layer_vnops.c revision 1.71 1 1.71 christos /* $NetBSD: layer_vnops.c,v 1.71 2020/05/16 18:31:51 christos Exp $ */
2 1.1 wrstuden
3 1.1 wrstuden /*
4 1.1 wrstuden * Copyright (c) 1999 National Aeronautics & Space Administration
5 1.1 wrstuden * All rights reserved.
6 1.1 wrstuden *
7 1.1 wrstuden * This software was written by William Studenmund of the
8 1.6 wiz * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 1.1 wrstuden *
10 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
11 1.1 wrstuden * modification, are permitted provided that the following conditions
12 1.1 wrstuden * are met:
13 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
14 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
15 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
17 1.1 wrstuden * documentation and/or other materials provided with the distribution.
18 1.2 soren * 3. Neither the name of the National Aeronautics & Space Administration
19 1.1 wrstuden * nor the names of its contributors may be used to endorse or promote
20 1.1 wrstuden * products derived from this software without specific prior written
21 1.1 wrstuden * permission.
22 1.1 wrstuden *
23 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 1.1 wrstuden * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.1 wrstuden * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.1 wrstuden * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 1.1 wrstuden * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 1.1 wrstuden * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 wrstuden * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.1 wrstuden * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.1 wrstuden * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 wrstuden * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 wrstuden * POSSIBILITY OF SUCH DAMAGE.
34 1.1 wrstuden */
35 1.42 rmind
36 1.1 wrstuden /*
37 1.1 wrstuden * Copyright (c) 1992, 1993
38 1.1 wrstuden * The Regents of the University of California. All rights reserved.
39 1.1 wrstuden *
40 1.1 wrstuden * This code is derived from software contributed to Berkeley by
41 1.1 wrstuden * John Heidemann of the UCLA Ficus project.
42 1.1 wrstuden *
43 1.1 wrstuden * Redistribution and use in source and binary forms, with or without
44 1.1 wrstuden * modification, are permitted provided that the following conditions
45 1.1 wrstuden * are met:
46 1.1 wrstuden * 1. Redistributions of source code must retain the above copyright
47 1.1 wrstuden * notice, this list of conditions and the following disclaimer.
48 1.1 wrstuden * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 wrstuden * notice, this list of conditions and the following disclaimer in the
50 1.1 wrstuden * documentation and/or other materials provided with the distribution.
51 1.11 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 wrstuden * may be used to endorse or promote products derived from this software
53 1.1 wrstuden * without specific prior written permission.
54 1.1 wrstuden *
55 1.1 wrstuden * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 wrstuden * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 wrstuden * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 wrstuden * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 wrstuden * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 wrstuden * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 wrstuden * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 wrstuden * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 wrstuden * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 wrstuden * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 wrstuden * SUCH DAMAGE.
66 1.1 wrstuden *
67 1.1 wrstuden * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 1.1 wrstuden *
69 1.1 wrstuden * Ancestors:
70 1.1 wrstuden * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 1.31 enami * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 1.1 wrstuden * ...and...
73 1.1 wrstuden * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 1.1 wrstuden */
75 1.1 wrstuden
76 1.1 wrstuden /*
77 1.42 rmind * Generic layer vnode operations.
78 1.1 wrstuden *
79 1.42 rmind * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 1.42 rmind * the core implementation of stacked file-systems.
81 1.1 wrstuden *
82 1.42 rmind * The layerfs duplicates a portion of the file system name space under
83 1.42 rmind * a new name. In this respect, it is similar to the loopback file system.
84 1.42 rmind * It differs from the loopback fs in two respects: it is implemented using
85 1.42 rmind * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 1.42 rmind * lower-layer vnodes, not just over directory vnodes.
87 1.42 rmind *
88 1.42 rmind * OPERATION OF LAYERFS
89 1.42 rmind *
90 1.42 rmind * The layerfs is the minimum file system layer, bypassing all possible
91 1.42 rmind * operations to the lower layer for processing there. The majority of its
92 1.42 rmind * activity centers on the bypass routine, through which nearly all vnode
93 1.42 rmind * operations pass.
94 1.42 rmind *
95 1.42 rmind * The bypass routine accepts arbitrary vnode operations for handling by
96 1.42 rmind * the lower layer. It begins by examining vnode operation arguments and
97 1.42 rmind * replacing any layered nodes by their lower-layer equivalents. It then
98 1.42 rmind * invokes an operation on the lower layer. Finally, it replaces the
99 1.42 rmind * layered nodes in the arguments and, if a vnode is returned by the
100 1.42 rmind * operation, stacks a layered node on top of the returned vnode.
