layer_vnops.c revision 1.60 1 1.60 hannken /* $NetBSD: layer_vnops.c,v 1.60 2017/01/27 10:47:13 hannken Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.42 rmind
36 1.1 wrstuden /*
37 1.1 wrstuden * Copyright (c) 1992, 1993
38 1.1 wrstuden * The Regents of the University of California. All rights reserved.
39 1.1 wrstuden *
40 1.1 wrstuden * This code is derived from software contributed to Berkeley by
41 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
42 1.1 wrstuden *
43 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
44 1.1 wrstuden * modification, are permitted provided that the following conditions
45 1.1 wrstuden * are met:
46 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
47 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
48 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
50 1.1 wrstuden * documentation and/or other materials provided with the distribution.
51 1.11 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 wrstuden * may be used to endorse or promote products derived from this software
53 1.1 wrstuden * without specific prior written permission.
54 1.1 wrstuden *
55 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 wrstuden * SUCH DAMAGE.
66 1.1 wrstuden *
67 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 1.1 wrstuden *
69 1.1 wrstuden * Ancestors:
70 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 1.1 wrstuden * ...and...
73 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 1.1 wrstuden */
75 1.1 wrstuden
76 1.1 wrstuden /*
77 1.42 rmind * Generic layer vnode operations.
78 1.1 wrstuden *
79 1.42 rmind * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 1.42 rmind * the core implementation of stacked file-systems.
81 1.1 wrstuden *
82 1.42 rmind * The layerfs duplicates a portion of the file system name space under
83 1.42 rmind * a new name. In this respect, it is similar to the loopback file system.
84 1.42 rmind * It differs from the loopback fs in two respects: it is implemented using
85 1.42 rmind * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 1.42 rmind * lower-layer vnodes, not just over directory vnodes.
87 1.42 rmind *
88 1.42 rmind * OPERATION OF LAYERFS
89 1.42 rmind *
90 1.42 rmind * The layerfs is the minimum file system layer, bypassing all possible
91 1.42 rmind * operations to the lower layer for processing there. The majority of its
92 1.42 rmind * activity centers on the bypass routine, through which nearly all vnode
93 1.42 rmind * operations pass.
94 1.42 rmind *
95 1.42 rmind * The bypass routine accepts arbitrary vnode operations for handling by
96 1.42 rmind * the lower layer. It begins by examining vnode operation arguments and
97 1.42 rmind * replacing any layered nodes by their lower-layer equivalents. It then
98 1.42 rmind * invokes an operation on the lower layer. Finally, it replaces the
99 1.42 rmind * layered nodes in the arguments and, if a vnode is returned by the
100 1.42 rmind * operation, stacks a layered node on top of the returned vnode.
101 1.1 wrstuden *
102 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
103 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
104 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
105 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
106 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
107 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
108 1.1 wrstuden *
109 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
110 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
112 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
113 1.42 rmind * use the layerm_bypass() routine.
114 1.1 wrstuden *
115 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
116 1.42 rmind * of operations are special cased and handled by the layerfs. For instance,
117 1.42 rmind * layer_getattr() must change the fsid being returned. While layer_lock()
118 1.42 rmind * and layer_unlock() must handle any locking for the current vnode as well
119 1.42 rmind * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 1.42 rmind * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 1.42 rmind * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 1.42 rmind * rmdir, and symlink) change the locking state within the operation. Ideally
123 1.42 rmind * these operations should not change the lock state, but should be changed
124 1.42 rmind * to let the caller of the function unlock them. Otherwise, all intermediate
125 1.42 rmind * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 1.1 wrstuden * the necessary locking at their layer.
127 1.1 wrstuden *
128 1.42 rmind * INSTANTIATING VNODE STACKS
129 1.1 wrstuden *
130 1.42 rmind * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 1.42 rmind * stacking two VFSes. The initial mount creates a single vnode stack for
132 1.42 rmind * the root of the new layerfs. All other vnode stacks are created as a
133 1.42 rmind * result of vnode operations on this or other layerfs vnode stacks.
134 1.1 wrstuden *
135 1.42 rmind * New vnode stacks come into existence as a result of an operation which
136 1.42 rmind * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 1.1 wrstuden * vnode before returning it to the caller.
