooka 				vref(*this_vp_p);
    284   1.1  wrstuden 		}
    285   1.1  wrstuden 	}
    286   1.1  wrstuden 
    287   1.1  wrstuden 	/*
    288   1.1  wrstuden 	 * Call the operation on the lower layer
    289   1.1  wrstuden 	 * with the modified argument structure.
    290   1.1  wrstuden 	 */
    291   1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    292   1.1  wrstuden 
    293   1.1  wrstuden 	/*
    294   1.1  wrstuden 	 * Maintain the illusion of call-by-value
    295   1.1  wrstuden 	 * by restoring vnodes in the argument structure
    296   1.1  wrstuden 	 * to their original value.
    297   1.1  wrstuden 	 */
    298   1.1  wrstuden 	reles = descp->vdesc_flags;
    299   1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    300   1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    301   1.1  wrstuden 			break;   /* bail out at end of list */
    302   1.1  wrstuden 		if (old_vps[i]) {
    303   1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    304   1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    305   1.1  wrstuden 				vrele(*(vps_p[i]));
    306   1.1  wrstuden 		}
    307   1.1  wrstuden 	}
    308   1.1  wrstuden 
    309   1.1  wrstuden 	/*
    310   1.1  wrstuden 	 * Map the possible out-going vpp
    311   1.1  wrstuden 	 * (Assumes that the lower layer always returns
    312   1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    313   1.1  wrstuden 	 */
    314  1.47     rmind 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    315   1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    316  1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    317   1.1  wrstuden 		/*
    318   1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    319   1.7     assar 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    320   1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    321  1.20      yamt 		 * going to do i/o on it). vop_lookup doesn't call bypass
    322   1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    323   1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    324   1.1  wrstuden 		 */
    325  1.33    dyoung 		error = layer_node_create(mp, **vppp, *vppp);
    326  1.19      yamt 		if (error) {
    327  1.19      yamt 			vput(**vppp);
    328  1.19      yamt 			**vppp = NULL;
    329  1.19      yamt 		}
    330   1.1  wrstuden 	}
    331  1.42     rmind 	return error;
    332   1.1  wrstuden }
    333   1.1  wrstuden 
    334   1.1  wrstuden /*
    335   1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    336   1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    337   1.1  wrstuden  * if this layer is mounted read-only.
    338   1.1  wrstuden  */
    339   1.1  wrstuden int
    340  1.38       dsl layer_lookup(void *v)
    341   1.1  wrstuden {
    342   1.1  wrstuden 	struct vop_lookup_args /* {
    343   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    344   1.1  wrstuden 		struct vnode * a_dvp;
    345   1.1  wrstuden 		struct vnode ** a_vpp;
    346   1.1  wrstuden 		struct componentname * a_cnp;
    347   1.1  wrstuden 	} */ *ap = v;
    348   1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    349  1.29       chs 	struct vnode *dvp, *lvp, *ldvp;
    350  1.42     rmind 	int error, flags = cnp->cn_flags;
    351   1.1  wrstuden 
    352   1.1  wrstuden 	dvp = ap->a_dvp;
    353   1.1  wrstuden 
    354   1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    355   1.1  wrstuden 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    356  1.42     rmind 		return EROFS;
    357   1.1  wrstuden 
    358   1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    359   1.1  wrstuden 	ap->a_dvp = ldvp;
    360   1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    361  1.29       chs 	lvp = *ap->a_vpp;
    362  1.18      yamt 	*ap->a_vpp = NULL;
    363   1.1  wrstuden 
    364   1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    365   1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    366   1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    367   1.1  wrstuden 		error = EROFS;
    368  1.29       chs 
    369   1.1  wrstuden 	/*
    370  1.24     perry 	 * We must do the same locking and unlocking at this layer as
    371  1.29       chs 	 * is done in the layers below us.
