Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.6
      1  1.6       wiz /*	$NetBSD: layer_vnops.c,v 1.6 2001/06/07 13:32:47 wiz Exp $	*/
      2  1.1  wrstuden 
      3  1.1  wrstuden /*
      4  1.1  wrstuden  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  1.1  wrstuden  * All rights reserved.
      6  1.1  wrstuden  *
      7  1.1  wrstuden  * This software was written by William Studenmund of the
      8  1.6       wiz  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  1.1  wrstuden  *
     10  1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     11  1.1  wrstuden  * modification, are permitted provided that the following conditions
     12  1.1  wrstuden  * are met:
     13  1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     14  1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     15  1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     18  1.2     soren  * 3. Neither the name of the National Aeronautics & Space Administration
     19  1.1  wrstuden  *    nor the names of its contributors may be used to endorse or promote
     20  1.1  wrstuden  *    products derived from this software without specific prior written
     21  1.1  wrstuden  *    permission.
     22  1.1  wrstuden  *
     23  1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  1.1  wrstuden  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  1.1  wrstuden  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  1.1  wrstuden  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  1.1  wrstuden  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  1.1  wrstuden  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.1  wrstuden  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.1  wrstuden  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.1  wrstuden  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  1.1  wrstuden  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  1.1  wrstuden  * POSSIBILITY OF SUCH DAMAGE.
     34  1.1  wrstuden  */
     35  1.1  wrstuden /*
     36  1.1  wrstuden  * Copyright (c) 1992, 1993
     37  1.1  wrstuden  *	The Regents of the University of California.  All rights reserved.
     38  1.1  wrstuden  *
     39  1.1  wrstuden  * This code is derived from software contributed to Berkeley by
     40  1.1  wrstuden  * John Heidemann of the UCLA Ficus project.
     41  1.1  wrstuden  *
     42  1.1  wrstuden  * Redistribution and use in source and binary forms, with or without
     43  1.1  wrstuden  * modification, are permitted provided that the following conditions
     44  1.1  wrstuden  * are met:
     45  1.1  wrstuden  * 1. Redistributions of source code must retain the above copyright
     46  1.1  wrstuden  *    notice, this list of conditions and the following disclaimer.
     47  1.1  wrstuden  * 2. Redistributions in binary form must reproduce the above copyright
     48  1.1  wrstuden  *    notice, this list of conditions and the following disclaimer in the
     49  1.1  wrstuden  *    documentation and/or other materials provided with the distribution.
     50  1.1  wrstuden  * 3. All advertising materials mentioning features or use of this software
     51  1.1  wrstuden  *    must display the following acknowledgement:
     52  1.1  wrstuden  *	This product includes software developed by the University of
     53  1.1  wrstuden  *	California, Berkeley and its contributors.
     54  1.1  wrstuden  * 4. Neither the name of the University nor the names of its contributors
     55  1.1  wrstuden  *    may be used to endorse or promote products derived from this software
     56  1.1  wrstuden  *    without specific prior written permission.
     57  1.1  wrstuden  *
     58  1.1  wrstuden  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  1.1  wrstuden  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  1.1  wrstuden  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  1.1  wrstuden  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  1.1  wrstuden  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  1.1  wrstuden  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  1.1  wrstuden  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  1.1  wrstuden  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  1.1  wrstuden  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  1.1  wrstuden  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  1.1  wrstuden  * SUCH DAMAGE.
     69  1.1  wrstuden  *
     70  1.1  wrstuden  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     71  1.1  wrstuden  *
     72  1.1  wrstuden  * Ancestors:
     73  1.1  wrstuden  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     74  1.6       wiz  *	$Id: layer_vnops.c,v 1.6 2001/06/07 13:32:47 wiz Exp $
     75  1.1  wrstuden  *	...and...
     76  1.1  wrstuden  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     77  1.1  wrstuden  */
     78  1.1  wrstuden 
     79  1.1  wrstuden /*
     80  1.1  wrstuden  * Null Layer vnode routines.
     81  1.1  wrstuden  *
     82  1.1  wrstuden  * (See mount_null(8) for more information.)
     83  1.1  wrstuden  *
     84  1.1  wrstuden  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     85  1.1  wrstuden  * the core implimentation of the null file system and most other stacked
     86  1.1  wrstuden  * fs's. The description below refers to the null file system, but the
     87  1.1  wrstuden  * services provided by the layer* files are useful for all layered fs's.
     88  1.1  wrstuden  *
     89  1.1  wrstuden  * The null layer duplicates a portion of the file system
     90  1.1  wrstuden  * name space under a new name.  In this respect, it is
     91  1.1  wrstuden  * similar to the loopback file system.  It differs from
     92  1.1  wrstuden  * the loopback fs in two respects:  it is implemented using
     93  1.1  wrstuden  * a stackable layers techniques, and it's "null-node"s stack above
     94  1.1  wrstuden  * all lower-layer vnodes, not just over directory vnodes.
     95  1.1  wrstuden  *
     96  1.1  wrstuden  * The null layer has two purposes.  First, it serves as a demonstration
     97  1.1  wrstuden  * of layering by proving a layer which does nothing.  (It actually
     98  1.1  wrstuden  * does everything the loopback file system does, which is slightly
     99  1.1  wrstuden  * more than nothing.)  Second, the null layer can serve as a prototype
    100  1.1  wrstuden  * layer.  Since it provides all necessary layer framework,
    101  1.1  wrstuden  * new file system layers can be created very easily be starting
    102  1.1  wrstuden  * with a null layer.
    103  1.1  wrstuden  *
    104  1.1  wrstuden  * The remainder of the man page examines the null layer as a basis
    105  1.1  wrstuden  * for constructing new layers.
    106  1.1  wrstuden  *
    107  1.1  wrstuden  *
    108  1.1  wrstuden  * INSTANTIATING NEW NULL LAYERS
    109  1.1  wrstuden  *
    110  1.1  wrstuden  * New null layers are created with mount_null(8).
    111  1.1  wrstuden  * Mount_null(8) takes two arguments, the pathname
    112  1.1  wrstuden  * of the lower vfs (target-pn) and the pathname where the null
    113  1.1  wrstuden  * layer will appear in the namespace (alias-pn).  After
    114  1.1  wrstuden  * the null layer is put into place, the contents
    115  1.1  wrstuden  * of target-pn subtree will be aliased under alias-pn.
