Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.58.4.3
      1  1.58.4.3     skrll /*	$NetBSD: layer_vnops.c,v 1.58.4.3 2017/08/28 17:53:08 skrll Exp $	*/
      2       1.1  wrstuden 
      3       1.1  wrstuden /*
      4       1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5       1.1  wrstuden  * All rights reserved.
      6       1.1  wrstuden  *
      7       1.1  wrstuden  * This software was written by William Studenmund of the
      8       1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9       1.1  wrstuden  *
     10       1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11       1.1  wrstuden  * modification, are permitted provided that the following conditions
     12       1.1  wrstuden  * are met:
     13       1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14       1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15       1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17       1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18       1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19       1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20       1.1  wrstuden  *    products derived from this software without specific prior written
     21       1.1  wrstuden  *    permission.
     22       1.1  wrstuden  *
     23       1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24       1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25       1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26       1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27       1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28       1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29       1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30       1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31       1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32       1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33       1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34       1.1  wrstuden  */
     35      1.42     rmind 
     36       1.1  wrstuden /*
     37       1.1  wrstuden  * Copyright (c) 1992, 1993
     38       1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     39       1.1  wrstuden  *
     40       1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     41       1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     42       1.1  wrstuden  *
     43       1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     44       1.1  wrstuden  * modification, are permitted provided that the following conditions
     45       1.1  wrstuden  * are met:
     46       1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     47       1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     48       1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     50       1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     51      1.11       agc  * 3. Neither the name of the University nor the names of its contributors
     52       1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     53       1.1  wrstuden  *    without specific prior written permission.
     54       1.1  wrstuden  *
     55       1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56       1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59       1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.1  wrstuden  * SUCH DAMAGE.
     66       1.1  wrstuden  *
     67       1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68       1.1  wrstuden  *
     69       1.1  wrstuden  * Ancestors:
     70       1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71      1.31     enami  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72       1.1  wrstuden  *	...and...
     73       1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74       1.1  wrstuden  */
     75       1.1  wrstuden 
     76       1.1  wrstuden /*
     77      1.42     rmind  * Generic layer vnode operations.
     78       1.1  wrstuden  *
     79      1.42     rmind  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80      1.42     rmind  * the core implementation of stacked file-systems.
     81       1.1  wrstuden  *
     82      1.42     rmind  * The layerfs duplicates a portion of the file system name space under
     83      1.42     rmind  * a new name.  In this respect, it is similar to the loopback file system.
     84      1.42     rmind  * It differs from the loopback fs in two respects: it is implemented using
     85      1.42     rmind  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86      1.42     rmind  * lower-layer vnodes, not just over directory vnodes.
     87      1.42     rmind  *
     88      1.42     rmind  * OPERATION OF LAYERFS
     89      1.42     rmind  *
     90      1.42     rmind  * The layerfs is the minimum file system layer, bypassing all possible
     91      1.42     rmind  * operations to the lower layer for processing there.  The majority of its
     92      1.42     rmind  * activity centers on the bypass routine, through which nearly all vnode
     93      1.42     rmind  * operations pass.
     94      1.42     rmind  *
     95      1.42     rmind  * The bypass routine accepts arbitrary vnode operations for handling by
     96      1.42     rmind  * the lower layer.  It begins by examining vnode operation arguments and
     97      1.42     rmind  * replacing any layered nodes by their lower-layer equivalents.  It then
     98      1.42     rmind  * invokes an operation on the lower layer.  Finally, it replaces the
     99      1.42     rmind  * layered nodes in the arguments and, if a vnode is returned by the
    100      1.42     rmind  * operation, stacks a layered node on top of the returned vnode.
    101       1.1  wrstuden  *
    102       1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    103       1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    104       1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    105       1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    106       1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    107       1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    108       1.1  wrstuden  *
    109       1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    110       1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111       1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    112       1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    113      1.42     rmind  * use the layerm_bypass() routine.
    114       1.1  wrstuden  *
    115       1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    116      1.42     rmind  * of operations are special cased and handled by the layerfs.  For instance,
    117      1.42     rmind  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118      1.42     rmind  * and layer_unlock() must handle any locking for the current vnode as well
    119      1.42     rmind  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120      1.42     rmind  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121      1.42     rmind  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122      1.42     rmind  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123      1.42     rmind  * these operations should not change the lock state, but should be changed
    124      1.42     rmind  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125      1.42     rmind  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126       1.1  wrstuden  * the necessary locking at their layer.
    127       1.1  wrstuden  *
    128      1.42     rmind  * INSTANTIATING VNODE STACKS
    129       1.1  wrstuden  *
    130      1.42     rmind  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131      1.42     rmind  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132      1.42     rmind  * the root of the new layerfs.  All other vnode stacks are created as a
    133      1.42     rmind  * result of vnode operations on this or other layerfs vnode stacks.
