layer_vnops.c revision 1.54 1 1.54 hannken /* $NetBSD: layer_vnops.c,v 1.54 2014/02/07 15:29:22 hannken Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.42 rmind
36 1.1 wrstuden /*
37 1.1 wrstuden * Copyright (c) 1992, 1993
38 1.1 wrstuden * The Regents of the University of California. All rights reserved.
39 1.1 wrstuden *
40 1.1 wrstuden * This code is derived from software contributed to Berkeley by
41 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
42 1.1 wrstuden *
43 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
44 1.1 wrstuden * modification, are permitted provided that the following conditions
45 1.1 wrstuden * are met:
46 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
47 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
48 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
50 1.1 wrstuden * documentation and/or other materials provided with the distribution.
51 1.11 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 wrstuden * may be used to endorse or promote products derived from this software
53 1.1 wrstuden * without specific prior written permission.
54 1.1 wrstuden *
55 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 wrstuden * SUCH DAMAGE.
66 1.1 wrstuden *
67 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 1.1 wrstuden *
69 1.1 wrstuden * Ancestors:
70 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 1.1 wrstuden * ...and...
73 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 1.1 wrstuden */
75 1.1 wrstuden
76 1.1 wrstuden /*
77 1.42 rmind * Generic layer vnode operations.
78 1.1 wrstuden *
79 1.42 rmind * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 1.42 rmind * the core implementation of stacked file-systems.
81 1.1 wrstuden *
82 1.42 rmind * The layerfs duplicates a portion of the file system name space under
83 1.42 rmind * a new name. In this respect, it is similar to the loopback file system.
84 1.42 rmind * It differs from the loopback fs in two respects: it is implemented using
85 1.42 rmind * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 1.42 rmind * lower-layer vnodes, not just over directory vnodes.
87 1.42 rmind *
88 1.42 rmind * OPERATION OF LAYERFS
89 1.42 rmind *
90 1.42 rmind * The layerfs is the minimum file system layer, bypassing all possible
91 1.42 rmind * operations to the lower layer for processing there. The majority of its
92 1.42 rmind * activity centers on the bypass routine, through which nearly all vnode
93 1.42 rmind * operations pass.
94 1.42 rmind *
95 1.42 rmind * The bypass routine accepts arbitrary vnode operations for handling by
96 1.42 rmind * the lower layer. It begins by examining vnode operation arguments and
97 1.42 rmind * replacing any layered nodes by their lower-layer equivalents. It then
98 1.42 rmind * invokes an operation on the lower layer. Finally, it replaces the
99 1.42 rmind * layered nodes in the arguments and, if a vnode is returned by the
100 1.42 rmind * operation, stacks a layered node on top of the returned vnode.
101 1.1 wrstuden *
102 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
103 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
104 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
105 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
106 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
107 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
108 1.1 wrstuden *
109 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
110 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
112 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
113 1.42 rmind * use the layerm_bypass() routine.
114 1.1 wrstuden *
115 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
116 1.42 rmind * of operations are special cased and handled by the layerfs. For instance,
117 1.42 rmind * layer_getattr() must change the fsid being returned. While layer_lock()
118 1.42 rmind * and layer_unlock() must handle any locking for the current vnode as well
119 1.42 rmind * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 1.42 rmind * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 1.42 rmind * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 1.42 rmind * rmdir, and symlink) change the locking state within the operation. Ideally
123 1.42 rmind * these operations should not change the lock state, but should be changed
124 1.42 rmind * to let the caller of the function unlock them. Otherwise, all intermediate
125 1.42 rmind * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 1.1 wrstuden * the necessary locking at their layer.
127 1.1 wrstuden *
128 1.42 rmind * INSTANTIATING VNODE STACKS
129 1.1 wrstuden *
130 1.42 rmind * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 1.42 rmind * stacking two VFSes. The initial mount creates a single vnode stack for
132 1.42 rmind * the root of the new layerfs. All other vnode stacks are created as a
133 1.42 rmind * result of vnode operations on this or other layerfs vnode stacks.