138 1.1 wrstuden *
139 1.42 rmind * For example, imagine mounting a null layer with:
140 1.1 wrstuden *
141 1.42 rmind * "mount_null /usr/include /dev/layer/null"
142 1.1 wrstuden *
143 1.42 rmind * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 1.42 rmind * which was created when the null layer was mounted). Now consider opening
145 1.42 rmind * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 1.42 rmind * This operation would bypass through to the lower layer which would return
147 1.42 rmind * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 1.42 rmind * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 1.42 rmind * Later operations on the layerfs-node "sys" will repeat this process when
150 1.42 rmind * constructing other vnode stacks.
151 1.1 wrstuden *
152 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
153 1.1 wrstuden *
154 1.42 rmind * There are two techniques to invoke operations on a lower layer when the
155 1.42 rmind * operation cannot be completely bypassed. Each method is appropriate in
156 1.42 rmind * different situations. In both cases, it is the responsibility of the
157 1.42 rmind * aliasing layer to make the operation arguments "correct" for the lower
158 1.42 rmind * layer by mapping any vnode arguments to the lower layer.
159 1.42 rmind *
160 1.42 rmind * The first approach is to call the aliasing layer's bypass routine. This
161 1.42 rmind * method is most suitable when you wish to invoke the operation currently
162 1.42 rmind * being handled on the lower layer. It has the advantage that the bypass
163 1.42 rmind * routine already must do argument mapping. An example of this is
164 1.42 rmind * layer_getattr().
165 1.42 rmind *
166 1.42 rmind * A second approach is to directly invoke vnode operations on the lower
167 1.42 rmind * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 1.42 rmind * is that it is easy to invoke arbitrary operations on the lower layer.
169 1.42 rmind * The disadvantage is that vnode's arguments must be manually mapped.
170 1.1 wrstuden */
171 1.8 lukem
172 1.8 lukem #include <sys/cdefs.h>
173 1.60 hannken __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.60 2017/01/27 10:47:13 hannken Exp $");
174 1.1 wrstuden
175 1.1 wrstuden #include <sys/param.h>
176 1.1 wrstuden #include <sys/systm.h>
177 1.1 wrstuden #include <sys/proc.h>
178 1.1 wrstuden #include <sys/time.h>
179 1.1 wrstuden #include <sys/vnode.h>
180 1.1 wrstuden #include <sys/mount.h>
181 1.1 wrstuden #include <sys/namei.h>
182 1.34 ad #include <sys/kmem.h>
183 1.1 wrstuden #include <sys/buf.h>
184 1.27 elad #include <sys/kauth.h>
185 1.60 hannken #include <sys/fcntl.h>
186 1.27 elad
187 1.1 wrstuden #include <miscfs/genfs/layer.h>
188 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
189 1.1 wrstuden #include <miscfs/genfs/genfs.h>
190 1.50 hannken #include <miscfs/specfs/specdev.h>
191 1.1 wrstuden
192 1.1 wrstuden /*
193 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
194 1.1 wrstuden * routine by John Heidemann.
195 1.1 wrstuden * The new element for this version is that the whole nullfs
196 1.40 hannken * system gained the concept of locks on the lower node.
197 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
198 1.1 wrstuden * safety checks. It should still always work, but it's not as
199 1.1 wrstuden * robust to programmer errors.
200 1.1 wrstuden *
201 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
202 1.1 wrstuden *
203 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
204 1.1 wrstuden * their arguments. With stacking, the reference counts are held
205 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
206 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
207 1.1 wrstuden * since there are no such side-effects.
208 1.1 wrstuden *
209 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
210 1.1 wrstuden * the passed-in node (typically they vput the node).
211 1.1 wrstuden *
212 1.1 wrstuden * This makes the following assumptions:
213 1.1 wrstuden * - only one returned vpp
214 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
215 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
216 1.1 wrstuden * to determine what implementation of the op should be invoked
217 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
218 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
219 1.24 perry */
220 1.1 wrstuden int
221 1.38 dsl layer_bypass(void *v)
222 1.1 wrstuden {
223 1.1 wrstuden struct vop_generic_args /* {
224 1.1 wrstuden struct vnodeop_desc *a_desc;
225 1.1 wrstuden <other random data follows, presumably>
226 1.1 wrstuden } */ *ap = v;
227 1.25 xtraeme int (**our_vnodeop_p)(void *);
228 1.3 augustss struct vnode **this_vp_p;
229 1.40 hannken int error;
230 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
231 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
232 1.1 wrstuden struct vnode ***vppp;
233 1.33 dyoung struct mount *mp;
234 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
235 1.1 wrstuden int reles, i, flags;
236 1.1 wrstuden
237 1.37 plunky #ifdef DIAGNOSTIC
238 1.1 wrstuden /*
239 1.1 wrstuden * We require at least one vp.