101 1.1 wrstuden *
102 1.1 wrstuden * The bypass routine in this file, layer_bypass(), is suitable for use
103 1.1 wrstuden * by many different layered filesystems. It can be used by multiple
104 1.1 wrstuden * filesystems simultaneously. Alternatively, a layered fs may provide
105 1.1 wrstuden * its own bypass routine, in which case layer_bypass() should be used as
106 1.1 wrstuden * a model. For instance, the main functionality provided by umapfs, the user
107 1.1 wrstuden * identity mapping file system, is handled by a custom bypass routine.
108 1.1 wrstuden *
109 1.1 wrstuden * Typically a layered fs registers its selected bypass routine as the
110 1.1 wrstuden * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 1.1 wrstuden * the filesystem must store the bypass entry point in the layerm_bypass
112 1.1 wrstuden * field of struct layer_mount. All other layer routines in this file will
113 1.42 rmind * use the layerm_bypass() routine.
114 1.1 wrstuden *
115 1.1 wrstuden * Although the bypass routine handles most operations outright, a number
116 1.42 rmind * of operations are special cased and handled by the layerfs. For instance,
117 1.42 rmind * layer_getattr() must change the fsid being returned. While layer_lock()
118 1.42 rmind * and layer_unlock() must handle any locking for the current vnode as well
119 1.42 rmind * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 1.42 rmind * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 1.42 rmind * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 1.42 rmind * rmdir, and symlink) change the locking state within the operation. Ideally
123 1.42 rmind * these operations should not change the lock state, but should be changed
124 1.42 rmind * to let the caller of the function unlock them. Otherwise, all intermediate
125 1.42 rmind * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 1.1 wrstuden * the necessary locking at their layer.
127 1.1 wrstuden *
128 1.42 rmind * INSTANTIATING VNODE STACKS
129 1.1 wrstuden *
130 1.42 rmind * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 1.42 rmind * stacking two VFSes. The initial mount creates a single vnode stack for
132 1.42 rmind * the root of the new layerfs. All other vnode stacks are created as a
133 1.42 rmind * result of vnode operations on this or other layerfs vnode stacks.
134 1.1 wrstuden *
135 1.42 rmind * New vnode stacks come into existence as a result of an operation which
136 1.42 rmind * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 1.1 wrstuden * vnode before returning it to the caller.
138 1.1 wrstuden *
139 1.42 rmind * For example, imagine mounting a null layer with:
140 1.1 wrstuden *
141 1.42 rmind * "mount_null /usr/include /dev/layer/null"
142 1.1 wrstuden *
143 1.42 rmind * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 1.42 rmind * which was created when the null layer was mounted). Now consider opening
145 1.42 rmind * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 1.42 rmind * This operation would bypass through to the lower layer which would return
147 1.42 rmind * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 1.42 rmind * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 1.42 rmind * Later operations on the layerfs-node "sys" will repeat this process when
150 1.42 rmind * constructing other vnode stacks.
151 1.1 wrstuden *
152 1.1 wrstuden * INVOKING OPERATIONS ON LOWER LAYERS
153 1.1 wrstuden *
154 1.42 rmind * There are two techniques to invoke operations on a lower layer when the
155 1.42 rmind * operation cannot be completely bypassed. Each method is appropriate in
156 1.42 rmind * different situations. In both cases, it is the responsibility of the
157 1.42 rmind * aliasing layer to make the operation arguments "correct" for the lower
158 1.42 rmind * layer by mapping any vnode arguments to the lower layer.
159 1.42 rmind *
160 1.42 rmind * The first approach is to call the aliasing layer's bypass routine. This
161 1.42 rmind * method is most suitable when you wish to invoke the operation currently
162 1.42 rmind * being handled on the lower layer. It has the advantage that the bypass
163 1.42 rmind * routine already must do argument mapping. An example of this is
164 1.42 rmind * layer_getattr().
165 1.42 rmind *
166 1.42 rmind * A second approach is to directly invoke vnode operations on the lower
167 1.42 rmind * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 1.42 rmind * is that it is easy to invoke arbitrary operations on the lower layer.
169 1.42 rmind * The disadvantage is that vnode's arguments must be manually mapped.
