layer_vnops.c revision 1.67 1 1.67 hannken /* $NetBSD: layer_vnops.c,v 1.67 2017/06/04 08:05:42 hannken Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.42 rmind
36 1.1 wrstuden /*
37 1.1 wrstuden * Copyright (c) 1992, 1993
38 1.1 wrstuden * The Regents of the University of California. All rights reserved.
39 1.1 wrstuden *
40 1.1 wrstuden * This code is derived from software contributed to Berkeley by
41 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
42 1.1 wrstuden *
43 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
44 1.1 wrstuden * modification, are permitted provided that the following conditions
45 1.1 wrstuden * are met:
46 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
47 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
48 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
50 1.1 wrstuden * documentation and/or other materials provided with the distribution.
51 1.11 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 wrstuden * may be used to endorse or promote products derived from this software
53 1.1 wrstuden * without specific prior written permission.
54 1.1 wrstuden *
55 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 wrstuden * SUCH DAMAGE.
66 1.1 wrstuden *
67 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 1.1 wrstuden *
69 1.1 wrstuden * Ancestors:
70 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 1.1 wrstuden * ...and...
73 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 1.1 wrstuden */
75 1.1 wrstuden
76 1.1 wrstuden /*
77 1.42 rmind * Generic layer vnode operations.
78 1.1 wrstuden *
79 1.42 rmind * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 1.42 rmind * the core implementation of stacked file-systems.
81 1.1 wrstuden *
82 1.42 rmind * The layerfs duplicates a portion of the file system name space under
83 1.42 rmind * a new name. In this respect, it is similar to the loopback file system.
84 1.42 rmind * It differs from the loopback fs in two respects: it is implemented using
85 1.42 rmind * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 1.42 rmind * lower-layer vnodes, not just over directory vnodes.
87 1.42 rmind *
88 1.42 rmind * OPERATION OF LAYERFS
89 1.42 rmind *
90 1.42 rmind * The layerfs is the minimum file system layer, bypassing all possible
91 1.42 rmind * operations to the lower layer for processing there. The majority of its
92 1.42 rmind * activity centers on the bypass routine, through which nearly all vnode
93 1.42 rmind * operations pass.
94 1.42 rmind *
95 1.42 rmind * The bypass routine accepts arbitrary vnode operations for handling by
96 1.42 rmind * the lower layer. It begins by examining vnode operation arguments and
97 1.42 rmind * replacing any layered nodes by their lower-layer equivalents. It then
98 1.42 rmind * invokes an operation on the lower layer. Finally, it replaces the
99 1.42 rmind * layered nodes in the arguments and, if a vnode is returned by the
100 1.42 rmind * operation, stacks a layered node on top of the returned vnode.
101 1.1 wrstuden *
102 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
103 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
104 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
105 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
106 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
107 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
108 1.1 wrstuden *
109 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
110 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
112 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
113 1.42 rmind * use the layerm_bypass() routine.
114 1.1 wrstuden *
115 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
116 1.42 rmind * of operations are special cased and handled by the layerfs. For instance,
117 1.42 rmind * layer_getattr() must change the fsid being returned. While layer_lock()
118 1.42 rmind * and layer_unlock() must handle any locking for the current vnode as well
119 1.42 rmind * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 1.42 rmind * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 1.42 rmind * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 1.42 rmind * rmdir, and symlink) change the locking state within the operation. Ideally
123 1.42 rmind * these operations should not change the lock state, but should be changed
124 1.42 rmind * to let the caller of the function unlock them. Otherwise, all intermediate
125 1.42 rmind * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 1.1 wrstuden * the necessary locking at their layer.
127 1.1 wrstuden *
128 1.42 rmind * INSTANTIATING VNODE STACKS
129 1.1 wrstuden *
130 1.42 rmind * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 1.42 rmind * stacking two VFSes. The initial mount creates a single vnode stack for
132 1.42 rmind * the root of the new layerfs. All other vnode stacks are created as a
133 1.42 rmind * result of vnode operations on this or other layerfs vnode stacks.
134 1.1 wrstuden *
135 1.42 rmind * New vnode stacks come into existence as a result of an operation which
136 1.42 rmind * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 1.1 wrstuden * vnode before returning it to the caller.