240 1.1 wrstuden */
241 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
242 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
243 1.20 yamt panic("%s: no vp's in map.\n", __func__);
244 1.1 wrstuden #endif
245 1.1 wrstuden
246 1.20 yamt vps_p[0] =
247 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
248 1.1 wrstuden vp0 = *vps_p[0];
249 1.33 dyoung mp = vp0->v_mount;
250 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
251 1.1 wrstuden our_vnodeop_p = vp0->v_op;
252 1.1 wrstuden
253 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
254 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
255 1.1 wrstuden
256 1.1 wrstuden /*
257 1.1 wrstuden * Map the vnodes going in.
258 1.1 wrstuden * Later, we'll invoke the operation based on
259 1.1 wrstuden * the first mapped vnode's operation vector.
260 1.1 wrstuden */
261 1.1 wrstuden reles = descp->vdesc_flags;
262 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
263 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
264 1.1 wrstuden break; /* bail out at end of list */
265 1.24 perry vps_p[i] = this_vp_p =
266 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
267 1.20 yamt ap);
268 1.1 wrstuden /*
269 1.1 wrstuden * We're not guaranteed that any but the first vnode
270 1.1 wrstuden * are of our type. Check for and don't map any
271 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
272 1.1 wrstuden */
273 1.1 wrstuden if (i && (*this_vp_p == NULL ||
274 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
275 1.1 wrstuden old_vps[i] = NULL;
276 1.1 wrstuden } else {
277 1.1 wrstuden old_vps[i] = *this_vp_p;
278 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
279 1.1 wrstuden /*
280 1.1 wrstuden * XXX - Several operations have the side effect
281 1.1 wrstuden * of vrele'ing their vp's. We must account for
282 1.1 wrstuden * that. (This should go away in the future.)
283 1.1 wrstuden */
284 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
285 1.39 pooka vref(*this_vp_p);
286 1.1 wrstuden }
287 1.1 wrstuden }
288 1.1 wrstuden
289 1.1 wrstuden /*
290 1.1 wrstuden * Call the operation on the lower layer
291 1.1 wrstuden * with the modified argument structure.
292 1.1 wrstuden */
293 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
294 1.1 wrstuden
295 1.1 wrstuden /*
296 1.1 wrstuden * Maintain the illusion of call-by-value
297 1.1 wrstuden * by restoring vnodes in the argument structure
298 1.1 wrstuden * to their original value.
299 1.1 wrstuden */
300 1.1 wrstuden reles = descp->vdesc_flags;
301 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
302 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
303 1.1 wrstuden break; /* bail out at end of list */
304 1.1 wrstuden if (old_vps[i]) {
305 1.1 wrstuden *(vps_p[i]) = old_vps[i];
306 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
307 1.1 wrstuden vrele(*(vps_p[i]));
308 1.1 wrstuden }
309 1.1 wrstuden }
310 1.1 wrstuden
311 1.1 wrstuden /*
312 1.1 wrstuden * Map the possible out-going vpp
313 1.1 wrstuden * (Assumes that the lower layer always returns
314 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
315 1.1 wrstuden */
316 1.47 rmind if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
317 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
318 1.20 yamt descp->vdesc_vpp_offset, ap);
319 1.1 wrstuden /*
320 1.52 hannken * Only vop_lookup, vop_create, vop_makedir, vop_mknod
321 1.52 hannken * and vop_symlink return vpp's. vop_lookup doesn't call bypass
322 1.1 wrstuden * as a lookup on "." would generate a locking error.
323 1.52 hannken * So all the calls which get us here have a unlocked vpp. :-)
324 1.1 wrstuden */
325 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp);
326 1.19 yamt if (error) {
327 1.52 hannken vrele(**vppp);
328 1.19 yamt **vppp = NULL;
329 1.19 yamt }
330 1.1 wrstuden }
331 1.42 rmind return error;
332 1.1 wrstuden }
333 1.1 wrstuden
334 1.1 wrstuden /*
335 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
336 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
337 1.1 wrstuden * if this layer is mounted read-only.