134 1.1 wrstuden *
135 1.42 rmind * New vnode stacks come into existence as a result of an operation which
136 1.42 rmind * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 1.1 wrstuden * vnode before returning it to the caller.
138 1.1 wrstuden *
139 1.42 rmind * For example, imagine mounting a null layer with:
140 1.1 wrstuden *
141 1.42 rmind * "mount_null /usr/include /dev/layer/null"
142 1.1 wrstuden *
143 1.42 rmind * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 1.42 rmind * which was created when the null layer was mounted). Now consider opening
145 1.42 rmind * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 1.42 rmind * This operation would bypass through to the lower layer which would return
147 1.42 rmind * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 1.42 rmind * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 1.42 rmind * Later operations on the layerfs-node "sys" will repeat this process when
150 1.42 rmind * constructing other vnode stacks.
151 1.1 wrstuden *
152 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
153 1.1 wrstuden *
154 1.42 rmind * There are two techniques to invoke operations on a lower layer when the
155 1.42 rmind * operation cannot be completely bypassed. Each method is appropriate in
156 1.42 rmind * different situations. In both cases, it is the responsibility of the
157 1.42 rmind * aliasing layer to make the operation arguments "correct" for the lower
158 1.42 rmind * layer by mapping any vnode arguments to the lower layer.
159 1.42 rmind *
160 1.42 rmind * The first approach is to call the aliasing layer's bypass routine. This
161 1.42 rmind * method is most suitable when you wish to invoke the operation currently
162 1.42 rmind * being handled on the lower layer. It has the advantage that the bypass
163 1.42 rmind * routine already must do argument mapping. An example of this is
164 1.42 rmind * layer_getattr().
165 1.42 rmind *
166 1.42 rmind * A second approach is to directly invoke vnode operations on the lower
167 1.42 rmind * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 1.42 rmind * is that it is easy to invoke arbitrary operations on the lower layer.
169 1.42 rmind * The disadvantage is that vnode's arguments must be manually mapped.
170 1.1 wrstuden */
171 1.8 lukem
172 1.8 lukem #include <sys/cdefs.h>
173 1.54 hannken __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.54 2014/02/07 15:29:22 hannken Exp $");
174 1.1 wrstuden
175 1.1 wrstuden #include <sys/param.h>
176 1.1 wrstuden #include <sys/systm.h>
177 1.1 wrstuden #include <sys/proc.h>
178 1.1 wrstuden #include <sys/time.h>
179 1.1 wrstuden #include <sys/vnode.h>
180 1.1 wrstuden #include <sys/mount.h>
181 1.1 wrstuden #include <sys/namei.h>
182 1.34 ad #include <sys/kmem.h>
183 1.1 wrstuden #include <sys/buf.h>
184 1.27 elad #include <sys/kauth.h>
185 1.27 elad
186 1.1 wrstuden #include <miscfs/genfs/layer.h>
187 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
188 1.1 wrstuden #include <miscfs/genfs/genfs.h>
189 1.50 hannken #include <miscfs/specfs/specdev.h>
190 1.1 wrstuden
191 1.1 wrstuden /*
192 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
193 1.1 wrstuden * routine by John Heidemann.
194 1.1 wrstuden * The new element for this version is that the whole nullfs
195 1.40 hannken * system gained the concept of locks on the lower node.
196 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
197 1.1 wrstuden * safety checks. It should still always work, but it's not as
198 1.1 wrstuden * robust to programmer errors.
199 1.1 wrstuden *
200 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
201 1.1 wrstuden *
202 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
203 1.1 wrstuden * their arguments. With stacking, the reference counts are held
204 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
205 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
206 1.1 wrstuden * since there are no such side-effects.
207 1.1 wrstuden *
208 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
209 1.1 wrstuden * the passed-in node (typically they vput the node).