    116  1.1  wrstuden  *
    117  1.1  wrstuden  * It is conceivable that other overlay filesystems will take different
    118  1.1  wrstuden  * parameters. For instance, data migration or access controll layers might
    119  1.1  wrstuden  * only take one pathname which will serve both as the target-pn and
    120  1.1  wrstuden  * alias-pn described above.
    121  1.1  wrstuden  *
    122  1.1  wrstuden  *
    123  1.1  wrstuden  * OPERATION OF A NULL LAYER
    124  1.1  wrstuden  *
    125  1.1  wrstuden  * The null layer is the minimum file system layer,
    126  1.1  wrstuden  * simply bypassing all possible operations to the lower layer
    127  1.1  wrstuden  * for processing there.  The majority of its activity centers
    128  1.1  wrstuden  * on the bypass routine, though which nearly all vnode operations
    129  1.1  wrstuden  * pass.
    130  1.1  wrstuden  *
    131  1.1  wrstuden  * The bypass routine accepts arbitrary vnode operations for
    132  1.1  wrstuden  * handling by the lower layer.  It begins by examing vnode
    133  1.1  wrstuden  * operation arguments and replacing any layered nodes by their
    134  1.1  wrstuden  * lower-layer equivlants.  It then invokes the operation
    135  1.1  wrstuden  * on the lower layer.  Finally, it replaces the layered nodes
    136  1.1  wrstuden  * in the arguments and, if a vnode is return by the operation,
    137  1.1  wrstuden  * stacks a layered node on top of the returned vnode.
    138  1.1  wrstuden  *
    139  1.1  wrstuden  * The bypass routine in this file, layer_bypass(), is suitable for use
    140  1.1  wrstuden  * by many different layered filesystems. It can be used by multiple
    141  1.1  wrstuden  * filesystems simultaneously. Alternatively, a layered fs may provide
    142  1.1  wrstuden  * its own bypass routine, in which case layer_bypass() should be used as
    143  1.1  wrstuden  * a model. For instance, the main functionality provided by umapfs, the user
    144  1.1  wrstuden  * identity mapping file system, is handled by a custom bypass routine.
    145  1.1  wrstuden  *
    146  1.1  wrstuden  * Typically a layered fs registers its selected bypass routine as the
    147  1.1  wrstuden  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    148  1.1  wrstuden  * the filesystem must store the bypass entry point in the layerm_bypass
    149  1.1  wrstuden  * field of struct layer_mount. All other layer routines in this file will
    150  1.1  wrstuden  * use the layerm_bypass routine.
    151  1.1  wrstuden  *
    152  1.1  wrstuden  * Although the bypass routine handles most operations outright, a number
    153  1.1  wrstuden  * of operations are special cased, and handled by the layered fs. One
    154  1.1  wrstuden  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    155  1.1  wrstuden  * layer_fsync, perform layer-specific manipulation in addition to calling
    156  1.1  wrstuden  * the bypass routine. The other group
    157  1.1  wrstuden 
    158  1.1  wrstuden  * Although bypass handles most operations, vop_getattr, vop_lock,
    159  1.1  wrstuden  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    160  1.1  wrstuden  * bypassed. Vop_getattr must change the fsid being returned.
    161  1.1  wrstuden  * Vop_lock and vop_unlock must handle any locking for the
    162  1.1  wrstuden  * current vnode as well as pass the lock request down.
    163  1.1  wrstuden  * Vop_inactive and vop_reclaim are not bypassed so that
    164  1.1  wrstuden  * they can handle freeing null-layer specific data. Vop_print
    165  1.1  wrstuden  * is not bypassed to avoid excessive debugging information.
    166  1.1  wrstuden  * Also, certain vnode operations change the locking state within
    167  1.1  wrstuden  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    168  1.1  wrstuden  * and symlink). Ideally these operations should not change the
    169  1.1  wrstuden  * lock state, but should be changed to let the caller of the
    170  1.1  wrstuden  * function unlock them. Otherwise all intermediate vnode layers
    171  1.1  wrstuden  * (such as union, umapfs, etc) must catch these functions to do
    172  1.1  wrstuden  * the necessary locking at their layer.
    173  1.1  wrstuden  *
    174  1.1  wrstuden  *
    175  1.1  wrstuden  * INSTANTIATING VNODE STACKS
    176  1.1  wrstuden  *
    177  1.1  wrstuden  * Mounting associates the null layer with a lower layer,
    178  1.1  wrstuden  * effect stacking two VFSes.  Vnode stacks are instead
    179  1.1  wrstuden  * created on demand as files are accessed.
    180  1.1  wrstuden  *
    181  1.1  wrstuden  * The initial mount creates a single vnode stack for the
    182  1.1  wrstuden  * root of the new null layer.  All other vnode stacks
    183  1.1  wrstuden  * are created as a result of vnode operations on
    184  1.1  wrstuden  * this or other null vnode stacks.
    185  1.1  wrstuden  *
    186  1.1  wrstuden  * New vnode stacks come into existance as a result of
    187  1.1  wrstuden  * an operation which returns a vnode.
    188  1.1  wrstuden  * The bypass routine stacks a null-node above the new
    189  1.1  wrstuden  * vnode before returning it to the caller.
    190  1.1  wrstuden  *
    191  1.1  wrstuden  * For example, imagine mounting a null layer with
    192  1.1  wrstuden  * "mount_null /usr/include /dev/layer/null".
    193  1.1  wrstuden  * Changing directory to /dev/layer/null will assign
    194  1.1  wrstuden  * the root null-node (which was created when the null layer was mounted).
    195  1.1  wrstuden  * Now consider opening "sys".  A vop_lookup would be
    196  1.1  wrstuden  * done on the root null-node.  This operation would bypass through
    197  1.1  wrstuden  * to the lower layer which would return a vnode representing
    198  1.1  wrstuden  * the UFS "sys".  layer_bypass then builds a null-node
    199  1.1  wrstuden  * aliasing the UFS "sys" and returns this to the caller.
    200  1.1  wrstuden  * Later operations on the null-node "sys" will repeat this
    201  1.1  wrstuden  * process when constructing other vnode stacks.