338 1.1 wrstuden */
339 1.1 wrstuden int
340 1.38 dsl layer_lookup(void *v)
341 1.1 wrstuden {
342 1.54 hannken struct vop_lookup_v2_args /* {
343 1.1 wrstuden struct vnodeop_desc *a_desc;
344 1.1 wrstuden struct vnode * a_dvp;
345 1.1 wrstuden struct vnode ** a_vpp;
346 1.1 wrstuden struct componentname * a_cnp;
347 1.1 wrstuden } */ *ap = v;
348 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
349 1.29 chs struct vnode *dvp, *lvp, *ldvp;
350 1.42 rmind int error, flags = cnp->cn_flags;
351 1.1 wrstuden
352 1.1 wrstuden dvp = ap->a_dvp;
353 1.1 wrstuden
354 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
355 1.51 dholland (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
356 1.51 dholland *ap->a_vpp = NULL;
357 1.42 rmind return EROFS;
358 1.51 dholland }
359 1.1 wrstuden
360 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
361 1.1 wrstuden ap->a_dvp = ldvp;
362 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
363 1.29 chs lvp = *ap->a_vpp;
364 1.18 yamt *ap->a_vpp = NULL;
365 1.1 wrstuden
366 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
367 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
368 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
369 1.1 wrstuden error = EROFS;
370 1.29 chs
371 1.1 wrstuden /*
372 1.24 perry * We must do the same locking and unlocking at this layer as
373 1.29 chs * is done in the layers below us.
374 1.1 wrstuden */
375 1.29 chs if (ldvp == lvp) {
376 1.1 wrstuden /*
377 1.36 dholland * Got the same object back, because we looked up ".",
378 1.36 dholland * or ".." in the root node of a mount point.
379 1.36 dholland * So we make another reference to dvp and return it.
380 1.1 wrstuden */
381 1.39 pooka vref(dvp);
382 1.1 wrstuden *ap->a_vpp = dvp;
383 1.29 chs vrele(lvp);
384 1.29 chs } else if (lvp != NULL) {
385 1.54 hannken /* Note: dvp and ldvp are both locked. */
386 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
387 1.19 yamt if (error) {
388 1.54 hannken vrele(lvp);
389 1.19 yamt }
390 1.1 wrstuden }
391 1.42 rmind return error;
392 1.1 wrstuden }
393 1.1 wrstuden
394 1.1 wrstuden /*
395 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
396 1.1 wrstuden */
397 1.1 wrstuden int
398 1.38 dsl layer_setattr(void *v)
399 1.1 wrstuden {
400 1.1 wrstuden struct vop_setattr_args /* {
401 1.1 wrstuden struct vnodeop_desc *a_desc;
402 1.1 wrstuden struct vnode *a_vp;
403 1.1 wrstuden struct vattr *a_vap;
404 1.27 elad kauth_cred_t a_cred;
405 1.26 christos struct lwp *a_l;
406 1.1 wrstuden } */ *ap = v;
407 1.1 wrstuden struct vnode *vp = ap->a_vp;
408 1.1 wrstuden struct vattr *vap = ap->a_vap;
409 1.1 wrstuden
410 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
411 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
412 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
413 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
414 1.42 rmind return EROFS;
415 1.1 wrstuden if (vap->va_size != VNOVAL) {
416 1.1 wrstuden switch (vp->v_type) {
417 1.1 wrstuden case VDIR:
418 1.42 rmind return EISDIR;
419 1.1 wrstuden case VCHR:
420 1.1 wrstuden case VBLK:
421 1.1 wrstuden case VSOCK:
422 1.1 wrstuden case VFIFO:
423 1.42 rmind return 0;
424 1.1 wrstuden case VREG:
425 1.1 wrstuden case VLNK:
426 1.1 wrstuden default:
427 1.1 wrstuden /*
428 1.1 wrstuden * Disallow write attempts if the filesystem is
429 1.1 wrstuden * mounted read-only.
430 1.1 wrstuden */
431 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
432 1.42 rmind return EROFS;
433 1.1 wrstuden }
434 1.1 wrstuden }
435 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
436 1.1 wrstuden }
437 1.1 wrstuden
438 1.1 wrstuden /*
439 1.1 wrstuden * We handle getattr only to change the fsid.