138 1.1 wrstuden *
139 1.42 rmind * For example, imagine mounting a null layer with:
140 1.1 wrstuden *
141 1.42 rmind * "mount_null /usr/include /dev/layer/null"
142 1.1 wrstuden *
143 1.42 rmind * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 1.42 rmind * which was created when the null layer was mounted). Now consider opening
145 1.42 rmind * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 1.42 rmind * This operation would bypass through to the lower layer which would return
147 1.42 rmind * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 1.42 rmind * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 1.42 rmind * Later operations on the layerfs-node "sys" will repeat this process when
150 1.42 rmind * constructing other vnode stacks.
151 1.1 wrstuden *
152 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
153 1.1 wrstuden *
154 1.42 rmind * There are two techniques to invoke operations on a lower layer when the
155 1.42 rmind * operation cannot be completely bypassed. Each method is appropriate in
156 1.42 rmind * different situations. In both cases, it is the responsibility of the
157 1.42 rmind * aliasing layer to make the operation arguments "correct" for the lower
158 1.42 rmind * layer by mapping any vnode arguments to the lower layer.
159 1.42 rmind *
160 1.42 rmind * The first approach is to call the aliasing layer's bypass routine. This
161 1.42 rmind * method is most suitable when you wish to invoke the operation currently
162 1.42 rmind * being handled on the lower layer. It has the advantage that the bypass
163 1.42 rmind * routine already must do argument mapping. An example of this is
164 1.42 rmind * layer_getattr().
165 1.42 rmind *
166 1.42 rmind * A second approach is to directly invoke vnode operations on the lower
167 1.42 rmind * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 1.42 rmind * is that it is easy to invoke arbitrary operations on the lower layer.
169 1.42 rmind * The disadvantage is that vnode's arguments must be manually mapped.
170 1.1 wrstuden */
171 1.8 lukem
172 1.8 lukem #include <sys/cdefs.h>
173 1.67 hannken __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.67 2017/06/04 08:05:42 hannken Exp $");
174 1.1 wrstuden
175 1.1 wrstuden #include <sys/param.h>
176 1.1 wrstuden #include <sys/systm.h>
177 1.1 wrstuden #include <sys/proc.h>
178 1.1 wrstuden #include <sys/time.h>
179 1.1 wrstuden #include <sys/vnode.h>
180 1.1 wrstuden #include <sys/mount.h>
181 1.1 wrstuden #include <sys/namei.h>
182 1.34 ad #include <sys/kmem.h>
183 1.1 wrstuden #include <sys/buf.h>
184 1.27 elad #include <sys/kauth.h>
185 1.60 hannken #include <sys/fcntl.h>
186 1.65 hannken #include <sys/fstrans.h>
187 1.27 elad
188 1.1 wrstuden #include <miscfs/genfs/layer.h>
189 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
190 1.1 wrstuden #include <miscfs/genfs/genfs.h>
191 1.50 hannken #include <miscfs/specfs/specdev.h>
192 1.1 wrstuden
193 1.1 wrstuden /*
194 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
195 1.1 wrstuden * routine by John Heidemann.
196 1.1 wrstuden * The new element for this version is that the whole nullfs
197 1.40 hannken * system gained the concept of locks on the lower node.
198 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
199 1.1 wrstuden * safety checks. It should still always work, but it's not as
200 1.1 wrstuden * robust to programmer errors.
201 1.1 wrstuden *
202 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
203 1.1 wrstuden *
204 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
205 1.1 wrstuden * their arguments. With stacking, the reference counts are held
206 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
207 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
208 1.1 wrstuden * since there are no such side-effects.
209 1.1 wrstuden *
210 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
211 1.1 wrstuden * the passed-in node (typically they vput the node).
212 1.1 wrstuden *
213 1.1 wrstuden * This makes the following assumptions:
214 1.1 wrstuden * - only one returned vpp
215 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
216 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
217 1.1 wrstuden * to determine what implementation of the op should be invoked
218 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
219 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
220 1.24 perry */
221 1.1 wrstuden int
222 1.38 dsl layer_bypass(void *v)
223 1.1 wrstuden {
224 1.1 wrstuden struct vop_generic_args /* {
225 1.1 wrstuden struct vnodeop_desc *a_desc;
226 1.1 wrstuden <other random data follows, presumably>
227 1.1 wrstuden } */ *ap = v;
228 1.25 xtraeme int (**our_vnodeop_p)(void *);
229 1.3 augustss struct vnode **this_vp_p;
230 1.40 hannken int error;
231 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
232 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
233 1.1 wrstuden struct vnode ***vppp;
234 1.33 dyoung struct mount *mp;
235 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
236 1.1 wrstuden int reles, i, flags;
237 1.1 wrstuden
238 1.37 plunky #ifdef DIAGNOSTIC
239 1.1 wrstuden /*
240 1.1 wrstuden * We require at least one vp.