    134       1.1  wrstuden  *
    135      1.42     rmind  * New vnode stacks come into existence as a result of an operation which
    136      1.42     rmind  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137       1.1  wrstuden  * vnode before returning it to the caller.
    138       1.1  wrstuden  *
    139      1.42     rmind  * For example, imagine mounting a null layer with:
    140       1.1  wrstuden  *
    141      1.42     rmind  *	"mount_null /usr/include /dev/layer/null"
    142       1.1  wrstuden  *
    143      1.42     rmind  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144      1.42     rmind  * which was created when the null layer was mounted).  Now consider opening
    145      1.42     rmind  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146      1.42     rmind  * This operation would bypass through to the lower layer which would return
    147      1.42     rmind  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148      1.42     rmind  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149      1.42     rmind  * Later operations on the layerfs-node "sys" will repeat this process when
    150      1.42     rmind  * constructing other vnode stacks.
    151       1.1  wrstuden  *
    152       1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    153       1.1  wrstuden  *
    154      1.42     rmind  * There are two techniques to invoke operations on a lower layer when the
    155      1.42     rmind  * operation cannot be completely bypassed.  Each method is appropriate in
    156      1.42     rmind  * different situations.  In both cases, it is the responsibility of the
    157      1.42     rmind  * aliasing layer to make the operation arguments "correct" for the lower
    158      1.42     rmind  * layer by mapping any vnode arguments to the lower layer.
    159      1.42     rmind  *
    160      1.42     rmind  * The first approach is to call the aliasing layer's bypass routine.  This
    161      1.42     rmind  * method is most suitable when you wish to invoke the operation currently
    162      1.42     rmind  * being handled on the lower layer.  It has the advantage that the bypass
    163      1.42     rmind  * routine already must do argument mapping.  An example of this is
    164      1.42     rmind  * layer_getattr().
    165      1.42     rmind  *
    166      1.42     rmind  * A second approach is to directly invoke vnode operations on the lower
    167      1.42     rmind  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168      1.42     rmind  * is that it is easy to invoke arbitrary operations on the lower layer.
    169      1.42     rmind  * The disadvantage is that vnode's arguments must be manually mapped.
    170       1.1  wrstuden  */
    171       1.8     lukem 
    172       1.8     lukem #include <sys/cdefs.h>
    173  1.58.4.3     skrll __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.58.4.3 2017/08/28 17:53:08 skrll Exp $");
    174       1.1  wrstuden 
    175       1.1  wrstuden #include <sys/param.h>
    176       1.1  wrstuden #include <sys/systm.h>
    177       1.1  wrstuden #include <sys/proc.h>
    178       1.1  wrstuden #include <sys/time.h>
    179       1.1  wrstuden #include <sys/vnode.h>
    180       1.1  wrstuden #include <sys/mount.h>
    181       1.1  wrstuden #include <sys/namei.h>
    182      1.34        ad #include <sys/kmem.h>
    183       1.1  wrstuden #include <sys/buf.h>
    184      1.27      elad #include <sys/kauth.h>
    185  1.58.4.2     skrll #include <sys/fcntl.h>
    186  1.58.4.3     skrll #include <sys/fstrans.h>
    187      1.27      elad 
    188       1.1  wrstuden #include <miscfs/genfs/layer.h>
    189       1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    190       1.1  wrstuden #include <miscfs/genfs/genfs.h>
    191      1.50   hannken #include <miscfs/specfs/specdev.h>
    192       1.1  wrstuden 
    193       1.1  wrstuden /*
    194       1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    195       1.1  wrstuden  *		routine by John Heidemann.
    196       1.1  wrstuden  *	The new element for this version is that the whole nullfs
    197      1.40   hannken  * system gained the concept of locks on the lower node.
    198       1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    199       1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    200       1.1  wrstuden  * robust to programmer errors.
    201       1.1  wrstuden  *
    202       1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    203       1.1  wrstuden  *
    204       1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    205       1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    206       1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    207       1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    208       1.1  wrstuden  * since there are no such side-effects.
    209       1.1  wrstuden  *
    210       1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    211       1.1  wrstuden  * the passed-in node (typically they vput the node).
    212       1.1  wrstuden  *
    213       1.1  wrstuden  * This makes the following assumptions:
    214       1.1  wrstuden  * - only one returned vpp
    215       1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    216       1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    217       1.1  wrstuden  *   to determine what implementation of the op should be invoked
    218       1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    219       1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    220      1.24     perry  */
    221       1.1  wrstuden int
    222      1.38       dsl layer_bypass(void *v)
    223       1.1  wrstuden {
    224       1.1  wrstuden 	struct vop_generic_args /* {
    225       1.1  wrstuden 		struct vnodeop_desc *a_desc;
    226       1.1  wrstuden 		<other random data follows, presumably>
    227       1.1  wrstuden 	} */ *ap = v;
    228      1.25   xtraeme 	int (**our_vnodeop_p)(void *);
    229       1.3  augustss 	struct vnode **this_vp_p;
    230      1.40   hannken 	int error;
    231       1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    232       1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    233       1.1  wrstuden 	struct vnode ***vppp;
    234      1.33    dyoung 	struct mount *mp;
    235       1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    236       1.1  wrstuden 	int reles, i, flags;
    237       1.1  wrstuden 
    238      1.37    plunky #ifdef DIAGNOSTIC
    239       1.1  wrstuden 	/*
    240       1.1  wrstuden 	 * We require at least one vp.