440 1.1 wrstuden */
441 1.1 wrstuden int
442 1.38 dsl layer_getattr(void *v)
443 1.1 wrstuden {
444 1.1 wrstuden struct vop_getattr_args /* {
445 1.1 wrstuden struct vnode *a_vp;
446 1.1 wrstuden struct vattr *a_vap;
447 1.27 elad kauth_cred_t a_cred;
448 1.26 christos struct lwp *a_l;
449 1.1 wrstuden } */ *ap = v;
450 1.1 wrstuden struct vnode *vp = ap->a_vp;
451 1.1 wrstuden int error;
452 1.1 wrstuden
453 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
454 1.42 rmind if (error) {
455 1.42 rmind return error;
456 1.42 rmind }
457 1.1 wrstuden /* Requires that arguments be restored. */
458 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
459 1.42 rmind return 0;
460 1.1 wrstuden }
461 1.1 wrstuden
462 1.1 wrstuden int
463 1.38 dsl layer_access(void *v)
464 1.1 wrstuden {
465 1.1 wrstuden struct vop_access_args /* {
466 1.1 wrstuden struct vnode *a_vp;
467 1.1 wrstuden int a_mode;
468 1.27 elad kauth_cred_t a_cred;
469 1.26 christos struct lwp *a_l;
470 1.1 wrstuden } */ *ap = v;
471 1.1 wrstuden struct vnode *vp = ap->a_vp;
472 1.1 wrstuden mode_t mode = ap->a_mode;
473 1.1 wrstuden
474 1.1 wrstuden /*
475 1.1 wrstuden * Disallow write attempts on read-only layers;
476 1.1 wrstuden * unless the file is a socket, fifo, or a block or
477 1.1 wrstuden * character device resident on the file system.
478 1.1 wrstuden */
479 1.1 wrstuden if (mode & VWRITE) {
480 1.1 wrstuden switch (vp->v_type) {
481 1.1 wrstuden case VDIR:
482 1.1 wrstuden case VLNK:
483 1.1 wrstuden case VREG:
484 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
485 1.42 rmind return EROFS;
486 1.1 wrstuden break;
487 1.1 wrstuden default:
488 1.1 wrstuden break;
489 1.1 wrstuden }
490 1.1 wrstuden }
491 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
492 1.1 wrstuden }
493 1.1 wrstuden
494 1.1 wrstuden /*
495 1.60 hannken * We must handle open to be able to catch MNT_NODEV and friends
496 1.60 hannken * and increment the lower v_writecount.
497 1.1 wrstuden */
498 1.1 wrstuden int
499 1.38 dsl layer_open(void *v)
500 1.1 wrstuden {
501 1.42 rmind struct vop_open_args /* {
502 1.42 rmind const struct vnodeop_desc *a_desc;
503 1.42 rmind struct vnode *a_vp;
504 1.42 rmind int a_mode;
505 1.42 rmind kauth_cred_t a_cred;
506 1.42 rmind } */ *ap = v;
507 1.1 wrstuden struct vnode *vp = ap->a_vp;
508 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
509 1.60 hannken int error;
510 1.1 wrstuden
511 1.60 hannken if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
512 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
513 1.1 wrstuden return ENXIO;
514 1.1 wrstuden
515 1.60 hannken error = LAYERFS_DO_BYPASS(vp, ap);
516 1.60 hannken if (error == 0 && (ap->a_mode & FWRITE)) {
517 1.60 hannken mutex_enter(lvp->v_interlock);
518 1.60 hannken lvp->v_writecount++;
519 1.60 hannken mutex_exit(lvp->v_interlock);
520 1.60 hannken }
521 1.60 hannken return error;
522 1.60 hannken }
523 1.60 hannken
524 1.60 hannken /*
525 1.60 hannken * We must handle close to decrement the lower v_writecount.
526 1.60 hannken */
527 1.60 hannken int
528 1.60 hannken layer_close(void *v)
529 1.60 hannken {
530 1.60 hannken struct vop_close_args /* {
531 1.60 hannken const struct vnodeop_desc *a_desc;
532 1.60 hannken struct vnode *a_vp;
533 1.60 hannken int a_fflag;
534 1.60 hannken kauth_cred_t a_cred;
535 1.60 hannken } */ *ap = v;
536 1.60 hannken struct vnode *vp = ap->a_vp;
537 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
538 1.60 hannken
539 1.60 hannken if ((ap->a_fflag & FWRITE)) {
540 1.60 hannken mutex_enter(lvp->v_interlock);
541 1.60 hannken KASSERT(lvp->v_writecount > 0);
542 1.60 hannken lvp->v_writecount--;
543 1.60 hannken mutex_exit(lvp->v_interlock);
544 1.60 hannken }
545 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
546 1.1 wrstuden }
547 1.1 wrstuden
548 1.1 wrstuden /*
549 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
550 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
551 1.42 rmind * reclaimed; otherwise, pass it through to the underlying layer.