210 1.1 wrstuden *
211 1.1 wrstuden * This makes the following assumptions:
212 1.1 wrstuden * - only one returned vpp
213 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
214 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
215 1.1 wrstuden * to determine what implementation of the op should be invoked
216 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
218 1.24 perry */
219 1.1 wrstuden int
220 1.38 dsl layer_bypass(void *v)
221 1.1 wrstuden {
222 1.1 wrstuden struct vop_generic_args /* {
223 1.1 wrstuden struct vnodeop_desc *a_desc;
224 1.1 wrstuden <other random data follows, presumably>
225 1.1 wrstuden } */ *ap = v;
226 1.25 xtraeme int (**our_vnodeop_p)(void *);
227 1.3 augustss struct vnode **this_vp_p;
228 1.40 hannken int error;
229 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
230 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
231 1.1 wrstuden struct vnode ***vppp;
232 1.33 dyoung struct mount *mp;
233 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
234 1.1 wrstuden int reles, i, flags;
235 1.1 wrstuden
236 1.37 plunky #ifdef DIAGNOSTIC
237 1.1 wrstuden /*
238 1.1 wrstuden * We require at least one vp.
239 1.1 wrstuden */
240 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
241 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242 1.20 yamt panic("%s: no vp's in map.\n", __func__);
243 1.1 wrstuden #endif
244 1.1 wrstuden
245 1.20 yamt vps_p[0] =
246 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
247 1.1 wrstuden vp0 = *vps_p[0];
248 1.33 dyoung mp = vp0->v_mount;
249 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
250 1.1 wrstuden our_vnodeop_p = vp0->v_op;
251 1.1 wrstuden
252 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
253 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
254 1.1 wrstuden
255 1.1 wrstuden /*
256 1.1 wrstuden * Map the vnodes going in.
257 1.1 wrstuden * Later, we'll invoke the operation based on
258 1.1 wrstuden * the first mapped vnode's operation vector.
259 1.1 wrstuden */
260 1.1 wrstuden reles = descp->vdesc_flags;
261 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
262 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
263 1.1 wrstuden break; /* bail out at end of list */
264 1.24 perry vps_p[i] = this_vp_p =
265 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
266 1.20 yamt ap);
267 1.1 wrstuden /*
268 1.1 wrstuden * We're not guaranteed that any but the first vnode
269 1.1 wrstuden * are of our type. Check for and don't map any
270 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
271 1.1 wrstuden */
272 1.1 wrstuden if (i && (*this_vp_p == NULL ||
273 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
274 1.1 wrstuden old_vps[i] = NULL;
275 1.1 wrstuden } else {
276 1.1 wrstuden old_vps[i] = *this_vp_p;
277 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
278 1.1 wrstuden /*
279 1.1 wrstuden * XXX - Several operations have the side effect
280 1.1 wrstuden * of vrele'ing their vp's. We must account for
281 1.1 wrstuden * that. (This should go away in the future.)
282 1.1 wrstuden */
283 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
284 1.39 pooka vref(*this_vp_p);
285 1.1 wrstuden }
286 1.1 wrstuden }
287 1.1 wrstuden
288 1.1 wrstuden /*
289 1.1 wrstuden * Call the operation on the lower layer
290 1.1 wrstuden * with the modified argument structure.
291 1.1 wrstuden */
292 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
293 1.1 wrstuden
294 1.1 wrstuden /*
295 1.1 wrstuden * Maintain the illusion of call-by-value
296 1.1 wrstuden * by restoring vnodes in the argument structure
297 1.1 wrstuden * to their original value.
298 1.1 wrstuden */
299 1.1 wrstuden reles = descp->vdesc_flags;
300 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
301 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
302 1.1 wrstuden break; /* bail out at end of list */
303 1.1 wrstuden if (old_vps[i]) {
304 1.1 wrstuden *(vps_p[i]) = old_vps[i];
305 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
306 1.1 wrstuden vrele(*(vps_p[i]));
307 1.1 wrstuden }
308 1.1 wrstuden }
309 1.1 wrstuden
310 1.1 wrstuden /*
311 1.1 wrstuden * Map the possible out-going vpp
312 1.1 wrstuden * (Assumes that the lower layer always returns
313 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
314 1.1 wrstuden */
315 1.47 rmind if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
316 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
317 1.20 yamt descp->vdesc_vpp_offset, ap);
318 1.1 wrstuden /*
319 1.52 hannken * Only vop_lookup, vop_create, vop_makedir, vop_mknod
320 1.52 hannken * and vop_symlink return vpp's. vop_lookup doesn't call bypass
321 1.1 wrstuden * as a lookup on "." would generate a locking error.