    241       1.1  wrstuden 	 */
    242       1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    243       1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    244      1.20      yamt 		panic("%s: no vp's in map.\n", __func__);
    245       1.1  wrstuden #endif
    246       1.1  wrstuden 
    247      1.20      yamt 	vps_p[0] =
    248      1.20      yamt 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    249       1.1  wrstuden 	vp0 = *vps_p[0];
    250      1.33    dyoung 	mp = vp0->v_mount;
    251      1.33    dyoung 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    252       1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    253       1.1  wrstuden 
    254       1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    255      1.20      yamt 		printf("%s: %s\n", __func__, descp->vdesc_name);
    256       1.1  wrstuden 
    257       1.1  wrstuden 	/*
    258       1.1  wrstuden 	 * Map the vnodes going in.
    259       1.1  wrstuden 	 * Later, we'll invoke the operation based on
    260       1.1  wrstuden 	 * the first mapped vnode's operation vector.
    261       1.1  wrstuden 	 */
    262       1.1  wrstuden 	reles = descp->vdesc_flags;
    263       1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    264       1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    265       1.1  wrstuden 			break;   /* bail out at end of list */
    266      1.24     perry 		vps_p[i] = this_vp_p =
    267      1.20      yamt 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    268      1.20      yamt 		    ap);
    269       1.1  wrstuden 		/*
    270       1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    271       1.1  wrstuden 		 * are of our type.  Check for and don't map any
    272       1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    273       1.1  wrstuden 		 */
    274       1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    275       1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    276       1.1  wrstuden 			old_vps[i] = NULL;
    277       1.1  wrstuden 		} else {
    278       1.1  wrstuden 			old_vps[i] = *this_vp_p;
    279       1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    280       1.1  wrstuden 			/*
    281       1.1  wrstuden 			 * XXX - Several operations have the side effect
    282       1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    283       1.1  wrstuden 			 * that.  (This should go away in the future.)
    284       1.1  wrstuden 			 */
    285       1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    286      1.39     pooka 				vref(*this_vp_p);
    287       1.1  wrstuden 		}
    288       1.1  wrstuden 	}
    289       1.1  wrstuden 
    290       1.1  wrstuden 	/*
    291       1.1  wrstuden 	 * Call the operation on the lower layer
    292       1.1  wrstuden 	 * with the modified argument structure.
    293       1.1  wrstuden 	 */
    294       1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    295       1.1  wrstuden 
    296       1.1  wrstuden 	/*
    297       1.1  wrstuden 	 * Maintain the illusion of call-by-value
    298       1.1  wrstuden 	 * by restoring vnodes in the argument structure
    299       1.1  wrstuden 	 * to their original value.
    300       1.1  wrstuden 	 */
    301       1.1  wrstuden 	reles = descp->vdesc_flags;
    302       1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    303       1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    304       1.1  wrstuden 			break;   /* bail out at end of list */
    305       1.1  wrstuden 		if (old_vps[i]) {
    306       1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    307       1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    308       1.1  wrstuden 				vrele(*(vps_p[i]));
    309       1.1  wrstuden 		}
    310       1.1  wrstuden 	}
    311       1.1  wrstuden 
    312       1.1  wrstuden 	/*
    313       1.1  wrstuden 	 * Map the possible out-going vpp
    314       1.1  wrstuden 	 * (Assumes that the lower layer always returns
    315       1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    316       1.1  wrstuden 	 */
    317      1.47     rmind 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    318       1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    319      1.20      yamt 				 descp->vdesc_vpp_offset, ap);
    320       1.1  wrstuden 		/*
    321      1.52   hannken 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
    322      1.52   hannken 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
    323       1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    324      1.52   hannken 		 * So all the calls which get us here have a unlocked vpp. :-)
    325       1.1  wrstuden 		 */
    326      1.33    dyoung 		error = layer_node_create(mp, **vppp, *vppp);
    327      1.19      yamt 		if (error) {
    328      1.52   hannken 			vrele(**vppp);
    329      1.19      yamt 			**vppp = NULL;
    330      1.19      yamt 		}
    331       1.1  wrstuden 	}
    332      1.42     rmind 	return error;
    333       1.1  wrstuden }
    334       1.1  wrstuden 
    335       1.1  wrstuden /*
    336       1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    337       1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    338       1.1  wrstuden  * if this layer is mounted read-only.