552 1.1 wrstuden *
553 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
554 1.1 wrstuden */
555 1.1 wrstuden int
556 1.38 dsl layer_fsync(void *v)
557 1.1 wrstuden {
558 1.1 wrstuden struct vop_fsync_args /* {
559 1.1 wrstuden struct vnode *a_vp;
560 1.27 elad kauth_cred_t a_cred;
561 1.1 wrstuden int a_flags;
562 1.4 fvdl off_t offlo;
563 1.4 fvdl off_t offhi;
564 1.26 christos struct lwp *a_l;
565 1.1 wrstuden } */ *ap = v;
566 1.50 hannken int error;
567 1.1 wrstuden
568 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
569 1.1 wrstuden return 0;
570 1.1 wrstuden }
571 1.50 hannken if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
572 1.50 hannken error = spec_fsync(v);
573 1.50 hannken if (error)
574 1.50 hannken return error;
575 1.50 hannken }
576 1.42 rmind return LAYERFS_DO_BYPASS(ap->a_vp, ap);
577 1.1 wrstuden }
578 1.1 wrstuden
579 1.1 wrstuden int
580 1.38 dsl layer_inactive(void *v)
581 1.1 wrstuden {
582 1.1 wrstuden struct vop_inactive_args /* {
583 1.1 wrstuden struct vnode *a_vp;
584 1.34 ad bool *a_recycle;
585 1.1 wrstuden } */ *ap = v;
586 1.5 enami struct vnode *vp = ap->a_vp;
587 1.1 wrstuden
588 1.1 wrstuden /*
589 1.44 hannken * If we did a remove, don't cache the node.
590 1.34 ad */
591 1.44 hannken *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
592 1.34 ad
593 1.34 ad /*
594 1.1 wrstuden * Do nothing (and _don't_ bypass).
595 1.1 wrstuden * Wait to vrele lowervp until reclaim,
596 1.1 wrstuden * so that until then our layer_node is in the
597 1.1 wrstuden * cache and reusable.
598 1.1 wrstuden *
599 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
600 1.1 wrstuden * the lowervp and then trying to reactivate it
601 1.1 wrstuden * with capabilities (v_id)
602 1.1 wrstuden * like they do in the name lookup cache code.
603 1.1 wrstuden * That's too much work for now.
604 1.1 wrstuden */
605 1.41 hannken VOP_UNLOCK(vp);
606 1.42 rmind return 0;
607 1.1 wrstuden }
608 1.1 wrstuden
609 1.1 wrstuden int
610 1.38 dsl layer_remove(void *v)
611 1.16 wrstuden {
612 1.16 wrstuden struct vop_remove_args /* {
613 1.16 wrstuden struct vonde *a_dvp;
614 1.16 wrstuden struct vnode *a_vp;
615 1.16 wrstuden struct componentname *a_cnp;
616 1.16 wrstuden } */ *ap = v;
617 1.42 rmind struct vnode *vp = ap->a_vp;
618 1.42 rmind int error;
619 1.16 wrstuden
620 1.16 wrstuden vref(vp);
621 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
622 1.42 rmind if (error == 0) {
623 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
624 1.42 rmind }
625 1.16 wrstuden vrele(vp);
626 1.16 wrstuden
627 1.42 rmind return error;
628 1.16 wrstuden }
629 1.16 wrstuden
630 1.16 wrstuden int
631 1.38 dsl layer_rename(void *v)
632 1.17 yamt {
633 1.17 yamt struct vop_rename_args /* {
634 1.17 yamt struct vnode *a_fdvp;
635 1.17 yamt struct vnode *a_fvp;
636 1.17 yamt struct componentname *a_fcnp;
637 1.17 yamt struct vnode *a_tdvp;
638 1.17 yamt struct vnode *a_tvp;
639 1.17 yamt struct componentname *a_tcnp;
640 1.17 yamt } */ *ap = v;
641 1.42 rmind struct vnode *fdvp = ap->a_fdvp, *tvp;
642 1.17 yamt int error;
643 1.17 yamt
644 1.17 yamt tvp = ap->a_tvp;
645 1.17 yamt if (tvp) {
646 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
647 1.17 yamt tvp = NULL;
648 1.17 yamt else
649 1.17 yamt vref(tvp);
650 1.17 yamt }
651 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
652 1.17 yamt if (tvp) {
653 1.17 yamt if (error == 0)
654 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
655 1.17 yamt vrele(tvp);
656 1.17 yamt }
657 1.42 rmind return error;
658 1.17 yamt }
659 1.17 yamt
660 1.17 yamt int
661 1.38 dsl layer_rmdir(void *v)
662 1.23 hannken {