    202  1.1  wrstuden  *
    203  1.1  wrstuden  *
    204  1.1  wrstuden  * CREATING OTHER FILE SYSTEM LAYERS
    205  1.1  wrstuden  *
    206  1.1  wrstuden  * One of the easiest ways to construct new file system layers is to make
    207  1.1  wrstuden  * a copy of the null layer, rename all files and variables, and
    208  1.1  wrstuden  * then begin modifing the copy.  Sed can be used to easily rename
    209  1.1  wrstuden  * all variables.
    210  1.1  wrstuden  *
    211  1.1  wrstuden  * The umap layer is an example of a layer descended from the
    212  1.1  wrstuden  * null layer.
    213  1.1  wrstuden  *
    214  1.1  wrstuden  *
    215  1.1  wrstuden  * INVOKING OPERATIONS ON LOWER LAYERS
    216  1.1  wrstuden  *
    217  1.1  wrstuden  * There are two techniques to invoke operations on a lower layer
    218  1.1  wrstuden  * when the operation cannot be completely bypassed.  Each method
    219  1.1  wrstuden  * is appropriate in different situations.  In both cases,
    220  1.1  wrstuden  * it is the responsibility of the aliasing layer to make
    221  1.1  wrstuden  * the operation arguments "correct" for the lower layer
    222  1.1  wrstuden  * by mapping an vnode arguments to the lower layer.
    223  1.1  wrstuden  *
    224  1.1  wrstuden  * The first approach is to call the aliasing layer's bypass routine.
    225  1.1  wrstuden  * This method is most suitable when you wish to invoke the operation
    226  1.1  wrstuden  * currently being hanldled on the lower layer.  It has the advantage
    227  1.1  wrstuden  * that the bypass routine already must do argument mapping.
    228  1.1  wrstuden  * An example of this is null_getattrs in the null layer.
    229  1.1  wrstuden  *
    230  1.1  wrstuden  * A second approach is to directly invoked vnode operations on
    231  1.1  wrstuden  * the lower layer with the VOP_OPERATIONNAME interface.
    232  1.1  wrstuden  * The advantage of this method is that it is easy to invoke
    233  1.1  wrstuden  * arbitrary operations on the lower layer.  The disadvantage
    234  1.1  wrstuden  * is that vnodes arguments must be manualy mapped.
    235  1.1  wrstuden  *
    236  1.1  wrstuden  */
    237  1.1  wrstuden 
    238  1.1  wrstuden #include <sys/param.h>
    239  1.1  wrstuden #include <sys/systm.h>
    240  1.1  wrstuden #include <sys/proc.h>
    241  1.1  wrstuden #include <sys/time.h>
    242  1.1  wrstuden #include <sys/types.h>
    243  1.1  wrstuden #include <sys/vnode.h>
    244  1.1  wrstuden #include <sys/mount.h>
    245  1.1  wrstuden #include <sys/namei.h>
    246  1.1  wrstuden #include <sys/malloc.h>
    247  1.1  wrstuden #include <sys/buf.h>
    248  1.1  wrstuden #include <miscfs/genfs/layer.h>
    249  1.1  wrstuden #include <miscfs/genfs/layer_extern.h>
    250  1.1  wrstuden #include <miscfs/genfs/genfs.h>
    251  1.1  wrstuden 
    252  1.1  wrstuden 
    253  1.1  wrstuden /*
    254  1.1  wrstuden  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    255  1.1  wrstuden  *		routine by John Heidemann.
    256  1.1  wrstuden  *	The new element for this version is that the whole nullfs
    257  1.1  wrstuden  * system gained the concept of locks on the lower node, and locks on
    258  1.1  wrstuden  * our nodes. When returning from a call to the lower layer, we may
    259  1.1  wrstuden  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    260  1.1  wrstuden  * macros provide this functionality.
    261  1.1  wrstuden  *    The 10-Apr-92 version was optimized for speed, throwing away some
    262  1.1  wrstuden  * safety checks.  It should still always work, but it's not as
    263  1.1  wrstuden  * robust to programmer errors.
    264  1.1  wrstuden  *    Define SAFETY to include some error checking code.
    265  1.1  wrstuden  *
    266  1.1  wrstuden  * In general, we map all vnodes going down and unmap them on the way back.
    267  1.1  wrstuden  *
    268  1.1  wrstuden  * Also, some BSD vnode operations have the side effect of vrele'ing
    269  1.1  wrstuden  * their arguments.  With stacking, the reference counts are held
    270  1.1  wrstuden  * by the upper node, not the lower one, so we must handle these
    271  1.1  wrstuden  * side-effects here.  This is not of concern in Sun-derived systems
    272  1.1  wrstuden  * since there are no such side-effects.
    273  1.1  wrstuden  *
    274  1.1  wrstuden  * New for the 08-June-99 version: we also handle operations which unlock
    275  1.1  wrstuden  * the passed-in node (typically they vput the node).
    276  1.1  wrstuden  *
    277  1.1  wrstuden  * This makes the following assumptions:
    278  1.1  wrstuden  * - only one returned vpp
    279  1.1  wrstuden  * - no INOUT vpp's (Sun's vop_open has one of these)
    280  1.1  wrstuden  * - the vnode operation vector of the first vnode should be used
    281  1.1  wrstuden  *   to determine what implementation of the op should be invoked
    282  1.1  wrstuden  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    283  1.1  wrstuden  *   problems on rmdir'ing mount points and renaming?)
    284  1.1  wrstuden  */
    285  1.1  wrstuden int
    286  1.1  wrstuden layer_bypass(v)
    287  1.1  wrstuden 	void *v;
    288  1.1  wrstuden {
    289  1.1  wrstuden 	struct vop_generic_args /* {
    290  1.1  wrstuden 		struct vnodeop_desc *a_desc;
    291  1.1  wrstuden 		<other random data follows, presumably>
    292  1.1  wrstuden 	} */ *ap = v;
    293  1.1  wrstuden 	int (**our_vnodeop_p) __P((void *));
    294  1.3  augustss 	struct vnode **this_vp_p;
    295  1.1  wrstuden 	int error, error1;
    296  1.1  wrstuden 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    297  1.1  wrstuden 	struct vnode **vps_p[VDESC_MAX_VPS];
    298  1.1  wrstuden 	struct vnode ***vppp;
    299  1.1  wrstuden 	struct vnodeop_desc *descp = ap->a_desc;
    300  1.1  wrstuden 	int reles, i, flags;
    301  1.1  wrstuden 
    302  1.1  wrstuden #ifdef SAFETY
    303  1.1  wrstuden 	/*
    304  1.1  wrstuden 	 * We require at least one vp.