322 1.52 hannken * So all the calls which get us here have a unlocked vpp. :-)
323 1.1 wrstuden */
324 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp);
325 1.19 yamt if (error) {
326 1.52 hannken vrele(**vppp);
327 1.19 yamt **vppp = NULL;
328 1.19 yamt }
329 1.1 wrstuden }
330 1.42 rmind return error;
331 1.1 wrstuden }
332 1.1 wrstuden
333 1.1 wrstuden /*
334 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
335 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
336 1.1 wrstuden * if this layer is mounted read-only.
337 1.1 wrstuden */
338 1.1 wrstuden int
339 1.38 dsl layer_lookup(void *v)
340 1.1 wrstuden {
341 1.54 hannken struct vop_lookup_v2_args /* {
342 1.1 wrstuden struct vnodeop_desc *a_desc;
343 1.1 wrstuden struct vnode * a_dvp;
344 1.1 wrstuden struct vnode ** a_vpp;
345 1.1 wrstuden struct componentname * a_cnp;
346 1.1 wrstuden } */ *ap = v;
347 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
348 1.29 chs struct vnode *dvp, *lvp, *ldvp;
349 1.42 rmind int error, flags = cnp->cn_flags;
350 1.1 wrstuden
351 1.1 wrstuden dvp = ap->a_dvp;
352 1.1 wrstuden
353 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
354 1.51 dholland (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
355 1.51 dholland *ap->a_vpp = NULL;
356 1.42 rmind return EROFS;
357 1.51 dholland }
358 1.1 wrstuden
359 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
360 1.1 wrstuden ap->a_dvp = ldvp;
361 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
362 1.29 chs lvp = *ap->a_vpp;
363 1.18 yamt *ap->a_vpp = NULL;
364 1.1 wrstuden
365 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
366 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
367 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
368 1.1 wrstuden error = EROFS;
369 1.29 chs
370 1.1 wrstuden /*
371 1.24 perry * We must do the same locking and unlocking at this layer as
372 1.29 chs * is done in the layers below us.
373 1.1 wrstuden */
374 1.29 chs if (ldvp == lvp) {
375 1.1 wrstuden /*
376 1.36 dholland * Got the same object back, because we looked up ".",
377 1.36 dholland * or ".." in the root node of a mount point.
378 1.36 dholland * So we make another reference to dvp and return it.
379 1.1 wrstuden */
380 1.39 pooka vref(dvp);
381 1.1 wrstuden *ap->a_vpp = dvp;
382 1.29 chs vrele(lvp);
383 1.29 chs } else if (lvp != NULL) {
384 1.54 hannken /* Note: dvp and ldvp are both locked. */
385 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
386 1.19 yamt if (error) {
387 1.54 hannken vrele(lvp);
388 1.19 yamt }
389 1.1 wrstuden }
390 1.42 rmind return error;
391 1.1 wrstuden }
392 1.1 wrstuden
393 1.1 wrstuden /*
394 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
395 1.1 wrstuden */
396 1.1 wrstuden int
397 1.38 dsl layer_setattr(void *v)
398 1.1 wrstuden {
399 1.1 wrstuden struct vop_setattr_args /* {
400 1.1 wrstuden struct vnodeop_desc *a_desc;
401 1.1 wrstuden struct vnode *a_vp;
402 1.1 wrstuden struct vattr *a_vap;
403 1.27 elad kauth_cred_t a_cred;
404 1.26 christos struct lwp *a_l;
405 1.1 wrstuden } */ *ap = v;
406 1.1 wrstuden struct vnode *vp = ap->a_vp;
407 1.1 wrstuden struct vattr *vap = ap->a_vap;
408 1.1 wrstuden
409 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
410 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
411 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
412 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
413 1.42 rmind return EROFS;
414 1.1 wrstuden if (vap->va_size != VNOVAL) {
415 1.1 wrstuden switch (vp->v_type) {
416 1.1 wrstuden case VDIR:
417 1.42 rmind return EISDIR;
418 1.1 wrstuden case VCHR:
419 1.1 wrstuden case VBLK:
420 1.1 wrstuden case VSOCK:
421 1.1 wrstuden case VFIFO:
422 1.42 rmind return 0;
423 1.1 wrstuden case VREG:
424 1.1 wrstuden case VLNK:
425 1.1 wrstuden default:
426 1.1 wrstuden /*
427 1.1 wrstuden * Disallow write attempts if the filesystem is
428 1.1 wrstuden * mounted read-only.