    339       1.1  wrstuden  */
    340       1.1  wrstuden int
    341      1.38       dsl layer_lookup(void *v)
    342       1.1  wrstuden {
    343      1.54   hannken 	struct vop_lookup_v2_args /* {
    344       1.1  wrstuden 		struct vnodeop_desc *a_desc;
    345       1.1  wrstuden 		struct vnode * a_dvp;
    346       1.1  wrstuden 		struct vnode ** a_vpp;
    347       1.1  wrstuden 		struct componentname * a_cnp;
    348       1.1  wrstuden 	} */ *ap = v;
    349       1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    350      1.29       chs 	struct vnode *dvp, *lvp, *ldvp;
    351      1.42     rmind 	int error, flags = cnp->cn_flags;
    352       1.1  wrstuden 
    353       1.1  wrstuden 	dvp = ap->a_dvp;
    354       1.1  wrstuden 
    355       1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    356      1.51  dholland 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    357      1.51  dholland 		*ap->a_vpp = NULL;
    358      1.42     rmind 		return EROFS;
    359      1.51  dholland 	}
    360       1.1  wrstuden 
    361       1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    362       1.1  wrstuden 	ap->a_dvp = ldvp;
    363       1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    364      1.29       chs 	lvp = *ap->a_vpp;
    365      1.18      yamt 	*ap->a_vpp = NULL;
    366       1.1  wrstuden 
    367       1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    368       1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    369       1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    370       1.1  wrstuden 		error = EROFS;
    371      1.29       chs 
    372       1.1  wrstuden 	/*
    373      1.24     perry 	 * We must do the same locking and unlocking at this layer as
    374      1.29       chs 	 * is done in the layers below us.
    375       1.1  wrstuden 	 */
    376      1.29       chs 	if (ldvp == lvp) {
    377       1.1  wrstuden 		/*
    378      1.36  dholland 		 * Got the same object back, because we looked up ".",
    379      1.36  dholland 		 * or ".." in the root node of a mount point.
    380      1.36  dholland 		 * So we make another reference to dvp and return it.
    381       1.1  wrstuden 		 */
    382      1.39     pooka 		vref(dvp);
    383       1.1  wrstuden 		*ap->a_vpp = dvp;
    384      1.29       chs 		vrele(lvp);
    385      1.29       chs 	} else if (lvp != NULL) {
    386      1.54   hannken 		/* Note: dvp and ldvp are both locked. */
    387      1.29       chs 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    388      1.19      yamt 		if (error) {
    389      1.54   hannken 			vrele(lvp);
    390      1.19      yamt 		}
    391       1.1  wrstuden 	}
    392      1.42     rmind 	return error;
    393       1.1  wrstuden }
    394       1.1  wrstuden 
    395       1.1  wrstuden /*
    396       1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    397       1.1  wrstuden  */
    398       1.1  wrstuden int
    399      1.38       dsl layer_setattr(void *v)
    400       1.1  wrstuden {
    401       1.1  wrstuden 	struct vop_setattr_args /* {
    402       1.1  wrstuden 		struct vnodeop_desc *a_desc;
    403       1.1  wrstuden 		struct vnode *a_vp;
    404       1.1  wrstuden 		struct vattr *a_vap;
    405      1.27      elad 		kauth_cred_t a_cred;
    406      1.26  christos 		struct lwp *a_l;
    407       1.1  wrstuden 	} */ *ap = v;
    408       1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    409       1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    410       1.1  wrstuden 
    411       1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    412       1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    413       1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    414       1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    415      1.42     rmind 		return EROFS;
    416       1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    417       1.1  wrstuden  		switch (vp->v_type) {
    418       1.1  wrstuden  		case VDIR:
    419      1.42     rmind  			return EISDIR;
    420       1.1  wrstuden  		case VCHR:
    421       1.1  wrstuden  		case VBLK:
    422       1.1  wrstuden  		case VSOCK:
    423       1.1  wrstuden  		case VFIFO:
    424      1.42     rmind 			return 0;
    425       1.1  wrstuden 		case VREG:
    426       1.1  wrstuden 		case VLNK:
    427       1.1  wrstuden  		default:
    428       1.1  wrstuden 			/*
    429       1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    430       1.1  wrstuden 			 * mounted read-only.
    431       1.1  wrstuden 			 */
    432       1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    433      1.42     rmind 				return EROFS;
    434       1.1  wrstuden 		}
    435       1.1  wrstuden 	}
    436      1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    437       1.1  wrstuden }
    438       1.1  wrstuden 
    439       1.1  wrstuden /*
    440       1.1  wrstuden  *  We handle getattr only to change the fsid.