    305  1.1  wrstuden 	 */
    306  1.1  wrstuden 	if (descp->vdesc_vp_offsets == NULL ||
    307  1.1  wrstuden 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    308  1.1  wrstuden 		panic ("layer_bypass: no vp's in map.\n");
    309  1.1  wrstuden #endif
    310  1.1  wrstuden 
    311  1.1  wrstuden 	vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
    312  1.1  wrstuden 	vp0 = *vps_p[0];
    313  1.1  wrstuden 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    314  1.1  wrstuden 	our_vnodeop_p = vp0->v_op;
    315  1.1  wrstuden 
    316  1.1  wrstuden 	if (flags & LAYERFS_MBYPASSDEBUG)
    317  1.1  wrstuden 		printf ("layer_bypass: %s\n", descp->vdesc_name);
    318  1.1  wrstuden 
    319  1.1  wrstuden 	/*
    320  1.1  wrstuden 	 * Map the vnodes going in.
    321  1.1  wrstuden 	 * Later, we'll invoke the operation based on
    322  1.1  wrstuden 	 * the first mapped vnode's operation vector.
    323  1.1  wrstuden 	 */
    324  1.1  wrstuden 	reles = descp->vdesc_flags;
    325  1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    326  1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    327  1.1  wrstuden 			break;   /* bail out at end of list */
    328  1.1  wrstuden 		vps_p[i] = this_vp_p =
    329  1.1  wrstuden 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    330  1.1  wrstuden 		/*
    331  1.1  wrstuden 		 * We're not guaranteed that any but the first vnode
    332  1.1  wrstuden 		 * are of our type.  Check for and don't map any
    333  1.1  wrstuden 		 * that aren't.  (We must always map first vp or vclean fails.)
    334  1.1  wrstuden 		 */
    335  1.1  wrstuden 		if (i && (*this_vp_p == NULL ||
    336  1.1  wrstuden 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    337  1.1  wrstuden 			old_vps[i] = NULL;
    338  1.1  wrstuden 		} else {
    339  1.1  wrstuden 			old_vps[i] = *this_vp_p;
    340  1.1  wrstuden 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    341  1.1  wrstuden 			/*
    342  1.1  wrstuden 			 * XXX - Several operations have the side effect
    343  1.1  wrstuden 			 * of vrele'ing their vp's.  We must account for
    344  1.1  wrstuden 			 * that.  (This should go away in the future.)
    345  1.1  wrstuden 			 */
    346  1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    347  1.1  wrstuden 				VREF(*this_vp_p);
    348  1.1  wrstuden 		}
    349  1.1  wrstuden 
    350  1.1  wrstuden 	}
    351  1.1  wrstuden 
    352  1.1  wrstuden 	/*
    353  1.1  wrstuden 	 * Call the operation on the lower layer
    354  1.1  wrstuden 	 * with the modified argument structure.
    355  1.1  wrstuden 	 */
    356  1.1  wrstuden 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    357  1.1  wrstuden 
    358  1.1  wrstuden 	/*
    359  1.1  wrstuden 	 * Maintain the illusion of call-by-value
    360  1.1  wrstuden 	 * by restoring vnodes in the argument structure
    361  1.1  wrstuden 	 * to their original value.
    362  1.1  wrstuden 	 */
    363  1.1  wrstuden 	reles = descp->vdesc_flags;
    364  1.1  wrstuden 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    365  1.1  wrstuden 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    366  1.1  wrstuden 			break;   /* bail out at end of list */
    367  1.1  wrstuden 		if (old_vps[i]) {
    368  1.1  wrstuden 			*(vps_p[i]) = old_vps[i];
    369  1.1  wrstuden 			if (reles & VDESC_VP0_WILLUNLOCK)
    370  1.1  wrstuden 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    371  1.1  wrstuden 			if (reles & VDESC_VP0_WILLRELE)
    372  1.1  wrstuden 				vrele(*(vps_p[i]));
    373  1.1  wrstuden 		}
    374  1.1  wrstuden 	}
    375  1.1  wrstuden 
    376  1.1  wrstuden 	/*
    377  1.1  wrstuden 	 * Map the possible out-going vpp
    378  1.1  wrstuden 	 * (Assumes that the lower layer always returns
    379  1.1  wrstuden 	 * a VREF'ed vpp unless it gets an error.)
    380  1.1  wrstuden 	 */
    381  1.1  wrstuden 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    382  1.1  wrstuden 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    383  1.1  wrstuden 	    !error) {
    384  1.1  wrstuden 		/*
    385  1.1  wrstuden 		 * XXX - even though some ops have vpp returned vp's,
    386  1.1  wrstuden 		 * several ops actually vrele this before returning.
    387  1.1  wrstuden 		 * We must avoid these ops.
    388  1.1  wrstuden 		 * (This should go away when these ops are regularized.)
    389  1.1  wrstuden 		 */
    390  1.1  wrstuden 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    391  1.1  wrstuden 			goto out;
    392  1.1  wrstuden 		vppp = VOPARG_OFFSETTO(struct vnode***,
    393  1.1  wrstuden 				 descp->vdesc_vpp_offset,ap);
    394  1.1  wrstuden 		/*
    395  1.1  wrstuden 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    396  1.1  wrstuden 		 * vop_mknod, and vop_symlink return vpp's. The latter
    397  1.1  wrstuden 		 * two are VPP_WILLRELE, so we won't get here, and vop_bmap
    398  1.1  wrstuden 		 * doesn't call bypass as the lower vpp is fine (we're just
    399  1.1  wrstuden 		 * going to do i/o on it). vop_loookup doesn't call bypass
    400  1.1  wrstuden 		 * as a lookup on "." would generate a locking error.
    401  1.1  wrstuden 		 * So all the calls which get us here have a locked vpp. :-)
    402  1.1  wrstuden 		 */
    403  1.1  wrstuden 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    404  1.1  wrstuden 	}
    405  1.1  wrstuden 
    406  1.1  wrstuden  out:
    407  1.1  wrstuden 	return (error);
    408  1.1  wrstuden }
    409  1.1  wrstuden 
    410  1.1  wrstuden /*
    411  1.1  wrstuden  * We have to carry on the locking protocol on the layer vnodes
    412  1.1  wrstuden  * as we progress through the tree. We also have to enforce read-only
    413  1.1  wrstuden  * if this layer is mounted read-only.