429 1.1 wrstuden */
430 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
431 1.42 rmind return EROFS;
432 1.1 wrstuden }
433 1.1 wrstuden }
434 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
435 1.1 wrstuden }
436 1.1 wrstuden
437 1.1 wrstuden /*
438 1.1 wrstuden * We handle getattr only to change the fsid.
439 1.1 wrstuden */
440 1.1 wrstuden int
441 1.38 dsl layer_getattr(void *v)
442 1.1 wrstuden {
443 1.1 wrstuden struct vop_getattr_args /* {
444 1.1 wrstuden struct vnode *a_vp;
445 1.1 wrstuden struct vattr *a_vap;
446 1.27 elad kauth_cred_t a_cred;
447 1.26 christos struct lwp *a_l;
448 1.1 wrstuden } */ *ap = v;
449 1.1 wrstuden struct vnode *vp = ap->a_vp;
450 1.1 wrstuden int error;
451 1.1 wrstuden
452 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
453 1.42 rmind if (error) {
454 1.42 rmind return error;
455 1.42 rmind }
456 1.1 wrstuden /* Requires that arguments be restored. */
457 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
458 1.42 rmind return 0;
459 1.1 wrstuden }
460 1.1 wrstuden
461 1.1 wrstuden int
462 1.38 dsl layer_access(void *v)
463 1.1 wrstuden {
464 1.1 wrstuden struct vop_access_args /* {
465 1.1 wrstuden struct vnode *a_vp;
466 1.1 wrstuden int a_mode;
467 1.27 elad kauth_cred_t a_cred;
468 1.26 christos struct lwp *a_l;
469 1.1 wrstuden } */ *ap = v;
470 1.1 wrstuden struct vnode *vp = ap->a_vp;
471 1.1 wrstuden mode_t mode = ap->a_mode;
472 1.1 wrstuden
473 1.1 wrstuden /*
474 1.1 wrstuden * Disallow write attempts on read-only layers;
475 1.1 wrstuden * unless the file is a socket, fifo, or a block or
476 1.1 wrstuden * character device resident on the file system.
477 1.1 wrstuden */
478 1.1 wrstuden if (mode & VWRITE) {
479 1.1 wrstuden switch (vp->v_type) {
480 1.1 wrstuden case VDIR:
481 1.1 wrstuden case VLNK:
482 1.1 wrstuden case VREG:
483 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
484 1.42 rmind return EROFS;
485 1.1 wrstuden break;
486 1.1 wrstuden default:
487 1.1 wrstuden break;
488 1.1 wrstuden }
489 1.1 wrstuden }
490 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
491 1.1 wrstuden }
492 1.1 wrstuden
493 1.1 wrstuden /*
494 1.1 wrstuden * We must handle open to be able to catch MNT_NODEV and friends.