    441       1.1  wrstuden  */
    442       1.1  wrstuden int
    443      1.38       dsl layer_getattr(void *v)
    444       1.1  wrstuden {
    445       1.1  wrstuden 	struct vop_getattr_args /* {
    446       1.1  wrstuden 		struct vnode *a_vp;
    447       1.1  wrstuden 		struct vattr *a_vap;
    448      1.27      elad 		kauth_cred_t a_cred;
    449      1.26  christos 		struct lwp *a_l;
    450       1.1  wrstuden 	} */ *ap = v;
    451       1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    452       1.1  wrstuden 	int error;
    453       1.1  wrstuden 
    454      1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    455      1.42     rmind 	if (error) {
    456      1.42     rmind 		return error;
    457      1.42     rmind 	}
    458       1.1  wrstuden 	/* Requires that arguments be restored. */
    459      1.15  christos 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    460      1.42     rmind 	return 0;
    461       1.1  wrstuden }
    462       1.1  wrstuden 
    463       1.1  wrstuden int
    464      1.38       dsl layer_access(void *v)
    465       1.1  wrstuden {
    466       1.1  wrstuden 	struct vop_access_args /* {
    467       1.1  wrstuden 		struct vnode *a_vp;
    468       1.1  wrstuden 		int  a_mode;
    469      1.27      elad 		kauth_cred_t a_cred;
    470      1.26  christos 		struct lwp *a_l;
    471       1.1  wrstuden 	} */ *ap = v;
    472       1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    473       1.1  wrstuden 	mode_t mode = ap->a_mode;
    474       1.1  wrstuden 
    475       1.1  wrstuden 	/*
    476       1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    477       1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    478       1.1  wrstuden 	 * character device resident on the file system.
    479       1.1  wrstuden 	 */
    480       1.1  wrstuden 	if (mode & VWRITE) {
    481       1.1  wrstuden 		switch (vp->v_type) {
    482       1.1  wrstuden 		case VDIR:
    483       1.1  wrstuden 		case VLNK:
    484       1.1  wrstuden 		case VREG:
    485       1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    486      1.42     rmind 				return EROFS;
    487       1.1  wrstuden 			break;
    488       1.1  wrstuden 		default:
    489       1.1  wrstuden 			break;
    490       1.1  wrstuden 		}
    491       1.1  wrstuden 	}
    492      1.42     rmind 	return LAYERFS_DO_BYPASS(vp, ap);
    493       1.1  wrstuden }
    494       1.1  wrstuden 
    495       1.1  wrstuden /*
    496  1.58.4.2     skrll  * We must handle open to be able to catch MNT_NODEV and friends
    497  1.58.4.2     skrll  * and increment the lower v_writecount.
    498       1.1  wrstuden  */
    499       1.1  wrstuden int
    500      1.38       dsl layer_open(void *v)
    501       1.1  wrstuden {
    502      1.42     rmind 	struct vop_open_args /* {
    503      1.42     rmind 		const struct vnodeop_desc *a_desc;
    504      1.42     rmind 		struct vnode *a_vp;
    505      1.42     rmind 		int a_mode;
    506      1.42     rmind 		kauth_cred_t a_cred;
    507      1.42     rmind 	} */ *ap = v;
    508       1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    509  1.58.4.2     skrll 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    510  1.58.4.2     skrll 	int error;
    511       1.1  wrstuden 
    512  1.58.4.2     skrll 	if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
    513       1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    514       1.1  wrstuden 		return ENXIO;
    515       1.1  wrstuden 
    516  1.58.4.2     skrll 	error = LAYERFS_DO_BYPASS(vp, ap);
    517  1.58.4.2     skrll 	if (error == 0 && (ap->a_mode & FWRITE)) {
    518  1.58.4.2     skrll 		mutex_enter(lvp->v_interlock);
    519  1.58.4.2     skrll 		lvp->v_writecount++;
    520  1.58.4.2     skrll 		mutex_exit(lvp->v_interlock);
    521  1.58.4.2     skrll 	}
    522  1.58.4.2     skrll 	return error;
    523  1.58.4.2     skrll }
    524  1.58.4.2     skrll 
    525  1.58.4.2     skrll /*
    526  1.58.4.2     skrll  * We must handle close to decrement the lower v_writecount.
    527  1.58.4.2     skrll  */
    528  1.58.4.2     skrll int
    529  1.58.4.2     skrll layer_close(void *v)
    530  1.58.4.2     skrll {
    531  1.58.4.2     skrll 	struct vop_close_args /* {
    532  1.58.4.2     skrll 		const struct vnodeop_desc *a_desc;
    533  1.58.4.2     skrll 		struct vnode *a_vp;
    534  1.58.4.2     skrll 		int a_fflag;
    535  1.58.4.2     skrll 		kauth_cred_t a_cred;
    536  1.58.4.2     skrll 	} */ *ap = v;
    537  1.58.4.2     skrll 	struct vnode *vp = ap->a_vp;
    538  1.58.4.2     skrll 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    539  1.58.4.2     skrll 
    540  1.58.4.2     skrll 	if ((ap->a_fflag & FWRITE)) {
    541  1.58.4.2     skrll 		mutex_enter(lvp->v_interlock);
    542  1.58.4.2     skrll 		KASSERT(lvp->v_writecount > 0);
    543  1.58.4.2     skrll 		lvp->v_writecount--;
    544  1.58.4.2     skrll 		mutex_exit(lvp->v_interlock);
    545  1.58.4.2     skrll 	}
    546       1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    547       1.1  wrstuden }
    548       1.1  wrstuden 
    549       1.1  wrstuden /*
    550       1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    551       1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    552      1.42     rmind  * reclaimed; otherwise, pass it through to the underlying layer.