    414  1.1  wrstuden  */
    415  1.1  wrstuden int
    416  1.1  wrstuden layer_lookup(v)
    417  1.1  wrstuden 	void *v;
    418  1.1  wrstuden {
    419  1.1  wrstuden 	struct vop_lookup_args /* {
    420  1.1  wrstuden 		struct vnodeop_desc *a_desc;
    421  1.1  wrstuden 		struct vnode * a_dvp;
    422  1.1  wrstuden 		struct vnode ** a_vpp;
    423  1.1  wrstuden 		struct componentname * a_cnp;
    424  1.1  wrstuden 	} */ *ap = v;
    425  1.1  wrstuden 	struct componentname *cnp = ap->a_cnp;
    426  1.1  wrstuden 	int flags = cnp->cn_flags;
    427  1.1  wrstuden 	struct vnode *dvp, *vp, *ldvp;
    428  1.1  wrstuden 	int error, r;
    429  1.1  wrstuden 
    430  1.1  wrstuden 	dvp = ap->a_dvp;
    431  1.1  wrstuden 
    432  1.1  wrstuden 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    433  1.1  wrstuden 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    434  1.1  wrstuden 		return (EROFS);
    435  1.1  wrstuden 
    436  1.1  wrstuden 	ldvp = LAYERVPTOLOWERVP(dvp);
    437  1.1  wrstuden 	ap->a_dvp = ldvp;
    438  1.1  wrstuden 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    439  1.1  wrstuden 	vp = *ap->a_vpp;
    440  1.1  wrstuden 
    441  1.1  wrstuden 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    442  1.1  wrstuden 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    443  1.1  wrstuden 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    444  1.1  wrstuden 		error = EROFS;
    445  1.1  wrstuden 	/*
    446  1.1  wrstuden 	 * We must do the same locking and unlocking at this layer as
    447  1.1  wrstuden 	 * is done in the layers below us. It used to be we would try
    448  1.1  wrstuden 	 * to guess based on what was set with the flags and error codes.
    449  1.1  wrstuden 	 *
    450  1.1  wrstuden 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    451  1.1  wrstuden 	 * tell us if it released the parent vnode, and we adjust the
    452  1.1  wrstuden 	 * upper node accordingly. We can't just look at the lock states
    453  1.1  wrstuden 	 * of the lower nodes as someone else might have come along and
    454  1.1  wrstuden 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    455  1.1  wrstuden 	 */
    456  1.1  wrstuden 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    457  1.1  wrstuden 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    458  1.1  wrstuden 	}
    459  1.1  wrstuden 	if (ldvp == vp) {
    460  1.1  wrstuden 		/*
    461  1.1  wrstuden 		 * Did lookup on "." or ".." in the root node of a mount point.
    462  1.1  wrstuden 		 * So we return dvp after a VREF.
    463  1.1  wrstuden 		 */
    464  1.1  wrstuden 		*ap->a_vpp = dvp;
    465  1.1  wrstuden 		VREF(dvp);
    466  1.1  wrstuden 		vrele(vp);
    467  1.1  wrstuden 	} else if (vp != NULL) {
    468  1.1  wrstuden 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    469  1.1  wrstuden 	}
    470  1.1  wrstuden 	return (error);
    471  1.1  wrstuden }
    472  1.1  wrstuden 
    473  1.1  wrstuden /*
    474  1.1  wrstuden  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    475  1.1  wrstuden  */
    476  1.1  wrstuden int
    477  1.1  wrstuden layer_setattr(v)
    478  1.1  wrstuden 	void *v;
    479  1.1  wrstuden {
    480  1.1  wrstuden 	struct vop_setattr_args /* {
    481  1.1  wrstuden 		struct vnodeop_desc *a_desc;
    482  1.1  wrstuden 		struct vnode *a_vp;
    483  1.1  wrstuden 		struct vattr *a_vap;
    484  1.1  wrstuden 		struct ucred *a_cred;
    485  1.1  wrstuden 		struct proc *a_p;
    486  1.1  wrstuden 	} */ *ap = v;
    487  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    488  1.1  wrstuden 	struct vattr *vap = ap->a_vap;
    489  1.1  wrstuden 
    490  1.1  wrstuden   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    491  1.1  wrstuden 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    492  1.1  wrstuden 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    493  1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    494  1.1  wrstuden 		return (EROFS);
    495  1.1  wrstuden 	if (vap->va_size != VNOVAL) {
    496  1.1  wrstuden  		switch (vp->v_type) {
    497  1.1  wrstuden  		case VDIR:
    498  1.1  wrstuden  			return (EISDIR);
    499  1.1  wrstuden  		case VCHR:
    500  1.1  wrstuden  		case VBLK:
    501  1.1  wrstuden  		case VSOCK:
    502  1.1  wrstuden  		case VFIFO:
    503  1.1  wrstuden 			return (0);
    504  1.1  wrstuden 		case VREG:
    505  1.1  wrstuden 		case VLNK:
    506  1.1  wrstuden  		default:
    507  1.1  wrstuden 			/*
    508  1.1  wrstuden 			 * Disallow write attempts if the filesystem is
    509  1.1  wrstuden 			 * mounted read-only.
    510  1.1  wrstuden 			 */
    511  1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    512  1.1  wrstuden 				return (EROFS);
    513  1.1  wrstuden 		}
    514  1.1  wrstuden 	}
    515  1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    516  1.1  wrstuden }
    517  1.1  wrstuden 
    518  1.1  wrstuden /*
    519  1.1  wrstuden  *  We handle getattr only to change the fsid.