    372   1.1  wrstuden 	 */
    373  1.29       chs 	if (ldvp == lvp) {
    374   1.1  wrstuden 		/*
    375  1.36  dholland 		 * Got the same object back, because we looked up ".",
    376  1.36  dholland 		 * or ".." in the root node of a mount point.
    377  1.36  dholland 		 * So we make another reference to dvp and return it.
    378   1.1  wrstuden 		 */
    379  1.39     pooka 		vref(dvp);
    380   1.1  wrstuden 		*ap->a_vpp = dvp;
    381  1.29       chs 		vrele(lvp);
    382  1.29       chs 	} else if (lvp != NULL) {
    383  1.42     rmind 		/* Note: dvp, ldvp and lvp are all locked. */
    384  1.29       chs 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    385  1.19      yamt 		if (error) {
    386  1.29       chs 			vput(lvp);
    387  1.19      yamt 		}
    388   1.1  wrstuden 	}
    389  1.42     rmind 	return error;
    390   1.1  wrstuden }
    391   1.1  wrstuden 
    392   1.1  wrstuden /*
    393   1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    394   1.1  wrstuden  */
    395   1.1  wrstuden int
    396  1.38       dsl layer_setattr(void *v)
    397   1.1  wrstuden {
    398   1.1  wrstuden 	struct vop_setattr_args /* {
    399   1.1  wrstuden 		struct vnodeop_desc *a_desc;
    400   1.1  wrstuden 		struct vnode *a_vp;
    401   1.1  wrstuden 		struct vattr *a_vap;
    402  1.27      elad 		kauth_cred_t a_cred;
    403  1.26  christos 		struct lwp *a_l;
    404   1.1  wrstuden 	} */ *ap = v;
    405   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    406   1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    407   1.1  wrstuden 
    408   1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    409   1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    410   1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    411   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    412  1.42     rmind 		return EROFS;
    413   1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    414   1.1  wrstuden  		switch (vp->v_type) {
    415   1.1  wrstuden  		case VDIR:
    416  1.42     rmind  			return EISDIR;
    417   1.1  wrstuden  		case VCHR:
    418   1.1  wrstuden  		case VBLK:
    419   1.1  wrstuden  		case VSOCK:
    420   1.1  wrstuden  		case VFIFO:
    421  1.42     rmind 			return 0;
    422   1.1  wrstuden 		case VREG:
    423   1.1  wrstuden 		case VLNK:
    424   1.1  wrstuden  		default:
    425   1.1  wrstuden 			/*
    426   1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    427   1.1  wrstuden 			 * mounted read-only.
    428   1.1  wrstuden 			 */
    429   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    430  1.42     rmind 				return EROFS;
    431   1.1  wrstuden 		}
    432   1.1  wrstuden 	}
    433  1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    434   1.1  wrstuden }
    435   1.1  wrstuden 
    436   1.1  wrstuden /*
    437   1.1  wrstuden  *  We handle getattr only to change the fsid.
    438   1.1  wrstuden  */
    439   1.1  wrstuden int
    440  1.38       dsl layer_getattr(void *v)
    441   1.1  wrstuden {
    442   1.1  wrstuden 	struct vop_getattr_args /* {
    443   1.1  wrstuden 		struct vnode *a_vp;
    444   1.1  wrstuden 		struct vattr *a_vap;
    445  1.27      elad 		kauth_cred_t a_cred;
    446  1.26  christos 		struct lwp *a_l;
    447   1.1  wrstuden 	} */ *ap = v;
    448   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    449   1.1  wrstuden 	int error;
    450   1.1  wrstuden 
    451  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    452  1.42     rmind 	if (error) {
    453  1.42     rmind 		return error;
    454  1.42     rmind 	}
    455   1.1  wrstuden 	/* Requires that arguments be restored. */
    456  1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    457  1.42     rmind 	return 0;
    458   1.1  wrstuden }
    459   1.1  wrstuden 
    460   1.1  wrstuden int
    461  1.38       dsl layer_access(void *v)
    462   1.1  wrstuden {
    463   1.1  wrstuden 	struct vop_access_args /* {
    464   1.1  wrstuden 		struct vnode *a_vp;
    465   1.1  wrstuden 		int  a_mode;
    466  1.27      elad 		kauth_cred_t a_cred;
    467  1.26  christos 		struct lwp *a_l;
    468   1.1  wrstuden 	} */ *ap = v;
    469   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    470   1.1  wrstuden 	mode_t mode = ap->a_mode;
    471   1.1  wrstuden 
    472   1.1  wrstuden 	/*
    473   1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    474   1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    475   1.1  wrstuden 	 * character device resident on the file system.