495 1.1 wrstuden */
496 1.1 wrstuden int
497 1.38 dsl layer_open(void *v)
498 1.1 wrstuden {
499 1.42 rmind struct vop_open_args /* {
500 1.42 rmind const struct vnodeop_desc *a_desc;
501 1.42 rmind struct vnode *a_vp;
502 1.42 rmind int a_mode;
503 1.42 rmind kauth_cred_t a_cred;
504 1.42 rmind } */ *ap = v;
505 1.1 wrstuden struct vnode *vp = ap->a_vp;
506 1.1 wrstuden enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
507 1.1 wrstuden
508 1.1 wrstuden if (((lower_type == VBLK) || (lower_type == VCHR)) &&
509 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
510 1.1 wrstuden return ENXIO;
511 1.1 wrstuden
512 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
513 1.1 wrstuden }
514 1.1 wrstuden
515 1.1 wrstuden /*
516 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
517 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
518 1.42 rmind * reclaimed; otherwise, pass it through to the underlying layer.
519 1.1 wrstuden *
520 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
521 1.1 wrstuden */
522 1.1 wrstuden int
523 1.38 dsl layer_fsync(void *v)
524 1.1 wrstuden {
525 1.1 wrstuden struct vop_fsync_args /* {
526 1.1 wrstuden struct vnode *a_vp;
527 1.27 elad kauth_cred_t a_cred;
528 1.1 wrstuden int a_flags;
529 1.4 fvdl off_t offlo;
530 1.4 fvdl off_t offhi;
531 1.26 christos struct lwp *a_l;
532 1.1 wrstuden } */ *ap = v;
533 1.50 hannken int error;
534 1.1 wrstuden
535 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
536 1.1 wrstuden return 0;
537 1.1 wrstuden }
538 1.50 hannken if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
539 1.50 hannken error = spec_fsync(v);
540 1.50 hannken if (error)
541 1.50 hannken return error;
542 1.50 hannken }
543 1.42 rmind return LAYERFS_DO_BYPASS(ap->a_vp, ap);
544 1.1 wrstuden }
545 1.1 wrstuden
546 1.1 wrstuden int
547 1.38 dsl layer_inactive(void *v)
548 1.1 wrstuden {
549 1.1 wrstuden struct vop_inactive_args /* {
550 1.1 wrstuden struct vnode *a_vp;
551 1.34 ad bool *a_recycle;
552 1.1 wrstuden } */ *ap = v;
553 1.5 enami struct vnode *vp = ap->a_vp;
554 1.1 wrstuden
555 1.1 wrstuden /*
556 1.44 hannken * If we did a remove, don't cache the node.
557 1.34 ad */
558 1.44 hannken *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
559 1.34 ad
560 1.34 ad /*
561 1.1 wrstuden * Do nothing (and _don't_ bypass).
562 1.1 wrstuden * Wait to vrele lowervp until reclaim,
563 1.1 wrstuden * so that until then our layer_node is in the
564 1.1 wrstuden * cache and reusable.
565 1.1 wrstuden *
566 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
567 1.1 wrstuden * the lowervp and then trying to reactivate it
568 1.1 wrstuden * with capabilities (v_id)
569 1.1 wrstuden * like they do in the name lookup cache code.
570 1.1 wrstuden * That's too much work for now.