663 1.23 hannken struct vop_rmdir_args /* {
664 1.23 hannken struct vnode *a_dvp;
665 1.23 hannken struct vnode *a_vp;
666 1.23 hannken struct componentname *a_cnp;
667 1.23 hannken } */ *ap = v;
668 1.23 hannken int error;
669 1.23 hannken struct vnode *vp = ap->a_vp;
670 1.23 hannken
671 1.23 hannken vref(vp);
672 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
673 1.42 rmind if (error == 0) {
674 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
675 1.42 rmind }
676 1.23 hannken vrele(vp);
677 1.23 hannken
678 1.42 rmind return error;
679 1.23 hannken }
680 1.23 hannken
681 1.23 hannken int
682 1.45 hannken layer_revoke(void *v)
683 1.45 hannken {
684 1.45 hannken struct vop_revoke_args /* {
685 1.45 hannken struct vnode *a_vp;
686 1.45 hannken int a_flags;
687 1.45 hannken } */ *ap = v;
688 1.45 hannken struct vnode *vp = ap->a_vp;
689 1.45 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
690 1.46 hannken int error;
691 1.45 hannken
692 1.45 hannken /*
693 1.45 hannken * We will most likely end up in vclean which uses the v_usecount
694 1.46 hannken * to determine if a vnode is active. Take an extra reference on
695 1.46 hannken * the lower vnode so it will always close and inactivate.
696 1.60 hannken * Remove our writecount from the lower vnode.
697 1.45 hannken */
698 1.46 hannken vref(lvp);
699 1.60 hannken
700 1.60 hannken mutex_enter(vp->v_interlock);
701 1.60 hannken KASSERT(vp->v_interlock == lvp->v_interlock);
702 1.60 hannken lvp->v_writecount -= vp->v_writecount;
703 1.60 hannken mutex_exit(vp->v_interlock);
704 1.60 hannken
705 1.45 hannken error = LAYERFS_DO_BYPASS(vp, ap);
706 1.46 hannken vrele(lvp);
707 1.45 hannken
708 1.45 hannken return error;
709 1.45 hannken }
710 1.45 hannken
711 1.45 hannken int
712 1.38 dsl layer_reclaim(void *v)
713 1.1 wrstuden {
714 1.1 wrstuden struct vop_reclaim_args /* {
715 1.1 wrstuden struct vnode *a_vp;
716 1.26 christos struct lwp *a_l;
717 1.1 wrstuden } */ *ap = v;
718 1.1 wrstuden struct vnode *vp = ap->a_vp;
719 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
720 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
721 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
722 1.1 wrstuden
723 1.1 wrstuden /*
724 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
725 1.1 wrstuden * decomissioned, so we have to be careful about calling
726 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set.
727 1.1 wrstuden */
728 1.42 rmind if (vp == lmp->layerm_rootvp) {
729 1.1 wrstuden /*
730 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
731 1.1 wrstuden * that someone forcably unmunted the underlying fs.
732 1.1 wrstuden *
733 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
734 1.1 wrstuden */
735 1.1 wrstuden lmp->layerm_rootvp = NULL;
736 1.1 wrstuden }
737 1.42 rmind /* After this assignment, this node will not be re-used. */
738 1.1 wrstuden xp->layer_lowervp = NULL;
739 1.34 ad kmem_free(vp->v_data, lmp->layerm_size);
740 1.1 wrstuden vp->v_data = NULL;
741 1.29 chs vrele(lowervp);
742 1.34 ad
743 1.42 rmind return 0;
744 1.1 wrstuden }
745 1.1 wrstuden
746 1.55 hannken int
747 1.55 hannken layer_lock(void *v)
748 1.55 hannken {
749 1.55 hannken struct vop_lock_args /* {
750 1.55 hannken struct vnode *a_vp;
751 1.55 hannken int a_flags;
752 1.55 hannken } */ *ap = v;
753 1.55 hannken struct vnode *vp = ap->a_vp;
754 1.55 hannken struct vnode *lowervp = LAYERVPTOLOWERVP(vp);
755 1.55 hannken int flags = ap->a_flags;
756 1.55 hannken int error;
757 1.55 hannken
758 1.56 hannken if (ISSET(flags, LK_NOWAIT)) {
759 1.56 hannken error = VOP_LOCK(lowervp, flags);
760 1.56 hannken if (error)
761 1.56 hannken return error;