241 1.1 wrstuden */
242 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
243 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
244 1.20 yamt panic("%s: no vp's in map.\n", __func__);
245 1.1 wrstuden #endif
246 1.1 wrstuden
247 1.20 yamt vps_p[0] =
248 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
249 1.1 wrstuden vp0 = *vps_p[0];
250 1.33 dyoung mp = vp0->v_mount;
251 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
252 1.1 wrstuden our_vnodeop_p = vp0->v_op;
253 1.1 wrstuden
254 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
255 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
256 1.1 wrstuden
257 1.1 wrstuden /*
258 1.1 wrstuden * Map the vnodes going in.
259 1.1 wrstuden * Later, we'll invoke the operation based on
260 1.1 wrstuden * the first mapped vnode's operation vector.
261 1.1 wrstuden */
262 1.1 wrstuden reles = descp->vdesc_flags;
263 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
264 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
265 1.1 wrstuden break; /* bail out at end of list */
266 1.24 perry vps_p[i] = this_vp_p =
267 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
268 1.20 yamt ap);
269 1.1 wrstuden /*
270 1.1 wrstuden * We're not guaranteed that any but the first vnode
271 1.1 wrstuden * are of our type. Check for and don't map any
272 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
273 1.1 wrstuden */
274 1.1 wrstuden if (i && (*this_vp_p == NULL ||
275 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
276 1.1 wrstuden old_vps[i] = NULL;
277 1.1 wrstuden } else {
278 1.1 wrstuden old_vps[i] = *this_vp_p;
279 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
280 1.1 wrstuden /*
281 1.1 wrstuden * XXX - Several operations have the side effect
282 1.1 wrstuden * of vrele'ing their vp's. We must account for
283 1.1 wrstuden * that. (This should go away in the future.)
284 1.1 wrstuden */
285 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
286 1.39 pooka vref(*this_vp_p);
287 1.1 wrstuden }
288 1.1 wrstuden }
289 1.1 wrstuden
290 1.1 wrstuden /*
291 1.1 wrstuden * Call the operation on the lower layer
292 1.1 wrstuden * with the modified argument structure.
293 1.1 wrstuden */
294 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
295 1.1 wrstuden
296 1.1 wrstuden /*
297 1.1 wrstuden * Maintain the illusion of call-by-value
298 1.1 wrstuden * by restoring vnodes in the argument structure
299 1.1 wrstuden * to their original value.
300 1.1 wrstuden */
301 1.1 wrstuden reles = descp->vdesc_flags;
302 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
303 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
304 1.1 wrstuden break; /* bail out at end of list */
305 1.1 wrstuden if (old_vps[i]) {
306 1.1 wrstuden *(vps_p[i]) = old_vps[i];
307 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
308 1.1 wrstuden vrele(*(vps_p[i]));
309 1.1 wrstuden }
310 1.1 wrstuden }
311 1.1 wrstuden
312 1.1 wrstuden /*
313 1.1 wrstuden * Map the possible out-going vpp
314 1.1 wrstuden * (Assumes that the lower layer always returns
315 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
316 1.1 wrstuden */
317 1.47 rmind if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
318 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
319 1.20 yamt descp->vdesc_vpp_offset, ap);
320 1.1 wrstuden /*
321 1.52 hannken * Only vop_lookup, vop_create, vop_makedir, vop_mknod
322 1.52 hannken * and vop_symlink return vpp's. vop_lookup doesn't call bypass
323 1.1 wrstuden * as a lookup on "." would generate a locking error.
324 1.52 hannken * So all the calls which get us here have a unlocked vpp. :-)
325 1.1 wrstuden */
326 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp);
327 1.19 yamt if (error) {
328 1.52 hannken vrele(**vppp);
329 1.19 yamt **vppp = NULL;
330 1.19 yamt }
331 1.1 wrstuden }
332 1.42 rmind return error;
333 1.1 wrstuden }
334 1.1 wrstuden
335 1.1 wrstuden /*
336 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
337 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
338 1.1 wrstuden * if this layer is mounted read-only.