    520  1.1  wrstuden  */
    521  1.1  wrstuden int
    522  1.1  wrstuden layer_getattr(v)
    523  1.1  wrstuden 	void *v;
    524  1.1  wrstuden {
    525  1.1  wrstuden 	struct vop_getattr_args /* {
    526  1.1  wrstuden 		struct vnode *a_vp;
    527  1.1  wrstuden 		struct vattr *a_vap;
    528  1.1  wrstuden 		struct ucred *a_cred;
    529  1.1  wrstuden 		struct proc *a_p;
    530  1.1  wrstuden 	} */ *ap = v;
    531  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    532  1.1  wrstuden 	int error;
    533  1.1  wrstuden 
    534  1.1  wrstuden 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    535  1.1  wrstuden 		return (error);
    536  1.1  wrstuden 	/* Requires that arguments be restored. */
    537  1.1  wrstuden 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
    538  1.1  wrstuden 	return (0);
    539  1.1  wrstuden }
    540  1.1  wrstuden 
    541  1.1  wrstuden int
    542  1.1  wrstuden layer_access(v)
    543  1.1  wrstuden 	void *v;
    544  1.1  wrstuden {
    545  1.1  wrstuden 	struct vop_access_args /* {
    546  1.1  wrstuden 		struct vnode *a_vp;
    547  1.1  wrstuden 		int  a_mode;
    548  1.1  wrstuden 		struct ucred *a_cred;
    549  1.1  wrstuden 		struct proc *a_p;
    550  1.1  wrstuden 	} */ *ap = v;
    551  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    552  1.1  wrstuden 	mode_t mode = ap->a_mode;
    553  1.1  wrstuden 
    554  1.1  wrstuden 	/*
    555  1.1  wrstuden 	 * Disallow write attempts on read-only layers;
    556  1.1  wrstuden 	 * unless the file is a socket, fifo, or a block or
    557  1.1  wrstuden 	 * character device resident on the file system.
    558  1.1  wrstuden 	 */
    559  1.1  wrstuden 	if (mode & VWRITE) {
    560  1.1  wrstuden 		switch (vp->v_type) {
    561  1.1  wrstuden 		case VDIR:
    562  1.1  wrstuden 		case VLNK:
    563  1.1  wrstuden 		case VREG:
    564  1.1  wrstuden 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    565  1.1  wrstuden 				return (EROFS);
    566  1.1  wrstuden 			break;
    567  1.1  wrstuden 		default:
    568  1.1  wrstuden 			break;
    569  1.1  wrstuden 		}
    570  1.1  wrstuden 	}
    571  1.1  wrstuden 	return (LAYERFS_DO_BYPASS(vp, ap));
    572  1.1  wrstuden }
    573  1.1  wrstuden 
    574  1.1  wrstuden /*
    575  1.1  wrstuden  * We must handle open to be able to catch MNT_NODEV and friends.
    576  1.1  wrstuden  */
    577  1.1  wrstuden int
    578  1.1  wrstuden layer_open(v)
    579  1.1  wrstuden 	void *v;
    580  1.1  wrstuden {
    581  1.1  wrstuden 	struct vop_open_args *ap = v;
    582  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    583  1.1  wrstuden 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    584  1.1  wrstuden 
    585  1.1  wrstuden 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    586  1.1  wrstuden 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    587  1.1  wrstuden 		return ENXIO;
    588  1.1  wrstuden 
    589  1.1  wrstuden 	return LAYERFS_DO_BYPASS(vp, ap);
    590  1.1  wrstuden }
    591  1.1  wrstuden 
    592  1.1  wrstuden /*
    593  1.1  wrstuden  * We need to process our own vnode lock and then clear the
    594  1.1  wrstuden  * interlock flag as it applies only to our vnode, not the
    595  1.1  wrstuden  * vnodes below us on the stack.
    596  1.1  wrstuden  */
    597  1.1  wrstuden int
    598  1.1  wrstuden layer_lock(v)
    599  1.1  wrstuden 	void *v;
    600  1.1  wrstuden {
    601  1.1  wrstuden 	struct vop_lock_args /* {
    602  1.1  wrstuden 		struct vnode *a_vp;
    603  1.1  wrstuden 		int a_flags;
    604  1.1  wrstuden 		struct proc *a_p;
    605  1.1  wrstuden 	} */ *ap = v;
    606  1.1  wrstuden 	struct vnode *vp = ap->a_vp, *lowervp;
    607  1.1  wrstuden 	int	flags = ap->a_flags, error;
    608  1.1  wrstuden 
    609  1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    610  1.1  wrstuden 		/*
    611  1.1  wrstuden 		 * The lower level has exported a struct lock to us. Use
    612  1.1  wrstuden 		 * it so that all vnodes in the stack lock and unlock
    613  1.1  wrstuden 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    614  1.1  wrstuden 		 * decommissions the lock - just because our vnode is
    615  1.1  wrstuden 		 * going away doesn't mean the struct lock below us is.
    616  1.1  wrstuden 		 * LK_EXCLUSIVE is fine.
    617  1.1  wrstuden 		 */
    618  1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    619  1.1  wrstuden 			return(lockmgr(vp->v_vnlock,
    620  1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    621  1.1  wrstuden 				&vp->v_interlock));
    622  1.1  wrstuden 		} else
    623  1.1  wrstuden 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    624  1.1  wrstuden 	} else {
    625  1.1  wrstuden 		/*
    626  1.1  wrstuden 		 * Ahh well. It would be nice if the fs we're over would
    627  1.1  wrstuden 		 * export a struct lock for us to use, but it doesn't.
    628  1.1  wrstuden 		 *
    629  1.1  wrstuden 		 * To prevent race conditions involving doing a lookup
    630  1.1  wrstuden 		 * on "..", we have to lock the lower node, then lock our
    631  1.1  wrstuden 		 * node. Most of the time it won't matter that we lock our
    632  1.1  wrstuden 		 * node (as any locking would need the lower one locked
    633  1.1  wrstuden 		 * first). But we can LK_DRAIN the upper lock as a step
    634  1.1  wrstuden 		 * towards decomissioning it.