    476   1.1  wrstuden 	 */
    477   1.1  wrstuden 	if (mode & VWRITE) {
    478   1.1  wrstuden 		switch (vp->v_type) {
    479   1.1  wrstuden 		case VDIR:
    480   1.1  wrstuden 		case VLNK:
    481   1.1  wrstuden 		case VREG:
    482   1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    483  1.42     rmind 				return EROFS;
    484   1.1  wrstuden 			break;
    485   1.1  wrstuden 		default:
    486   1.1  wrstuden 			break;
    487   1.1  wrstuden 		}
    488   1.1  wrstuden 	}
    489  1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    490   1.1  wrstuden }
    491   1.1  wrstuden 
    492   1.1  wrstuden /*
    493   1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    494   1.1  wrstuden  */
    495   1.1  wrstuden int
    496  1.38       dsl layer_open(void *v)
    497   1.1  wrstuden {
    498  1.42     rmind 	struct vop_open_args /* {
    499  1.42     rmind 		const struct vnodeop_desc *a_desc;
    500  1.42     rmind 		struct vnode *a_vp;
    501  1.42     rmind 		int a_mode;
    502  1.42     rmind 		kauth_cred_t a_cred;
    503  1.42     rmind 	} */ *ap = v;
    504   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    505   1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    506   1.1  wrstuden 
    507   1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    508   1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    509   1.1  wrstuden 		return ENXIO;
    510   1.1  wrstuden 
    511   1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    512   1.1  wrstuden }
    513   1.1  wrstuden 
    514   1.1  wrstuden /*
    515   1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    516   1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    517  1.42     rmind  * reclaimed; otherwise, pass it through to the underlying layer.
    518   1.1  wrstuden  *
    519   1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    520   1.1  wrstuden  */
    521   1.1  wrstuden int
    522  1.38       dsl layer_fsync(void *v)
    523   1.1  wrstuden {
    524   1.1  wrstuden 	struct vop_fsync_args /* {
    525   1.1  wrstuden 		struct vnode *a_vp;
    526  1.27      elad 		kauth_cred_t a_cred;
    527   1.1  wrstuden 		int  a_flags;
    528   1.4      fvdl 		off_t offlo;
    529   1.4      fvdl 		off_t offhi;
    530  1.26  christos 		struct lwp *a_l;
    531   1.1  wrstuden 	} */ *ap = v;
    532   1.1  wrstuden 
    533   1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    534   1.1  wrstuden 		return 0;
    535   1.1  wrstuden 	}
    536  1.42     rmind 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    537   1.1  wrstuden }
    538   1.1  wrstuden 
    539   1.1  wrstuden int
    540  1.38       dsl layer_inactive(void *v)
    541   1.1  wrstuden {
    542   1.1  wrstuden 	struct vop_inactive_args /* {
    543   1.1  wrstuden 		struct vnode *a_vp;
    544  1.34        ad 		bool *a_recycle;
    545   1.1  wrstuden 	} */ *ap = v;
    546   1.5     enami 	struct vnode *vp = ap->a_vp;
    547   1.1  wrstuden 
    548   1.1  wrstuden 	/*
    549  1.44   hannken 	 * If we did a remove, don't cache the node.