170 1.1 wrstuden */
171 1.8 lukem
172 1.8 lukem #include <sys/cdefs.h>
173 1.71 christos __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.71 2020/05/16 18:31:51 christos Exp $");
174 1.1 wrstuden
175 1.1 wrstuden #include <sys/param.h>
176 1.1 wrstuden #include <sys/systm.h>
177 1.1 wrstuden #include <sys/proc.h>
178 1.1 wrstuden #include <sys/time.h>
179 1.1 wrstuden #include <sys/vnode.h>
180 1.1 wrstuden #include <sys/mount.h>
181 1.1 wrstuden #include <sys/namei.h>
182 1.34 ad #include <sys/kmem.h>
183 1.1 wrstuden #include <sys/buf.h>
184 1.27 elad #include <sys/kauth.h>
185 1.60 hannken #include <sys/fcntl.h>
186 1.65 hannken #include <sys/fstrans.h>
187 1.27 elad
188 1.1 wrstuden #include <miscfs/genfs/layer.h>
189 1.1 wrstuden #include <miscfs/genfs/layer_extern.h>
190 1.1 wrstuden #include <miscfs/genfs/genfs.h>
191 1.50 hannken #include <miscfs/specfs/specdev.h>
192 1.1 wrstuden
193 1.1 wrstuden /*
194 1.1 wrstuden * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
195 1.1 wrstuden * routine by John Heidemann.
196 1.1 wrstuden * The new element for this version is that the whole nullfs
197 1.40 hannken * system gained the concept of locks on the lower node.
198 1.1 wrstuden * The 10-Apr-92 version was optimized for speed, throwing away some
199 1.1 wrstuden * safety checks. It should still always work, but it's not as
200 1.1 wrstuden * robust to programmer errors.
201 1.1 wrstuden *
202 1.1 wrstuden * In general, we map all vnodes going down and unmap them on the way back.
203 1.1 wrstuden *
204 1.1 wrstuden * Also, some BSD vnode operations have the side effect of vrele'ing
205 1.1 wrstuden * their arguments. With stacking, the reference counts are held
206 1.1 wrstuden * by the upper node, not the lower one, so we must handle these
207 1.1 wrstuden * side-effects here. This is not of concern in Sun-derived systems
208 1.1 wrstuden * since there are no such side-effects.
209 1.1 wrstuden *
210 1.1 wrstuden * New for the 08-June-99 version: we also handle operations which unlock
211 1.1 wrstuden * the passed-in node (typically they vput the node).
212 1.1 wrstuden *
213 1.1 wrstuden * This makes the following assumptions:
214 1.1 wrstuden * - only one returned vpp
215 1.1 wrstuden * - no INOUT vpp's (Sun's vop_open has one of these)
216 1.1 wrstuden * - the vnode operation vector of the first vnode should be used
217 1.1 wrstuden * to determine what implementation of the op should be invoked
218 1.1 wrstuden * - all mapped vnodes are of our vnode-type (NEEDSWORK:
219 1.1 wrstuden * problems on rmdir'ing mount points and renaming?)
220 1.24 perry */
221 1.1 wrstuden int
222 1.38 dsl layer_bypass(void *v)
223 1.1 wrstuden {
224 1.1 wrstuden struct vop_generic_args /* {
225 1.1 wrstuden struct vnodeop_desc *a_desc;
226 1.1 wrstuden <other random data follows, presumably>
227 1.1 wrstuden } */ *ap = v;
228 1.25 xtraeme int (**our_vnodeop_p)(void *);
229 1.3 augustss struct vnode **this_vp_p;
230 1.40 hannken int error;
231 1.1 wrstuden struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
232 1.1 wrstuden struct vnode **vps_p[VDESC_MAX_VPS];
233 1.1 wrstuden struct vnode ***vppp;
234 1.33 dyoung struct mount *mp;
235 1.1 wrstuden struct vnodeop_desc *descp = ap->a_desc;
236 1.1 wrstuden int reles, i, flags;
237 1.1 wrstuden
238 1.37 plunky #ifdef DIAGNOSTIC
239 1.1 wrstuden /*
240 1.1 wrstuden * We require at least one vp.