    553       1.1  wrstuden  *
    554       1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    555       1.1  wrstuden  */
    556       1.1  wrstuden int
    557      1.38       dsl layer_fsync(void *v)
    558       1.1  wrstuden {
    559       1.1  wrstuden 	struct vop_fsync_args /* {
    560       1.1  wrstuden 		struct vnode *a_vp;
    561      1.27      elad 		kauth_cred_t a_cred;
    562       1.1  wrstuden 		int  a_flags;
    563       1.4      fvdl 		off_t offlo;
    564       1.4      fvdl 		off_t offhi;
    565      1.26  christos 		struct lwp *a_l;
    566       1.1  wrstuden 	} */ *ap = v;
    567      1.50   hannken 	int error;
    568       1.1  wrstuden 
    569       1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    570       1.1  wrstuden 		return 0;
    571       1.1  wrstuden 	}
    572      1.50   hannken 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    573      1.50   hannken 		error = spec_fsync(v);
    574      1.50   hannken 		if (error)
    575      1.50   hannken 			return error;
    576      1.50   hannken 	}
    577      1.42     rmind 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    578       1.1  wrstuden }
    579       1.1  wrstuden 
    580       1.1  wrstuden int
    581      1.38       dsl layer_inactive(void *v)
    582       1.1  wrstuden {
    583  1.58.4.3     skrll 	struct vop_inactive_v2_args /* {
    584       1.1  wrstuden 		struct vnode *a_vp;
    585      1.34        ad 		bool *a_recycle;
    586       1.1  wrstuden 	} */ *ap = v;
    587       1.5     enami 	struct vnode *vp = ap->a_vp;
    588       1.1  wrstuden 
    589       1.1  wrstuden 	/*
    590      1.44   hannken 	 * If we did a remove, don't cache the node.
    591      1.34        ad 	 */
    592      1.44   hannken 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    593      1.34        ad 
    594      1.34        ad 	/*
    595       1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    596       1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    597       1.1  wrstuden 	 * so that until then our layer_node is in the
    598       1.1  wrstuden 	 * cache and reusable.
    599       1.1  wrstuden 	 *
    600       1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    601       1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    602       1.1  wrstuden 	 * with capabilities (v_id)
    603       1.1  wrstuden 	 * like they do in the name lookup cache code.
    604       1.1  wrstuden 	 * That's too much work for now.
    605       1.1  wrstuden 	 */
    606  1.58.4.3     skrll 
    607      1.42     rmind 	return 0;
    608       1.1  wrstuden }
    609       1.1  wrstuden 
    610       1.1  wrstuden int
    611      1.38       dsl layer_remove(void *v)
    612      1.16  wrstuden {
    613  1.58.4.3     skrll 	struct vop_remove_v2_args /* {
    614  1.58.4.3     skrll 		struct vnode		*a_dvp;
    615      1.16  wrstuden 		struct vnode		*a_vp;
    616      1.16  wrstuden 		struct componentname	*a_cnp;
    617      1.16  wrstuden 	} */ *ap = v;
    618      1.42     rmind 	struct vnode *vp = ap->a_vp;
    619      1.42     rmind 	int error;
    620      1.16  wrstuden 
    621      1.16  wrstuden 	vref(vp);
    622      1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    623      1.42     rmind 	if (error == 0) {
    624      1.16  wrstuden 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    625      1.42     rmind 	}
    626      1.16  wrstuden 	vrele(vp);
    627      1.16  wrstuden 
    628      1.42     rmind 	return error;
    629      1.16  wrstuden }
    630      1.16  wrstuden 
    631      1.16  wrstuden int
    632      1.38       dsl layer_rename(void *v)
    633      1.17      yamt {
    634      1.17      yamt 	struct vop_rename_args  /* {
    635      1.17      yamt 		struct vnode		*a_fdvp;
    636      1.17      yamt 		struct vnode		*a_fvp;
    637      1.17      yamt 		struct componentname	*a_fcnp;
    638      1.17      yamt 		struct vnode		*a_tdvp;
    639      1.17      yamt 		struct vnode		*a_tvp;
    640      1.17      yamt 		struct componentname	*a_tcnp;
    641      1.17      yamt 	} */ *ap = v;
    642      1.42     rmind 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    643      1.17      yamt 	int error;
    644      1.17      yamt 
    645      1.17      yamt 	tvp = ap->a_tvp;
    646      1.17      yamt 	if (tvp) {
    647      1.17      yamt 		if (tvp->v_mount != fdvp->v_mount)
    648      1.17      yamt 			tvp = NULL;
    649      1.17      yamt 		else
    650      1.17      yamt 			vref(tvp);
    651      1.17      yamt 	}
    652      1.17      yamt 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    653      1.17      yamt 	if (tvp) {