571 1.1 wrstuden */
572 1.41 hannken VOP_UNLOCK(vp);
573 1.42 rmind return 0;
574 1.1 wrstuden }
575 1.1 wrstuden
576 1.1 wrstuden int
577 1.38 dsl layer_remove(void *v)
578 1.16 wrstuden {
579 1.16 wrstuden struct vop_remove_args /* {
580 1.16 wrstuden struct vonde *a_dvp;
581 1.16 wrstuden struct vnode *a_vp;
582 1.16 wrstuden struct componentname *a_cnp;
583 1.16 wrstuden } */ *ap = v;
584 1.42 rmind struct vnode *vp = ap->a_vp;
585 1.42 rmind int error;
586 1.16 wrstuden
587 1.16 wrstuden vref(vp);
588 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
589 1.42 rmind if (error == 0) {
590 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
591 1.42 rmind }
592 1.16 wrstuden vrele(vp);
593 1.16 wrstuden
594 1.42 rmind return error;
595 1.16 wrstuden }
596 1.16 wrstuden
597 1.16 wrstuden int
598 1.38 dsl layer_rename(void *v)
599 1.17 yamt {
600 1.17 yamt struct vop_rename_args /* {
601 1.17 yamt struct vnode *a_fdvp;
602 1.17 yamt struct vnode *a_fvp;
603 1.17 yamt struct componentname *a_fcnp;
604 1.17 yamt struct vnode *a_tdvp;
605 1.17 yamt struct vnode *a_tvp;
606 1.17 yamt struct componentname *a_tcnp;
607 1.17 yamt } */ *ap = v;
608 1.42 rmind struct vnode *fdvp = ap->a_fdvp, *tvp;
609 1.17 yamt int error;
610 1.17 yamt
611 1.17 yamt tvp = ap->a_tvp;
612 1.17 yamt if (tvp) {
613 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
614 1.17 yamt tvp = NULL;
615 1.17 yamt else
616 1.17 yamt vref(tvp);
617 1.17 yamt }
618 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
619 1.17 yamt if (tvp) {
620 1.17 yamt if (error == 0)
621 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
622 1.17 yamt vrele(tvp);
623 1.17 yamt }
624 1.42 rmind return error;
625 1.17 yamt }
626 1.17 yamt
627 1.17 yamt int
628 1.38 dsl layer_rmdir(void *v)
629 1.23 hannken {
630 1.23 hannken struct vop_rmdir_args /* {
631 1.23 hannken struct vnode *a_dvp;
632 1.23 hannken struct vnode *a_vp;
633 1.23 hannken struct componentname *a_cnp;
634 1.23 hannken } */ *ap = v;
635 1.23 hannken int error;
636 1.23 hannken struct vnode *vp = ap->a_vp;
637 1.23 hannken
638 1.23 hannken vref(vp);
639 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
640 1.42 rmind if (error == 0) {
641 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
642 1.42 rmind }
643 1.23 hannken vrele(vp);
644 1.23 hannken
645 1.42 rmind return error;
646 1.23 hannken }
647 1.23 hannken
648 1.23 hannken int
649 1.45 hannken layer_revoke(void *v)
650 1.45 hannken {
651 1.45 hannken struct vop_revoke_args /* {
652 1.45 hannken struct vnode *a_vp;
653 1.45 hannken int a_flags;
654 1.45 hannken } */ *ap = v;
655 1.45 hannken struct vnode *vp = ap->a_vp;
656 1.45 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
657 1.46 hannken int error;
658 1.45 hannken
659 1.45 hannken /*
660 1.45 hannken * We will most likely end up in vclean which uses the v_usecount
661 1.46 hannken * to determine if a vnode is active. Take an extra reference on
662 1.46 hannken * the lower vnode so it will always close and inactivate.
663 1.45 hannken */
664 1.46 hannken vref(lvp);
665 1.45 hannken error = LAYERFS_DO_BYPASS(vp, ap);
666 1.46 hannken vrele(lvp);
667 1.45 hannken
668 1.45 hannken return error;
669 1.45 hannken }
670 1.45 hannken
671 1.45 hannken int
672 1.38 dsl layer_reclaim(void *v)
673 1.1 wrstuden {
674 1.1 wrstuden struct vop_reclaim_args /* {
675 1.1 wrstuden struct vnode *a_vp;
676 1.26 christos struct lwp *a_l;
677 1.1 wrstuden } */ *ap = v;
678 1.1 wrstuden struct vnode *vp = ap->a_vp;
679 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
680 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
681 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
682 1.1 wrstuden
683 1.1 wrstuden /*
684 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
685 1.1 wrstuden * decomissioned, so we have to be careful about calling
686 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set.
687 1.1 wrstuden */
688 1.42 rmind if (vp == lmp->layerm_rootvp) {
689 1.1 wrstuden /*
690 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
691 1.1 wrstuden * that someone forcably unmunted the underlying fs.