241 1.1 wrstuden */
242 1.1 wrstuden if (descp->vdesc_vp_offsets == NULL ||
243 1.1 wrstuden descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
244 1.20 yamt panic("%s: no vp's in map.\n", __func__);
245 1.1 wrstuden #endif
246 1.1 wrstuden
247 1.20 yamt vps_p[0] =
248 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
249 1.1 wrstuden vp0 = *vps_p[0];
250 1.33 dyoung mp = vp0->v_mount;
251 1.33 dyoung flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
252 1.1 wrstuden our_vnodeop_p = vp0->v_op;
253 1.1 wrstuden
254 1.1 wrstuden if (flags & LAYERFS_MBYPASSDEBUG)
255 1.20 yamt printf("%s: %s\n", __func__, descp->vdesc_name);
256 1.1 wrstuden
257 1.1 wrstuden /*
258 1.1 wrstuden * Map the vnodes going in.
259 1.1 wrstuden * Later, we'll invoke the operation based on
260 1.1 wrstuden * the first mapped vnode's operation vector.
261 1.1 wrstuden */
262 1.1 wrstuden reles = descp->vdesc_flags;
263 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
264 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
265 1.1 wrstuden break; /* bail out at end of list */
266 1.24 perry vps_p[i] = this_vp_p =
267 1.20 yamt VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
268 1.20 yamt ap);
269 1.1 wrstuden /*
270 1.1 wrstuden * We're not guaranteed that any but the first vnode
271 1.1 wrstuden * are of our type. Check for and don't map any
272 1.1 wrstuden * that aren't. (We must always map first vp or vclean fails.)
273 1.1 wrstuden */
274 1.1 wrstuden if (i && (*this_vp_p == NULL ||
275 1.1 wrstuden (*this_vp_p)->v_op != our_vnodeop_p)) {
276 1.1 wrstuden old_vps[i] = NULL;
277 1.1 wrstuden } else {
278 1.1 wrstuden old_vps[i] = *this_vp_p;
279 1.1 wrstuden *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
280 1.1 wrstuden /*
281 1.1 wrstuden * XXX - Several operations have the side effect
282 1.1 wrstuden * of vrele'ing their vp's. We must account for
283 1.1 wrstuden * that. (This should go away in the future.)
284 1.1 wrstuden */
285 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
286 1.39 pooka vref(*this_vp_p);
287 1.1 wrstuden }
288 1.1 wrstuden }
289 1.1 wrstuden
290 1.1 wrstuden /*
291 1.1 wrstuden * Call the operation on the lower layer
292 1.1 wrstuden * with the modified argument structure.
293 1.1 wrstuden */
294 1.1 wrstuden error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
295 1.1 wrstuden
296 1.1 wrstuden /*
297 1.1 wrstuden * Maintain the illusion of call-by-value
298 1.1 wrstuden * by restoring vnodes in the argument structure
299 1.1 wrstuden * to their original value.
300 1.1 wrstuden */
301 1.1 wrstuden reles = descp->vdesc_flags;
302 1.1 wrstuden for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
303 1.1 wrstuden if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
304 1.1 wrstuden break; /* bail out at end of list */
305 1.1 wrstuden if (old_vps[i]) {
306 1.1 wrstuden *(vps_p[i]) = old_vps[i];
307 1.1 wrstuden if (reles & VDESC_VP0_WILLRELE)
308 1.1 wrstuden vrele(*(vps_p[i]));
309 1.1 wrstuden }
310 1.1 wrstuden }
311 1.1 wrstuden
312 1.1 wrstuden /*
313 1.1 wrstuden * Map the possible out-going vpp
314 1.1 wrstuden * (Assumes that the lower layer always returns
315 1.1 wrstuden * a VREF'ed vpp unless it gets an error.)
316 1.1 wrstuden */
317 1.47 rmind if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
318 1.1 wrstuden vppp = VOPARG_OFFSETTO(struct vnode***,
319 1.20 yamt descp->vdesc_vpp_offset, ap);
320 1.1 wrstuden /*
321 1.52 hannken * Only vop_lookup, vop_create, vop_makedir, vop_mknod
322 1.52 hannken * and vop_symlink return vpp's. vop_lookup doesn't call bypass
323 1.1 wrstuden * as a lookup on "." would generate a locking error.
324 1.52 hannken * So all the calls which get us here have a unlocked vpp. :-)
325 1.1 wrstuden */
326 1.33 dyoung error = layer_node_create(mp, **vppp, *vppp);
327 1.19 yamt if (error) {
328 1.52 hannken vrele(**vppp);
329 1.19 yamt **vppp = NULL;
330 1.19 yamt }
331 1.1 wrstuden }
332 1.42 rmind return error;
333 1.1 wrstuden }
334 1.1 wrstuden
335 1.1 wrstuden /*
336 1.1 wrstuden * We have to carry on the locking protocol on the layer vnodes
337 1.1 wrstuden * as we progress through the tree. We also have to enforce read-only
338 1.1 wrstuden * if this layer is mounted read-only.