    550  1.34        ad 	 */
    551  1.44   hannken 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    552  1.34        ad 
    553  1.34        ad 	/*
    554   1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    555   1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    556   1.1  wrstuden 	 * so that until then our layer_node is in the
    557   1.1  wrstuden 	 * cache and reusable.
    558   1.1  wrstuden 	 *
    559   1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    560   1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    561   1.1  wrstuden 	 * with capabilities (v_id)
    562   1.1  wrstuden 	 * like they do in the name lookup cache code.
    563   1.1  wrstuden 	 * That's too much work for now.
    564   1.1  wrstuden 	 */
    565  1.41   hannken 	VOP_UNLOCK(vp);
    566  1.42     rmind 	return 0;
    567   1.1  wrstuden }
    568   1.1  wrstuden 
    569   1.1  wrstuden int
    570  1.38       dsl layer_remove(void *v)
    571  1.16  wrstuden {
    572  1.16  wrstuden 	struct vop_remove_args /* {
    573  1.16  wrstuden 		struct vonde		*a_dvp;
    574  1.16  wrstuden 		struct vnode		*a_vp;
    575  1.16  wrstuden 		struct componentname	*a_cnp;
    576  1.16  wrstuden 	} */ *ap = v;
    577  1.42     rmind 	struct vnode *vp = ap->a_vp;
    578  1.42     rmind 	int error;
    579  1.16  wrstuden 
    580  1.16  wrstuden 	vref(vp);
    581  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    582  1.42     rmind 	if (error == 0) {
    583  1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    584  1.42     rmind 	}
    585  1.16  wrstuden 	vrele(vp);
    586  1.16  wrstuden 
    587  1.42     rmind 	return error;
    588  1.16  wrstuden }
    589  1.16  wrstuden 
    590  1.16  wrstuden int
    591  1.38       dsl layer_rename(void *v)
    592  1.17      yamt {
    593  1.17      yamt 	struct vop_rename_args  /* {
    594  1.17      yamt 		struct vnode		*a_fdvp;
    595  1.17      yamt 		struct vnode		*a_fvp;
    596  1.17      yamt 		struct componentname	*a_fcnp;
    597  1.17      yamt 		struct vnode		*a_tdvp;
    598  1.17      yamt 		struct vnode		*a_tvp;
    599  1.17      yamt 		struct componentname	*a_tcnp;
    600  1.17      yamt 	} */ *ap = v;
    601  1.42     rmind 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    602  1.17      yamt 	int error;
    603  1.17      yamt 
    604  1.17      yamt 	tvp = ap->a_tvp;
    605  1.17      yamt 	if (tvp) {
    606  1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    607  1.17      yamt 			tvp = NULL;
    608  1.17      yamt 		else
    609  1.17      yamt 			vref(tvp);
    610  1.17      yamt 	}
    611  1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    612  1.17      yamt 	if (tvp) {
    613  1.17      yamt 		if (error == 0)
    614  1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    615  1.17      yamt 		vrele(tvp);
    616  1.17      yamt 	}
    617  1.42     rmind 	return error;
    618  1.17      yamt }
    619  1.17      yamt 
    620  1.17      yamt int
    621  1.38       dsl layer_rmdir(void *v)
    622  1.23   hannken {
    623  1.23   hannken 	struct vop_rmdir_args /* {
    624  1.23   hannken 		struct vnode		*a_dvp;
    625  1.23   hannken 		struct vnode		*a_vp;
    626  1.23   hannken 		struct componentname	*a_cnp;
    627  1.23   hannken 	} */ *ap = v;
    628  1.23   hannken 	int		error;
    629  1.23   hannken 	struct vnode	*vp = ap->a_vp;
    630  1.23   hannken 
    631  1.23   hannken 	vref(vp);
    632  1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    633  1.42     rmind 	if (error == 0) {
    634  1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    635  1.42     rmind 	}
    636  1.23   hannken 	vrele(vp);
    637  1.23   hannken 
    638  1.42     rmind 	return error;
    639  1.23   hannken }
    640  1.23   hannken 
    641  1.23   hannken int
    642  1.45   hannken layer_revoke(void *v)
    643  1.45   hannken {
    644  1.45   hannken         struct vop_revoke_args /* {
    645  1.45   hannken 		struct vnode *a_vp;
    646  1.45   hannken 		int a_flags;
    647  1.45   hannken 	} */ *ap = v;
    648  1.45   hannken 	struct vnode *vp = ap->a_vp;
    649  1.45   hannken 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    650  1.46   hannken 	int error;
    651  1.45   hannken 
    652  1.45   hannken 	/*
    653  1.45   hannken 	 * We will most likely end up in vclean which uses the v_usecount
    654  1.46   hannken 	 * to determine if a vnode is active.  Take an extra reference on
    655  1.46   hannken 	 * the lower vnode so it will always close and inactivate.