    654      1.17      yamt 		if (error == 0)
    655      1.17      yamt 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    656      1.17      yamt 		vrele(tvp);
    657      1.17      yamt 	}
    658      1.42     rmind 	return error;
    659      1.17      yamt }
    660      1.17      yamt 
    661      1.17      yamt int
    662      1.38       dsl layer_rmdir(void *v)
    663      1.23   hannken {
    664  1.58.4.3     skrll 	struct vop_rmdir_v2_args /* {
    665      1.23   hannken 		struct vnode		*a_dvp;
    666      1.23   hannken 		struct vnode		*a_vp;
    667      1.23   hannken 		struct componentname	*a_cnp;
    668      1.23   hannken 	} */ *ap = v;
    669      1.23   hannken 	int		error;
    670      1.23   hannken 	struct vnode	*vp = ap->a_vp;
    671      1.23   hannken 
    672      1.23   hannken 	vref(vp);
    673      1.42     rmind 	error = LAYERFS_DO_BYPASS(vp, ap);
    674      1.42     rmind 	if (error == 0) {
    675      1.23   hannken 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    676      1.42     rmind 	}
    677      1.23   hannken 	vrele(vp);
    678      1.23   hannken 
    679      1.42     rmind 	return error;
    680      1.23   hannken }
    681      1.23   hannken 
    682      1.23   hannken int
    683      1.45   hannken layer_revoke(void *v)
    684      1.45   hannken {
    685      1.45   hannken         struct vop_revoke_args /* {
    686      1.45   hannken 		struct vnode *a_vp;
    687      1.45   hannken 		int a_flags;
    688      1.45   hannken 	} */ *ap = v;
    689      1.45   hannken 	struct vnode *vp = ap->a_vp;
    690      1.45   hannken 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    691      1.46   hannken 	int error;
    692      1.45   hannken 
    693      1.45   hannken 	/*
    694      1.45   hannken 	 * We will most likely end up in vclean which uses the v_usecount
    695      1.46   hannken 	 * to determine if a vnode is active.  Take an extra reference on
    696      1.46   hannken 	 * the lower vnode so it will always close and inactivate.
    697      1.45   hannken 	 */
    698      1.46   hannken 	vref(lvp);
    699      1.45   hannken 	error = LAYERFS_DO_BYPASS(vp, ap);
    700      1.46   hannken 	vrele(lvp);
    701      1.45   hannken 
    702      1.45   hannken 	return error;
    703      1.45   hannken }
    704      1.45   hannken 
    705      1.45   hannken int
    706      1.38       dsl layer_reclaim(void *v)
    707       1.1  wrstuden {
    708  1.58.4.3     skrll 	struct vop_reclaim_v2_args /* {
    709       1.1  wrstuden 		struct vnode *a_vp;
    710      1.26  christos 		struct lwp *a_l;
    711       1.1  wrstuden 	} */ *ap = v;
    712       1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    713       1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    714       1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    715       1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    716       1.1  wrstuden 
    717  1.58.4.3     skrll 	VOP_UNLOCK(vp);
    718  1.58.4.3     skrll 
    719       1.1  wrstuden 	/*
    720       1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    721       1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    722      1.34        ad 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    723       1.1  wrstuden 	 */
    724      1.42     rmind 	if (vp == lmp->layerm_rootvp) {
    725       1.1  wrstuden 		/*
    726       1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    727       1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    728       1.1  wrstuden 		 *
    729       1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    730       1.1  wrstuden 		 */
    731       1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    732       1.1  wrstuden 	}
    733  1.58.4.3     skrll 
    734  1.58.4.3     skrll 	mutex_enter(vp->v_interlock);
    735  1.58.4.3     skrll 	KASSERT(vp->v_interlock == lowervp->v_interlock);
    736  1.58.4.3     skrll 	lowervp->v_writecount -= vp->v_writecount;
    737  1.58.4.3     skrll 	mutex_exit(vp->v_interlock);
    738  1.58.4.3     skrll 
    739      1.42     rmind 	/* After this assignment, this node will not be re-used. */
    740       1.1  wrstuden 	xp->layer_lowervp = NULL;
    741      1.34        ad 	kmem_free(vp->v_data, lmp->layerm_size);
    742       1.1  wrstuden 	vp->v_data = NULL;
    743      1.29       chs 	vrele(lowervp);
    744      1.34        ad 
    745      1.42     rmind 	return 0;
    746       1.1  wrstuden }
    747       1.1  wrstuden 
    748       1.1  wrstuden /*