339 1.1 wrstuden */
340 1.1 wrstuden int
341 1.38 dsl layer_lookup(void *v)
342 1.1 wrstuden {
343 1.54 hannken struct vop_lookup_v2_args /* {
344 1.1 wrstuden struct vnodeop_desc *a_desc;
345 1.1 wrstuden struct vnode * a_dvp;
346 1.1 wrstuden struct vnode ** a_vpp;
347 1.1 wrstuden struct componentname * a_cnp;
348 1.1 wrstuden } */ *ap = v;
349 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
350 1.29 chs struct vnode *dvp, *lvp, *ldvp;
351 1.42 rmind int error, flags = cnp->cn_flags;
352 1.1 wrstuden
353 1.1 wrstuden dvp = ap->a_dvp;
354 1.1 wrstuden
355 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
356 1.51 dholland (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
357 1.51 dholland *ap->a_vpp = NULL;
358 1.42 rmind return EROFS;
359 1.51 dholland }
360 1.1 wrstuden
361 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
362 1.1 wrstuden ap->a_dvp = ldvp;
363 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
364 1.29 chs lvp = *ap->a_vpp;
365 1.18 yamt *ap->a_vpp = NULL;
366 1.1 wrstuden
367 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
368 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
369 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
370 1.1 wrstuden error = EROFS;
371 1.29 chs
372 1.1 wrstuden /*
373 1.24 perry * We must do the same locking and unlocking at this layer as
374 1.29 chs * is done in the layers below us.
375 1.1 wrstuden */
376 1.29 chs if (ldvp == lvp) {
377 1.1 wrstuden /*
378 1.36 dholland * Got the same object back, because we looked up ".",
379 1.36 dholland * or ".." in the root node of a mount point.
380 1.36 dholland * So we make another reference to dvp and return it.
381 1.1 wrstuden */
382 1.39 pooka vref(dvp);
383 1.1 wrstuden *ap->a_vpp = dvp;
384 1.29 chs vrele(lvp);
385 1.29 chs } else if (lvp != NULL) {
386 1.54 hannken /* Note: dvp and ldvp are both locked. */
387 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
388 1.19 yamt if (error) {
389 1.54 hannken vrele(lvp);
390 1.19 yamt }
391 1.1 wrstuden }
392 1.42 rmind return error;
393 1.1 wrstuden }
394 1.1 wrstuden
395 1.1 wrstuden /*
396 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
397 1.1 wrstuden */
398 1.1 wrstuden int
399 1.38 dsl layer_setattr(void *v)
400 1.1 wrstuden {
401 1.1 wrstuden struct vop_setattr_args /* {
402 1.1 wrstuden struct vnodeop_desc *a_desc;
403 1.1 wrstuden struct vnode *a_vp;
404 1.1 wrstuden struct vattr *a_vap;
405 1.27 elad kauth_cred_t a_cred;
406 1.26 christos struct lwp *a_l;
407 1.1 wrstuden } */ *ap = v;
408 1.1 wrstuden struct vnode *vp = ap->a_vp;
409 1.1 wrstuden struct vattr *vap = ap->a_vap;
410 1.1 wrstuden
411 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
412 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
413 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
414 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
415 1.42 rmind return EROFS;
416 1.1 wrstuden if (vap->va_size != VNOVAL) {
417 1.1 wrstuden switch (vp->v_type) {
418 1.1 wrstuden case VDIR:
419 1.42 rmind return EISDIR;
420 1.1 wrstuden case VCHR:
421 1.1 wrstuden case VBLK:
422 1.1 wrstuden case VSOCK:
423 1.1 wrstuden case VFIFO:
424 1.42 rmind return 0;
425 1.1 wrstuden case VREG:
426 1.1 wrstuden case VLNK:
427 1.1 wrstuden default:
428 1.1 wrstuden /*
429 1.1 wrstuden * Disallow write attempts if the filesystem is
430 1.1 wrstuden * mounted read-only.
431 1.1 wrstuden */
432 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
433 1.42 rmind return EROFS;
434 1.1 wrstuden }
435 1.1 wrstuden }
436 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
437 1.1 wrstuden }
438 1.1 wrstuden
439 1.1 wrstuden /*
440 1.1 wrstuden * We handle getattr only to change the fsid.