762 1.56 hannken if (mutex_tryenter(vp->v_interlock)) {
763 1.57 hannken error = vdead_check(vp, VDEAD_NOWAIT);
764 1.55 hannken mutex_exit(vp->v_interlock);
765 1.56 hannken } else
766 1.56 hannken error = EBUSY;
767 1.56 hannken if (error)
768 1.56 hannken VOP_UNLOCK(lowervp);
769 1.56 hannken return error;
770 1.55 hannken }
771 1.55 hannken
772 1.55 hannken error = VOP_LOCK(lowervp, flags);
773 1.55 hannken if (error)
774 1.55 hannken return error;
775 1.55 hannken
776 1.55 hannken mutex_enter(vp->v_interlock);
777 1.57 hannken error = vdead_check(vp, VDEAD_NOWAIT);
778 1.57 hannken if (error) {
779 1.55 hannken VOP_UNLOCK(lowervp);
780 1.57 hannken error = vdead_check(vp, 0);
781 1.57 hannken KASSERT(error == ENOENT);
782 1.55 hannken }
783 1.55 hannken mutex_exit(vp->v_interlock);
784 1.55 hannken
785 1.57 hannken return error;
786 1.55 hannken }
787 1.55 hannken
788 1.1 wrstuden /*
789 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
790 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
791 1.1 wrstuden * i/o. :-)
792 1.1 wrstuden */
793 1.1 wrstuden int
794 1.38 dsl layer_bmap(void *v)
795 1.1 wrstuden {
796 1.1 wrstuden struct vop_bmap_args /* {
797 1.1 wrstuden struct vnode *a_vp;
798 1.1 wrstuden daddr_t a_bn;
799 1.1 wrstuden struct vnode **a_vpp;
800 1.1 wrstuden daddr_t *a_bnp;
801 1.1 wrstuden int *a_runp;
802 1.1 wrstuden } */ *ap = v;
803 1.1 wrstuden struct vnode *vp;
804 1.1 wrstuden
805 1.42 rmind vp = LAYERVPTOLOWERVP(ap->a_vp);
806 1.42 rmind ap->a_vp = vp;
807 1.1 wrstuden
808 1.42 rmind return VCALL(vp, ap->a_desc->vdesc_offset, ap);
809 1.1 wrstuden }
810 1.1 wrstuden
811 1.1 wrstuden int
812 1.38 dsl layer_print(void *v)
813 1.1 wrstuden {
814 1.1 wrstuden struct vop_print_args /* {
815 1.1 wrstuden struct vnode *a_vp;
816 1.1 wrstuden } */ *ap = v;
817 1.3 augustss struct vnode *vp = ap->a_vp;
818 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
819 1.42 rmind return 0;
820 1.1 wrstuden }
821 1.1 wrstuden
822 1.10 chs int
823 1.38 dsl layer_getpages(void *v)
824 1.10 chs {
825 1.10 chs struct vop_getpages_args /* {
826 1.10 chs struct vnode *a_vp;
827 1.10 chs voff_t a_offset;
828 1.10 chs struct vm_page **a_m;
829 1.10 chs int *a_count;
830 1.10 chs int a_centeridx;
831 1.10 chs vm_prot_t a_access_type;
832 1.10 chs int a_advice;
833 1.10 chs int a_flags;
834 1.10 chs } */ *ap = v;
835 1.10 chs struct vnode *vp = ap->a_vp;
836 1.10 chs
837 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
838 1.10 chs
839 1.10 chs if (ap->a_flags & PGO_LOCKED) {
840 1.10 chs return EBUSY;
841 1.10 chs }
842 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
843 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
844 1.48 rmind
845 1.48 rmind /* Just pass the request on to the underlying layer. */
846 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
847 1.10 chs }
848 1.10 chs
849 1.10 chs int
850 1.38 dsl layer_putpages(void *v)
851 1.10 chs {
852 1.10 chs struct vop_putpages_args /* {
853 1.10 chs struct vnode *a_vp;
854 1.10 chs voff_t a_offlo;
855 1.10 chs voff_t a_offhi;
856 1.10 chs int a_flags;
857 1.10 chs } */ *ap = v;
858 1.10 chs struct vnode *vp = ap->a_vp;
859 1.10 chs
860 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
861 1.10 chs
862 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
863 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
864 1.48 rmind
865 1.30 chs if (ap->a_flags & PGO_RECLAIM) {
866 1.48 rmind mutex_exit(vp->v_interlock);
867 1.30 chs return 0;
868 1.30 chs }
869 1.48 rmind
870 1.48 rmind /* Just pass the request on to the underlying layer. */
871 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
872 1.1 wrstuden }
873