    749       1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    750       1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    751       1.1  wrstuden  * i/o. :-)
    752       1.1  wrstuden  */
    753       1.1  wrstuden int
    754      1.38       dsl layer_bmap(void *v)
    755       1.1  wrstuden {
    756       1.1  wrstuden 	struct vop_bmap_args /* {
    757       1.1  wrstuden 		struct vnode *a_vp;
    758       1.1  wrstuden 		daddr_t  a_bn;
    759       1.1  wrstuden 		struct vnode **a_vpp;
    760       1.1  wrstuden 		daddr_t *a_bnp;
    761       1.1  wrstuden 		int *a_runp;
    762       1.1  wrstuden 	} */ *ap = v;
    763       1.1  wrstuden 	struct vnode *vp;
    764       1.1  wrstuden 
    765      1.42     rmind 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    766      1.42     rmind 	ap->a_vp = vp;
    767       1.1  wrstuden 
    768      1.42     rmind 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    769       1.1  wrstuden }
    770       1.1  wrstuden 
    771       1.1  wrstuden int
    772      1.38       dsl layer_print(void *v)
    773       1.1  wrstuden {
    774       1.1  wrstuden 	struct vop_print_args /* {
    775       1.1  wrstuden 		struct vnode *a_vp;
    776       1.1  wrstuden 	} */ *ap = v;
    777       1.3  augustss 	struct vnode *vp = ap->a_vp;
    778       1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    779      1.42     rmind 	return 0;
    780       1.1  wrstuden }
    781       1.1  wrstuden 
    782      1.10       chs int
    783      1.38       dsl layer_getpages(void *v)
    784      1.10       chs {
    785      1.10       chs 	struct vop_getpages_args /* {
    786      1.10       chs 		struct vnode *a_vp;
    787      1.10       chs 		voff_t a_offset;
    788      1.10       chs 		struct vm_page **a_m;
    789      1.10       chs 		int *a_count;
    790      1.10       chs 		int a_centeridx;
    791      1.10       chs 		vm_prot_t a_access_type;
    792      1.10       chs 		int a_advice;
    793      1.10       chs 		int a_flags;
    794      1.10       chs 	} */ *ap = v;
    795      1.10       chs 	struct vnode *vp = ap->a_vp;
    796  1.58.4.3     skrll 	struct mount *mp = vp->v_mount;
    797  1.58.4.3     skrll 	int error;
    798      1.10       chs 
    799      1.48     rmind 	KASSERT(mutex_owned(vp->v_interlock));
    800      1.10       chs 
    801      1.10       chs 	if (ap->a_flags & PGO_LOCKED) {
    802      1.10       chs 		return EBUSY;
    803      1.10       chs 	}
    804      1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    805      1.48     rmind 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    806      1.48     rmind 
    807      1.48     rmind 	/* Just pass the request on to the underlying layer. */
    808  1.58.4.3     skrll 	mutex_exit(vp->v_interlock);
    809  1.58.4.3     skrll 	fstrans_start(mp);
    810  1.58.4.3     skrll 	mutex_enter(vp->v_interlock);
    811  1.58.4.3     skrll 	if (mp == vp->v_mount) {
    812  1.58.4.3     skrll 		/* Will release the interlock. */
    813  1.58.4.3     skrll 		error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    814  1.58.4.3     skrll 	} else {
    815  1.58.4.3     skrll 		mutex_exit(vp->v_interlock);
    816  1.58.4.3     skrll 		error = ENOENT;
    817  1.58.4.3     skrll 	}
    818  1.58.4.3     skrll 	fstrans_done(mp);
    819  1.58.4.3     skrll 
    820  1.58.4.3     skrll 	return error;
    821      1.10       chs }
    822      1.10       chs 
    823      1.10       chs int
    824      1.38       dsl layer_putpages(void *v)
    825      1.10       chs {
    826      1.10       chs 	struct vop_putpages_args /* {
    827      1.10       chs 		struct vnode *a_vp;
    828      1.10       chs 		voff_t a_offlo;
    829      1.10       chs 		voff_t a_offhi;
    830      1.10       chs 		int a_flags;
    831      1.10       chs 	} */ *ap = v;
    832      1.10       chs 	struct vnode *vp = ap->a_vp;
    833      1.10       chs 
    834      1.48     rmind 	KASSERT(mutex_owned(vp->v_interlock));
    835      1.10       chs 
    836      1.10       chs 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    837      1.48     rmind 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    838      1.48     rmind 
    839      1.30       chs 	if (ap->a_flags & PGO_RECLAIM) {
    840      1.48     rmind 		mutex_exit(vp->v_interlock);
    841      1.30       chs 		return 0;
    842      1.30       chs 	}
    843      1.48     rmind 
    844      1.48     rmind 	/* Just pass the request on to the underlying layer. */
    845      1.48     rmind 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    846       1.1  wrstuden }
    847