    635  1.1  wrstuden 		 */
    636  1.1  wrstuden 		lowervp = LAYERVPTOLOWERVP(vp);
    637  1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    638  1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    639  1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    640  1.1  wrstuden 		}
    641  1.1  wrstuden 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    642  1.1  wrstuden 			error = VOP_LOCK(lowervp,
    643  1.1  wrstuden 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    644  1.1  wrstuden 		} else
    645  1.1  wrstuden 			error = VOP_LOCK(lowervp, flags);
    646  1.1  wrstuden 		if (error)
    647  1.1  wrstuden 			return (error);
    648  1.1  wrstuden 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    649  1.1  wrstuden 			VOP_UNLOCK(lowervp, 0);
    650  1.1  wrstuden 		}
    651  1.1  wrstuden 		return (error);
    652  1.1  wrstuden 	}
    653  1.1  wrstuden }
    654  1.1  wrstuden 
    655  1.1  wrstuden /*
    656  1.1  wrstuden  */
    657  1.1  wrstuden int
    658  1.1  wrstuden layer_unlock(v)
    659  1.1  wrstuden 	void *v;
    660  1.1  wrstuden {
    661  1.1  wrstuden 	struct vop_unlock_args /* {
    662  1.1  wrstuden 		struct vnode *a_vp;
    663  1.1  wrstuden 		int a_flags;
    664  1.1  wrstuden 		struct proc *a_p;
    665  1.1  wrstuden 	} */ *ap = v;
    666  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    667  1.1  wrstuden 	int	flags = ap->a_flags;
    668  1.1  wrstuden 
    669  1.1  wrstuden 	if (vp->v_vnlock != NULL) {
    670  1.1  wrstuden 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    671  1.1  wrstuden 			&vp->v_interlock));
    672  1.1  wrstuden 	} else {
    673  1.1  wrstuden 		if (flags & LK_INTERLOCK) {
    674  1.1  wrstuden 			simple_unlock(&vp->v_interlock);
    675  1.1  wrstuden 			flags &= ~LK_INTERLOCK;
    676  1.1  wrstuden 		}
    677  1.1  wrstuden 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    678  1.1  wrstuden 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    679  1.1  wrstuden 			&vp->v_interlock));
    680  1.1  wrstuden 	}
    681  1.1  wrstuden }
    682  1.1  wrstuden 
    683  1.1  wrstuden /*
    684  1.1  wrstuden  * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
    685  1.1  wrstuden  * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
    686  1.1  wrstuden  */
    687  1.1  wrstuden int
    688  1.1  wrstuden layer_islocked(v)
    689  1.1  wrstuden 	void *v;
    690  1.1  wrstuden {
    691  1.1  wrstuden 	struct vop_islocked_args /* {
    692  1.1  wrstuden 		struct vnode *a_vp;
    693  1.1  wrstuden 	} */ *ap = v;
    694  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    695  1.1  wrstuden 
    696  1.1  wrstuden 	if (vp->v_vnlock != NULL)
    697  1.1  wrstuden 		return (lockstatus(vp->v_vnlock));
    698  1.1  wrstuden 	else
    699  1.1  wrstuden 		return (lockstatus(&vp->v_lock));
    700  1.1  wrstuden }
    701  1.1  wrstuden 
    702  1.1  wrstuden /*
    703  1.1  wrstuden  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    704  1.1  wrstuden  * syncing the underlying vnodes, since they'll be fsync'ed when
    705  1.1  wrstuden  * reclaimed; otherwise,
    706  1.1  wrstuden  * pass it through to the underlying layer.
    707  1.1  wrstuden  *
    708  1.1  wrstuden  * XXX Do we still need to worry about shallow fsync?
    709  1.1  wrstuden  */
    710  1.1  wrstuden 
    711  1.1  wrstuden int
    712  1.1  wrstuden layer_fsync(v)
    713  1.1  wrstuden 	void *v;
    714  1.1  wrstuden {
    715  1.1  wrstuden 	struct vop_fsync_args /* {
    716  1.1  wrstuden 		struct vnode *a_vp;
    717  1.1  wrstuden 		struct ucred *a_cred;
    718  1.1  wrstuden 		int  a_flags;
    719  1.4      fvdl 		off_t offlo;
    720  1.4      fvdl 		off_t offhi;
    721  1.1  wrstuden 		struct proc *a_p;
    722  1.1  wrstuden 	} */ *ap = v;
    723  1.1  wrstuden 
    724  1.1  wrstuden 	if (ap->a_flags & FSYNC_RECLAIM) {
    725  1.1  wrstuden 		return 0;
    726  1.1  wrstuden 	}
    727  1.1  wrstuden 
    728  1.1  wrstuden 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    729  1.1  wrstuden }
    730  1.1  wrstuden 
    731  1.1  wrstuden 
    732  1.1  wrstuden int
    733  1.1  wrstuden layer_inactive(v)
    734  1.1  wrstuden 	void *v;
    735  1.1  wrstuden {
    736  1.1  wrstuden 	struct vop_inactive_args /* {
    737  1.1  wrstuden 		struct vnode *a_vp;
    738  1.1  wrstuden 		struct proc *a_p;
    739  1.1  wrstuden 	} */ *ap = v;
    740  1.5     enami 	struct vnode *vp = ap->a_vp;
    741  1.1  wrstuden 
    742  1.1  wrstuden 	/*
    743  1.1  wrstuden 	 * Do nothing (and _don't_ bypass).
    744  1.1  wrstuden 	 * Wait to vrele lowervp until reclaim,
    745  1.1  wrstuden 	 * so that until then our layer_node is in the
    746  1.1  wrstuden 	 * cache and reusable.
    747  1.1  wrstuden 	 *
    748  1.1  wrstuden 	 * NEEDSWORK: Someday, consider inactive'ing
    749  1.1  wrstuden 	 * the lowervp and then trying to reactivate it
    750  1.1  wrstuden 	 * with capabilities (v_id)
    751  1.1  wrstuden 	 * like they do in the name lookup cache code.
    752  1.1  wrstuden 	 * That's too much work for now.
    753  1.1  wrstuden 	 */
    754  1.5     enami 	VOP_UNLOCK(vp, 0);
    755  1.5     enami 
    756  1.5     enami 	/* ..., but don't cache the device node. */
    757  1.5     enami 	if (vp->v_type == VBLK || vp->v_type == VCHR)
    758  1.5     enami 		vgone(vp);
    759  1.1  wrstuden 	return (0);
    760  1.1  wrstuden }
    761  1.1  wrstuden 
    762  1.1  wrstuden int
    763  1.1  wrstuden layer_reclaim(v)
    764  1.1  wrstuden 	void *v;
    765  1.1  wrstuden {
    766  1.1  wrstuden 	struct vop_reclaim_args /* {
    767  1.1  wrstuden 		struct vnode *a_vp;
    768  1.1  wrstuden 		struct proc *a_p;
    769  1.1  wrstuden 	} */ *ap = v;
    770  1.1  wrstuden 	struct vnode *vp = ap->a_vp;
    771  1.1  wrstuden 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    772  1.1  wrstuden 	struct layer_node *xp = VTOLAYER(vp);
    773  1.1  wrstuden 	struct vnode *lowervp = xp->layer_lowervp;
    774  1.1  wrstuden 
    775  1.1  wrstuden 	/*
    776  1.1  wrstuden 	 * Note: in vop_reclaim, the node's struct lock has been
    777  1.1  wrstuden 	 * decomissioned, so we have to be careful about calling
    778  1.1  wrstuden 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    779  1.1  wrstuden 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    780  1.1  wrstuden 	 * set.