441 1.1 wrstuden */
442 1.1 wrstuden int
443 1.38 dsl layer_getattr(void *v)
444 1.1 wrstuden {
445 1.1 wrstuden struct vop_getattr_args /* {
446 1.1 wrstuden struct vnode *a_vp;
447 1.1 wrstuden struct vattr *a_vap;
448 1.27 elad kauth_cred_t a_cred;
449 1.26 christos struct lwp *a_l;
450 1.1 wrstuden } */ *ap = v;
451 1.1 wrstuden struct vnode *vp = ap->a_vp;
452 1.1 wrstuden int error;
453 1.1 wrstuden
454 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
455 1.42 rmind if (error) {
456 1.42 rmind return error;
457 1.42 rmind }
458 1.1 wrstuden /* Requires that arguments be restored. */
459 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
460 1.42 rmind return 0;
461 1.1 wrstuden }
462 1.1 wrstuden
463 1.1 wrstuden int
464 1.38 dsl layer_access(void *v)
465 1.1 wrstuden {
466 1.1 wrstuden struct vop_access_args /* {
467 1.1 wrstuden struct vnode *a_vp;
468 1.1 wrstuden int a_mode;
469 1.27 elad kauth_cred_t a_cred;
470 1.26 christos struct lwp *a_l;
471 1.1 wrstuden } */ *ap = v;
472 1.1 wrstuden struct vnode *vp = ap->a_vp;
473 1.1 wrstuden mode_t mode = ap->a_mode;
474 1.1 wrstuden
475 1.1 wrstuden /*
476 1.1 wrstuden * Disallow write attempts on read-only layers;
477 1.1 wrstuden * unless the file is a socket, fifo, or a block or
478 1.1 wrstuden * character device resident on the file system.
479 1.1 wrstuden */
480 1.1 wrstuden if (mode & VWRITE) {
481 1.1 wrstuden switch (vp->v_type) {
482 1.1 wrstuden case VDIR:
483 1.1 wrstuden case VLNK:
484 1.1 wrstuden case VREG:
485 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
486 1.42 rmind return EROFS;
487 1.1 wrstuden break;
488 1.1 wrstuden default:
489 1.1 wrstuden break;
490 1.1 wrstuden }
491 1.1 wrstuden }
492 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
493 1.1 wrstuden }
494 1.1 wrstuden
495 1.1 wrstuden /*
496 1.60 hannken * We must handle open to be able to catch MNT_NODEV and friends
497 1.60 hannken * and increment the lower v_writecount.
498 1.1 wrstuden */
499 1.1 wrstuden int
500 1.38 dsl layer_open(void *v)
501 1.1 wrstuden {
502 1.42 rmind struct vop_open_args /* {
503 1.42 rmind const struct vnodeop_desc *a_desc;
504 1.42 rmind struct vnode *a_vp;
505 1.42 rmind int a_mode;
506 1.42 rmind kauth_cred_t a_cred;
507 1.42 rmind } */ *ap = v;
508 1.1 wrstuden struct vnode *vp = ap->a_vp;
509 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
510 1.60 hannken int error;
511 1.1 wrstuden
512 1.60 hannken if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
513 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
514 1.1 wrstuden return ENXIO;
515 1.1 wrstuden
516 1.60 hannken error = LAYERFS_DO_BYPASS(vp, ap);
517 1.60 hannken if (error == 0 && (ap->a_mode & FWRITE)) {
518 1.60 hannken mutex_enter(lvp->v_interlock);
519 1.60 hannken lvp->v_writecount++;
520 1.60 hannken mutex_exit(lvp->v_interlock);
521 1.60 hannken }
522 1.60 hannken return error;
523 1.60 hannken }
524 1.60 hannken
525 1.60 hannken /*
526 1.60 hannken * We must handle close to decrement the lower v_writecount.