    656  1.45   hannken 	 */
    657  1.46   hannken 	vref(lvp);
    658  1.45   hannken 	error = LAYERFS_DO_BYPASS(vp, ap);
    659  1.46   hannken 	vrele(lvp);
    660  1.45   hannken 
    661  1.45   hannken 	return error;
    662  1.45   hannken }
    663  1.45   hannken 
    664  1.45   hannken int
    665  1.38       dsl layer_reclaim(void *v)
    666   1.1  wrstuden {
    667   1.1  wrstuden 	struct vop_reclaim_args /* {
    668   1.1  wrstuden 		struct vnode *a_vp;
    669  1.26  christos 		struct lwp *a_l;
    670   1.1  wrstuden 	} */ *ap = v;
    671   1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    672   1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    673   1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    674   1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    675   1.1  wrstuden 
    676   1.1  wrstuden 	/*
    677   1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    678   1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    679  1.34        ad 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    680   1.1  wrstuden 	 */
    681  1.42     rmind 	if (vp == lmp->layerm_rootvp) {
    682   1.1  wrstuden 		/*
    683   1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    684   1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    685   1.1  wrstuden 		 *
    686   1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    687   1.1  wrstuden 		 */
    688   1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    689   1.1  wrstuden 	}
    690  1.42     rmind 	/* After this assignment, this node will not be re-used. */
    691   1.1  wrstuden 	xp->layer_lowervp = NULL;
    692  1.32        ad 	mutex_enter(&lmp->layerm_hashlock);
    693   1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    694  1.32        ad 	mutex_exit(&lmp->layerm_hashlock);
    695  1.34        ad 	kmem_free(vp->v_data, lmp->layerm_size);
    696   1.1  wrstuden 	vp->v_data = NULL;
    697  1.29       chs 	vrele(lowervp);
    698  1.34        ad 
    699  1.42     rmind 	return 0;
    700   1.1  wrstuden }
    701   1.1  wrstuden 
    702   1.1  wrstuden /*
    703   1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    704   1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    705   1.1  wrstuden  * i/o. :-)
    706   1.1  wrstuden  */
    707   1.1  wrstuden int
    708  1.38       dsl layer_bmap(void *v)
    709   1.1  wrstuden {
    710   1.1  wrstuden 	struct vop_bmap_args /* {
    711   1.1  wrstuden 		struct vnode *a_vp;
    712   1.1  wrstuden 		daddr_t  a_bn;
    713   1.1  wrstuden 		struct vnode **a_vpp;
    714   1.1  wrstuden 		daddr_t *a_bnp;
    715   1.1  wrstuden 		int *a_runp;
    716   1.1  wrstuden 	} */ *ap = v;
    717   1.1  wrstuden 	struct vnode *vp;
    718   1.1  wrstuden 
    719  1.42     rmind 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    720  1.42     rmind 	ap->a_vp = vp;
    721   1.1  wrstuden 
    722  1.42     rmind 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    723   1.1  wrstuden }
    724   1.1  wrstuden 
    725   1.1  wrstuden int
    726  1.38       dsl layer_print(void *v)
    727   1.1  wrstuden {
    728   1.1  wrstuden 	struct vop_print_args /* {
    729   1.1  wrstuden 		struct vnode *a_vp;
    730   1.1  wrstuden 	} */ *ap = v;
    731   1.3  augustss 	struct vnode *vp = ap->a_vp;
    732   1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    733  1.42     rmind 	return 0;
    734   1.1  wrstuden }
    735   1.1  wrstuden 
    736   1.1  wrstuden /*
    737  1.14   hannken  * XXX - vop_bwrite must be hand coded because it has no
    738   1.1  wrstuden  * vnode in its arguments.