692 1.1 wrstuden *
693 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
694 1.1 wrstuden */
695 1.1 wrstuden lmp->layerm_rootvp = NULL;
696 1.1 wrstuden }
697 1.42 rmind /* After this assignment, this node will not be re-used. */
698 1.1 wrstuden xp->layer_lowervp = NULL;
699 1.32 ad mutex_enter(&lmp->layerm_hashlock);
700 1.1 wrstuden LIST_REMOVE(xp, layer_hash);
701 1.32 ad mutex_exit(&lmp->layerm_hashlock);
702 1.34 ad kmem_free(vp->v_data, lmp->layerm_size);
703 1.1 wrstuden vp->v_data = NULL;
704 1.29 chs vrele(lowervp);
705 1.34 ad
706 1.42 rmind return 0;
707 1.1 wrstuden }
708 1.1 wrstuden
709 1.1 wrstuden /*
710 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
711 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
712 1.1 wrstuden * i/o. :-)
713 1.1 wrstuden */
714 1.1 wrstuden int
715 1.38 dsl layer_bmap(void *v)
716 1.1 wrstuden {
717 1.1 wrstuden struct vop_bmap_args /* {
718 1.1 wrstuden struct vnode *a_vp;
719 1.1 wrstuden daddr_t a_bn;
720 1.1 wrstuden struct vnode **a_vpp;
721 1.1 wrstuden daddr_t *a_bnp;
722 1.1 wrstuden int *a_runp;
723 1.1 wrstuden } */ *ap = v;
724 1.1 wrstuden struct vnode *vp;
725 1.1 wrstuden
726 1.42 rmind vp = LAYERVPTOLOWERVP(ap->a_vp);
727 1.42 rmind ap->a_vp = vp;
728 1.1 wrstuden
729 1.42 rmind return VCALL(vp, ap->a_desc->vdesc_offset, ap);
730 1.1 wrstuden }
731 1.1 wrstuden
732 1.1 wrstuden int
733 1.38 dsl layer_print(void *v)
734 1.1 wrstuden {
735 1.1 wrstuden struct vop_print_args /* {
736 1.1 wrstuden struct vnode *a_vp;
737 1.1 wrstuden } */ *ap = v;
738 1.3 augustss struct vnode *vp = ap->a_vp;
739 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
740 1.42 rmind return 0;
741 1.1 wrstuden }
742 1.1 wrstuden
743 1.10 chs int
744 1.38 dsl layer_getpages(void *v)
745 1.10 chs {
746 1.10 chs struct vop_getpages_args /* {
747 1.10 chs struct vnode *a_vp;
748 1.10 chs voff_t a_offset;
749 1.10 chs struct vm_page **a_m;
750 1.10 chs int *a_count;
751 1.10 chs int a_centeridx;
752 1.10 chs vm_prot_t a_access_type;
753 1.10 chs int a_advice;
754 1.10 chs int a_flags;
755 1.10 chs } */ *ap = v;
756 1.10 chs struct vnode *vp = ap->a_vp;
757 1.10 chs
758 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
759 1.10 chs
760 1.10 chs if (ap->a_flags & PGO_LOCKED) {
761 1.10 chs return EBUSY;
762 1.10 chs }
763 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
764 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
765 1.48 rmind
766 1.48 rmind /* Just pass the request on to the underlying layer. */
767 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
768 1.10 chs }
769 1.10 chs
770 1.10 chs int
771 1.38 dsl layer_putpages(void *v)
772 1.10 chs {
773 1.10 chs struct vop_putpages_args /* {
774 1.10 chs struct vnode *a_vp;
775 1.10 chs voff_t a_offlo;
776 1.10 chs voff_t a_offhi;
777 1.10 chs int a_flags;
778 1.10 chs } */ *ap = v;
779 1.10 chs struct vnode *vp = ap->a_vp;
780 1.10 chs
781 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
782 1.10 chs
783 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
784 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
785 1.48 rmind
786 1.30 chs if (ap->a_flags & PGO_RECLAIM) {
787 1.48 rmind mutex_exit(vp->v_interlock);
788 1.30 chs return 0;
789 1.30 chs }
790 1.48 rmind
791 1.48 rmind /* Just pass the request on to the underlying layer. */
792 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
793 1.1 wrstuden }
794