527 1.60 hannken */
528 1.60 hannken int
529 1.60 hannken layer_close(void *v)
530 1.60 hannken {
531 1.60 hannken struct vop_close_args /* {
532 1.60 hannken const struct vnodeop_desc *a_desc;
533 1.60 hannken struct vnode *a_vp;
534 1.60 hannken int a_fflag;
535 1.60 hannken kauth_cred_t a_cred;
536 1.60 hannken } */ *ap = v;
537 1.60 hannken struct vnode *vp = ap->a_vp;
538 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
539 1.60 hannken
540 1.60 hannken if ((ap->a_fflag & FWRITE)) {
541 1.60 hannken mutex_enter(lvp->v_interlock);
542 1.60 hannken KASSERT(lvp->v_writecount > 0);
543 1.60 hannken lvp->v_writecount--;
544 1.60 hannken mutex_exit(lvp->v_interlock);
545 1.60 hannken }
546 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
547 1.1 wrstuden }
548 1.1 wrstuden
549 1.1 wrstuden /*
550 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
551 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
552 1.42 rmind * reclaimed; otherwise, pass it through to the underlying layer.
553 1.1 wrstuden *
554 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
555 1.1 wrstuden */
556 1.1 wrstuden int
557 1.38 dsl layer_fsync(void *v)
558 1.1 wrstuden {
559 1.1 wrstuden struct vop_fsync_args /* {
560 1.1 wrstuden struct vnode *a_vp;
561 1.27 elad kauth_cred_t a_cred;
562 1.1 wrstuden int a_flags;
563 1.4 fvdl off_t offlo;
564 1.4 fvdl off_t offhi;
565 1.26 christos struct lwp *a_l;
566 1.1 wrstuden } */ *ap = v;
567 1.50 hannken int error;
568 1.1 wrstuden
569 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
570 1.1 wrstuden return 0;
571 1.1 wrstuden }
572 1.50 hannken if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
573 1.50 hannken error = spec_fsync(v);
574 1.50 hannken if (error)
575 1.50 hannken return error;
576 1.50 hannken }
577 1.42 rmind return LAYERFS_DO_BYPASS(ap->a_vp, ap);
578 1.1 wrstuden }
579 1.1 wrstuden
580 1.1 wrstuden int
581 1.38 dsl layer_inactive(void *v)
582 1.1 wrstuden {
583 1.62 riastrad struct vop_inactive_v2_args /* {
584 1.1 wrstuden struct vnode *a_vp;
585 1.34 ad bool *a_recycle;
586 1.1 wrstuden } */ *ap = v;
587 1.5 enami struct vnode *vp = ap->a_vp;
588 1.1 wrstuden
589 1.1 wrstuden /*
590 1.44 hannken * If we did a remove, don't cache the node.
591 1.34 ad */
592 1.44 hannken *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
593 1.34 ad
594 1.34 ad /*
595 1.1 wrstuden * Do nothing (and _don't_ bypass).
596 1.1 wrstuden * Wait to vrele lowervp until reclaim,
597 1.1 wrstuden * so that until then our layer_node is in the
598 1.1 wrstuden * cache and reusable.
599 1.1 wrstuden *
600 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
601 1.1 wrstuden * the lowervp and then trying to reactivate it
602 1.1 wrstuden * with capabilities (v_id)
603 1.1 wrstuden * like they do in the name lookup cache code.
604 1.1 wrstuden * That's too much work for now.
605 1.1 wrstuden */
606 1.62 riastrad
607 1.42 rmind return 0;
608 1.1 wrstuden }
609 1.1 wrstuden
610 1.1 wrstuden int
611 1.38 dsl layer_remove(void *v)
612 1.16 wrstuden {
613 1.63 riastrad struct vop_remove_v2_args /* {
614 1.63 riastrad struct vnode *a_dvp;
615 1.16 wrstuden struct vnode *a_vp;
616 1.16 wrstuden struct componentname *a_cnp;
617 1.16 wrstuden } */ *ap = v;
618 1.42 rmind struct vnode *vp = ap->a_vp;
619 1.42 rmind int error;
620 1.16 wrstuden
621 1.16 wrstuden vref(vp);
622 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
623 1.42 rmind if (error == 0) {
624 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
625 1.42 rmind }