    739   1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    740   1.1  wrstuden  */
    741   1.1  wrstuden int
    742  1.38       dsl layer_bwrite(void *v)
    743   1.1  wrstuden {
    744   1.1  wrstuden 	struct vop_bwrite_args /* {
    745   1.1  wrstuden 		struct buf *a_bp;
    746   1.1  wrstuden 	} */ *ap = v;
    747   1.1  wrstuden 	struct buf *bp = ap->a_bp;
    748  1.42     rmind 	struct vnode *savedvp;
    749   1.1  wrstuden 	int error;
    750   1.1  wrstuden 
    751   1.1  wrstuden 	savedvp = bp->b_vp;
    752   1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    753   1.1  wrstuden 	error = VOP_BWRITE(bp);
    754   1.1  wrstuden 	bp->b_vp = savedvp;
    755   1.1  wrstuden 
    756  1.42     rmind 	return error;
    757  1.10       chs }
    758  1.10       chs 
    759  1.10       chs int
    760  1.38       dsl layer_getpages(void *v)
    761  1.10       chs {
    762  1.10       chs 	struct vop_getpages_args /* {
    763  1.10       chs 		struct vnode *a_vp;
    764  1.10       chs 		voff_t a_offset;
    765  1.10       chs 		struct vm_page **a_m;
    766  1.10       chs 		int *a_count;
    767  1.10       chs 		int a_centeridx;
    768  1.10       chs 		vm_prot_t a_access_type;
    769  1.10       chs 		int a_advice;
    770  1.10       chs 		int a_flags;
    771  1.10       chs 	} */ *ap = v;
    772  1.10       chs 	struct vnode *vp = ap->a_vp;
    773  1.10       chs 
    774  1.48     rmind 	KASSERT(mutex_owned(vp->v_interlock));
    775  1.10       chs 
    776  1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    777  1.10       chs 		return EBUSY;
    778  1.10       chs 	}
    779  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    780  1.48     rmind 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    781  1.48     rmind 
    782  1.48     rmind 	/* Just pass the request on to the underlying layer. */
    783  1.48     rmind 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    784  1.10       chs }
    785  1.10       chs 
    786  1.10       chs int
    787  1.38       dsl layer_putpages(void *v)
    788  1.10       chs {
    789  1.10       chs 	struct vop_putpages_args /* {
    790  1.10       chs 		struct vnode *a_vp;
    791  1.10       chs 		voff_t a_offlo;
    792  1.10       chs 		voff_t a_offhi;
    793  1.10       chs 		int a_flags;
    794  1.10       chs 	} */ *ap = v;
    795  1.10       chs 	struct vnode *vp = ap->a_vp;
    796  1.10       chs 
    797  1.48     rmind 	KASSERT(mutex_owned(vp->v_interlock));
    798  1.10       chs 
    799  1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    800  1.48     rmind 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    801  1.48     rmind 
    802  1.30       chs 	if (ap->a_flags & PGO_RECLAIM) {
    803  1.48     rmind 		mutex_exit(vp->v_interlock);
    804  1.30       chs 		return 0;
    805  1.30       chs 	}
    806  1.48     rmind 
    807  1.48     rmind 	/* Just pass the request on to the underlying layer. */
    808  1.48     rmind 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    809   1.1  wrstuden }
    810