    781  1.1  wrstuden 	 */
    782  1.1  wrstuden 	/* After this assignment, this node will not be re-used. */
    783  1.1  wrstuden 	if ((vp == lmp->layerm_rootvp)) {
    784  1.1  wrstuden 		/*
    785  1.1  wrstuden 		 * Oops! We no longer have a root node. Most likely reason is
    786  1.1  wrstuden 		 * that someone forcably unmunted the underlying fs.
    787  1.1  wrstuden 		 *
    788  1.1  wrstuden 		 * Now getting the root vnode will fail. We're dead. :-(
    789  1.1  wrstuden 		 */
    790  1.1  wrstuden 		lmp->layerm_rootvp = NULL;
    791  1.1  wrstuden 	}
    792  1.1  wrstuden 	xp->layer_lowervp = NULL;
    793  1.1  wrstuden 	simple_lock(&lmp->layerm_hashlock);
    794  1.1  wrstuden 	LIST_REMOVE(xp, layer_hash);
    795  1.1  wrstuden 	simple_unlock(&lmp->layerm_hashlock);
    796  1.1  wrstuden 	FREE(vp->v_data, M_TEMP);
    797  1.1  wrstuden 	vp->v_data = NULL;
    798  1.1  wrstuden 	vrele (lowervp);
    799  1.1  wrstuden 	return (0);
    800  1.1  wrstuden }
    801  1.1  wrstuden 
    802  1.1  wrstuden /*
    803  1.1  wrstuden  * We just feed the returned vnode up to the caller - there's no need
    804  1.1  wrstuden  * to build a layer node on top of the node on which we're going to do
    805  1.1  wrstuden  * i/o. :-)
    806  1.1  wrstuden  */
    807  1.1  wrstuden int
    808  1.1  wrstuden layer_bmap(v)
    809  1.1  wrstuden 	void *v;
    810  1.1  wrstuden {
    811  1.1  wrstuden 	struct vop_bmap_args /* {
    812  1.1  wrstuden 		struct vnode *a_vp;
    813  1.1  wrstuden 		daddr_t  a_bn;
    814  1.1  wrstuden 		struct vnode **a_vpp;
    815  1.1  wrstuden 		daddr_t *a_bnp;
    816  1.1  wrstuden 		int *a_runp;
    817  1.1  wrstuden 	} */ *ap = v;
    818  1.1  wrstuden 	struct vnode *vp;
    819  1.1  wrstuden 
    820  1.1  wrstuden 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    821  1.1  wrstuden 
    822  1.1  wrstuden 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    823  1.1  wrstuden }
    824  1.1  wrstuden 
    825  1.1  wrstuden int
    826  1.1  wrstuden layer_print(v)
    827  1.1  wrstuden 	void *v;
    828  1.1  wrstuden {
    829  1.1  wrstuden 	struct vop_print_args /* {
    830  1.1  wrstuden 		struct vnode *a_vp;
    831  1.1  wrstuden 	} */ *ap = v;
    832  1.3  augustss 	struct vnode *vp = ap->a_vp;
    833  1.1  wrstuden 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    834  1.1  wrstuden 	return (0);
    835  1.1  wrstuden }
    836  1.1  wrstuden 
    837  1.1  wrstuden /*
    838  1.1  wrstuden  * XXX - vop_strategy must be hand coded because it has no
    839  1.1  wrstuden  * vnode in its arguments.
    840  1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    841  1.1  wrstuden  */
    842  1.1  wrstuden int
    843  1.1  wrstuden layer_strategy(v)
    844  1.1  wrstuden 	void *v;
    845  1.1  wrstuden {
    846  1.1  wrstuden 	struct vop_strategy_args /* {
    847  1.1  wrstuden 		struct buf *a_bp;
    848  1.1  wrstuden 	} */ *ap = v;
    849  1.1  wrstuden 	struct buf *bp = ap->a_bp;
    850  1.1  wrstuden 	int error;
    851  1.1  wrstuden 	struct vnode *savedvp;
    852  1.1  wrstuden 
    853  1.1  wrstuden 	savedvp = bp->b_vp;
    854  1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    855  1.1  wrstuden 
    856  1.1  wrstuden 	error = VOP_STRATEGY(bp);
    857  1.1  wrstuden 
    858  1.1  wrstuden 	bp->b_vp = savedvp;
    859  1.1  wrstuden 
    860  1.1  wrstuden 	return (error);
    861  1.1  wrstuden }
    862  1.1  wrstuden 
    863  1.1  wrstuden /*
    864  1.1  wrstuden  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
    865  1.1  wrstuden  * vnode in its arguments.
    866  1.1  wrstuden  * This goes away with a merged VM/buffer cache.
    867  1.1  wrstuden  */
    868  1.1  wrstuden int
    869  1.1  wrstuden layer_bwrite(v)
    870  1.1  wrstuden 	void *v;
    871  1.1  wrstuden {
    872  1.1  wrstuden 	struct vop_bwrite_args /* {
    873  1.1  wrstuden 		struct buf *a_bp;
    874  1.1  wrstuden 	} */ *ap = v;
    875  1.1  wrstuden 	struct buf *bp = ap->a_bp;
    876  1.1  wrstuden 	int error;
    877  1.1  wrstuden 	struct vnode *savedvp;
    878  1.1  wrstuden 
    879  1.1  wrstuden 	savedvp = bp->b_vp;
    880  1.1  wrstuden 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    881  1.1  wrstuden 
    882  1.1  wrstuden 	error = VOP_BWRITE(bp);
    883  1.1  wrstuden 
    884  1.1  wrstuden 	bp->b_vp = savedvp;
    885  1.1  wrstuden 
    886  1.1  wrstuden 	return (error);
    887  1.1  wrstuden }
    888