626 1.16 wrstuden vrele(vp);
627 1.16 wrstuden
628 1.42 rmind return error;
629 1.16 wrstuden }
630 1.16 wrstuden
631 1.16 wrstuden int
632 1.38 dsl layer_rename(void *v)
633 1.17 yamt {
634 1.17 yamt struct vop_rename_args /* {
635 1.17 yamt struct vnode *a_fdvp;
636 1.17 yamt struct vnode *a_fvp;
637 1.17 yamt struct componentname *a_fcnp;
638 1.17 yamt struct vnode *a_tdvp;
639 1.17 yamt struct vnode *a_tvp;
640 1.17 yamt struct componentname *a_tcnp;
641 1.17 yamt } */ *ap = v;
642 1.42 rmind struct vnode *fdvp = ap->a_fdvp, *tvp;
643 1.17 yamt int error;
644 1.17 yamt
645 1.17 yamt tvp = ap->a_tvp;
646 1.17 yamt if (tvp) {
647 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
648 1.17 yamt tvp = NULL;
649 1.17 yamt else
650 1.17 yamt vref(tvp);
651 1.17 yamt }
652 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
653 1.17 yamt if (tvp) {
654 1.17 yamt if (error == 0)
655 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
656 1.17 yamt vrele(tvp);
657 1.17 yamt }
658 1.42 rmind return error;
659 1.17 yamt }
660 1.17 yamt
661 1.17 yamt int
662 1.38 dsl layer_rmdir(void *v)
663 1.23 hannken {
664 1.63 riastrad struct vop_rmdir_v2_args /* {
665 1.23 hannken struct vnode *a_dvp;
666 1.23 hannken struct vnode *a_vp;
667 1.23 hannken struct componentname *a_cnp;
668 1.23 hannken } */ *ap = v;
669 1.23 hannken int error;
670 1.23 hannken struct vnode *vp = ap->a_vp;
671 1.23 hannken
672 1.23 hannken vref(vp);
673 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
674 1.42 rmind if (error == 0) {
675 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
676 1.42 rmind }
677 1.23 hannken vrele(vp);
678 1.23 hannken
679 1.42 rmind return error;
680 1.23 hannken }
681 1.23 hannken
682 1.23 hannken int
683 1.45 hannken layer_revoke(void *v)
684 1.45 hannken {
685 1.45 hannken struct vop_revoke_args /* {
686 1.45 hannken struct vnode *a_vp;
687 1.45 hannken int a_flags;
688 1.45 hannken } */ *ap = v;
689 1.45 hannken struct vnode *vp = ap->a_vp;
690 1.45 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
691 1.46 hannken int error;
692 1.45 hannken
693 1.45 hannken /*
694 1.45 hannken * We will most likely end up in vclean which uses the v_usecount
695 1.46 hannken * to determine if a vnode is active. Take an extra reference on
696 1.46 hannken * the lower vnode so it will always close and inactivate.
697 1.45 hannken */
698 1.46 hannken vref(lvp);
699 1.45 hannken error = LAYERFS_DO_BYPASS(vp, ap);
700 1.46 hannken vrele(lvp);
701 1.45 hannken
702 1.45 hannken return error;
703 1.45 hannken }
704 1.45 hannken
705 1.45 hannken int
706 1.38 dsl layer_reclaim(void *v)
707 1.1 wrstuden {
708 1.66 riastrad struct vop_reclaim_v2_args /* {
709 1.1 wrstuden struct vnode *a_vp;
710 1.26 christos struct lwp *a_l;
711 1.1 wrstuden } */ *ap = v;
712 1.1 wrstuden struct vnode *vp = ap->a_vp;
713 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
714 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
715 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
716 1.1 wrstuden
717 1.66 riastrad VOP_UNLOCK(vp);
718 1.66 riastrad
719 1.1 wrstuden /*
720 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
721 1.1 wrstuden * decomissioned, so we have to be careful about calling
722 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set.
723 1.1 wrstuden */
724 1.42 rmind if (vp == lmp->layerm_rootvp) {
725 1.1 wrstuden /*
726 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
727 1.1 wrstuden * that someone forcably unmunted the underlying fs.
728 1.1 wrstuden *
729 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
730 1.1 wrstuden */
731 1.1 wrstuden lmp->layerm_rootvp = NULL;
732 1.1 wrstuden }
733 1.64 hannken
734 1.64 hannken mutex_enter(vp->v_interlock);
735 1.64 hannken KASSERT(vp->v_interlock == lowervp->v_interlock);
736 1.64 hannken lowervp->v_writecount -= vp->v_writecount;
737 1.64 hannken mutex_exit(vp->v_interlock);
738 1.64 hannken
739 1.42 rmind /* After this assignment, this node will not be re-used. */
740 1.1 wrstuden xp->layer_lowervp = NULL;
741 1.34 ad kmem_free(vp->v_data, lmp->layerm_size);
742 1.1 wrstuden vp->v_data = NULL;
743 1.29 chs vrele(lowervp);
744 1.34 ad
745 1.42 rmind return 0;
746 1.1 wrstuden }
747 1.1 wrstuden
748 1.1 wrstuden /*
749 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
750 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
751 1.1 wrstuden * i/o. :-)
752 1.1 wrstuden */
753 1.1 wrstuden int
754 1.38 dsl layer_bmap(void *v)
755 1.1 wrstuden {
756 1.1 wrstuden struct vop_bmap_args /* {
757 1.1 wrstuden struct vnode *a_vp;
758 1.1 wrstuden daddr_t a_bn;
759 1.1 wrstuden struct vnode **a_vpp;
760 1.1 wrstuden daddr_t *a_bnp;
761 1.1 wrstuden int *a_runp;
762 1.1 wrstuden } */ *ap = v;
763 1.1 wrstuden struct vnode *vp;
764 1.1 wrstuden
765 1.42 rmind vp = LAYERVPTOLOWERVP(ap->a_vp);
766 1.42 rmind ap->a_vp = vp;
767 1.1 wrstuden
768 1.42 rmind return VCALL(vp, ap->a_desc->vdesc_offset, ap);
769 1.1 wrstuden }
770 1.1 wrstuden
771 1.1 wrstuden int
772 1.38 dsl layer_print(void *v)
773 1.1 wrstuden {
774 1.1 wrstuden struct vop_print_args /* {
775 1.1 wrstuden struct vnode *a_vp;
776 1.1 wrstuden } */ *ap = v;
777 1.3 augustss struct vnode *vp = ap->a_vp;
778 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
779 1.42 rmind return 0;
780 1.1 wrstuden }
781 1.1 wrstuden
782 1.10 chs int
783 1.38 dsl layer_getpages(void *v)
784 1.10 chs {
785 1.10 chs struct vop_getpages_args /* {
786 1.10 chs struct vnode *a_vp;
787 1.10 chs voff_t a_offset;
788 1.10 chs struct vm_page **a_m;
789 1.10 chs int *a_count;
790 1.10 chs int a_centeridx;
791 1.10 chs vm_prot_t a_access_type;
792 1.10 chs int a_advice;
793 1.10 chs int a_flags;
794 1.10 chs } */ *ap = v;
795 1.10 chs struct vnode *vp = ap->a_vp;
796 1.65 hannken struct mount *mp = vp->v_mount;
797 1.65 hannken int error;
798 1.10 chs
799 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
800 1.10 chs
801 1.10 chs if (ap->a_flags & PGO_LOCKED) {
802 1.10 chs return EBUSY;
803 1.10 chs }
804 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
805 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
806 1.48 rmind
807 1.48 rmind /* Just pass the request on to the underlying layer. */
808 1.65 hannken mutex_exit(vp->v_interlock);
809 1.67 hannken fstrans_start(mp);
810 1.65 hannken mutex_enter(vp->v_interlock);
811 1.65 hannken if (mp == vp->v_mount) {
812 1.65 hannken /* Will release the interlock. */
813 1.65 hannken error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
814 1.65 hannken } else {
815 1.65 hannken mutex_exit(vp->v_interlock);
816 1.65 hannken error = ENOENT;
817 1.65 hannken }
818 1.65 hannken fstrans_done(mp);
819 1.65 hannken
820 1.65 hannken return error;
821 1.10 chs }
822 1.10 chs
823 1.10 chs int
824 1.38 dsl layer_putpages(void *v)
825 1.10 chs {
826 1.10 chs struct vop_putpages_args /* {
827 1.10 chs struct vnode *a_vp;
828 1.10 chs voff_t a_offlo;
829 1.10 chs voff_t a_offhi;
830 1.10 chs int a_flags;
831 1.10 chs } */ *ap = v;
832 1.10 chs struct vnode *vp = ap->a_vp;
833 1.10 chs
834 1.48 rmind KASSERT(mutex_owned(vp->v_interlock));
835 1.10 chs
836 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
837 1.48 rmind KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
838 1.48 rmind
839 1.30 chs if (ap->a_flags & PGO_RECLAIM) {
840 1.48 rmind mutex_exit(vp->v_interlock);
841 1.30 chs return 0;
842 1.30 chs }
843 1.48 rmind
844 1.48 rmind /* Just pass the request on to the underlying layer. */
845 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
846 1.1 wrstuden }
847