339 1.1 wrstuden */
340 1.1 wrstuden int
341 1.38 dsl layer_lookup(void *v)
342 1.1 wrstuden {
343 1.54 hannken struct vop_lookup_v2_args /* {
344 1.1 wrstuden struct vnodeop_desc *a_desc;
345 1.1 wrstuden struct vnode * a_dvp;
346 1.1 wrstuden struct vnode ** a_vpp;
347 1.1 wrstuden struct componentname * a_cnp;
348 1.1 wrstuden } */ *ap = v;
349 1.1 wrstuden struct componentname *cnp = ap->a_cnp;
350 1.29 chs struct vnode *dvp, *lvp, *ldvp;
351 1.42 rmind int error, flags = cnp->cn_flags;
352 1.1 wrstuden
353 1.1 wrstuden dvp = ap->a_dvp;
354 1.1 wrstuden
355 1.1 wrstuden if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
356 1.51 dholland (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
357 1.51 dholland *ap->a_vpp = NULL;
358 1.42 rmind return EROFS;
359 1.51 dholland }
360 1.1 wrstuden
361 1.1 wrstuden ldvp = LAYERVPTOLOWERVP(dvp);
362 1.1 wrstuden ap->a_dvp = ldvp;
363 1.1 wrstuden error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
364 1.29 chs lvp = *ap->a_vpp;
365 1.18 yamt *ap->a_vpp = NULL;
366 1.1 wrstuden
367 1.1 wrstuden if (error == EJUSTRETURN && (flags & ISLASTCN) &&
368 1.1 wrstuden (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
369 1.1 wrstuden (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
370 1.1 wrstuden error = EROFS;
371 1.29 chs
372 1.1 wrstuden /*
373 1.24 perry * We must do the same locking and unlocking at this layer as
374 1.29 chs * is done in the layers below us.
375 1.1 wrstuden */
376 1.29 chs if (ldvp == lvp) {
377 1.1 wrstuden /*
378 1.36 dholland * Got the same object back, because we looked up ".",
379 1.36 dholland * or ".." in the root node of a mount point.
380 1.36 dholland * So we make another reference to dvp and return it.
381 1.1 wrstuden */
382 1.39 pooka vref(dvp);
383 1.1 wrstuden *ap->a_vpp = dvp;
384 1.29 chs vrele(lvp);
385 1.29 chs } else if (lvp != NULL) {
386 1.54 hannken /* Note: dvp and ldvp are both locked. */
387 1.69 ad KASSERT(error != ENOLCK);
388 1.29 chs error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
389 1.19 yamt if (error) {
390 1.54 hannken vrele(lvp);
391 1.19 yamt }
392 1.1 wrstuden }
393 1.42 rmind return error;
394 1.1 wrstuden }
395 1.1 wrstuden
396 1.1 wrstuden /*
397 1.1 wrstuden * Setattr call. Disallow write attempts if the layer is mounted read-only.
398 1.1 wrstuden */
399 1.1 wrstuden int
400 1.38 dsl layer_setattr(void *v)
401 1.1 wrstuden {
402 1.1 wrstuden struct vop_setattr_args /* {
403 1.1 wrstuden struct vnodeop_desc *a_desc;
404 1.1 wrstuden struct vnode *a_vp;
405 1.1 wrstuden struct vattr *a_vap;
406 1.27 elad kauth_cred_t a_cred;
407 1.26 christos struct lwp *a_l;
408 1.1 wrstuden } */ *ap = v;
409 1.1 wrstuden struct vnode *vp = ap->a_vp;
410 1.1 wrstuden struct vattr *vap = ap->a_vap;
411 1.1 wrstuden
412 1.1 wrstuden if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
413 1.1 wrstuden vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
414 1.1 wrstuden vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
415 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_RDONLY))
416 1.42 rmind return EROFS;
417 1.1 wrstuden if (vap->va_size != VNOVAL) {
418 1.1 wrstuden switch (vp->v_type) {
419 1.1 wrstuden case VDIR:
420 1.42 rmind return EISDIR;
421 1.1 wrstuden case VCHR:
422 1.1 wrstuden case VBLK:
423 1.1 wrstuden case VSOCK:
424 1.1 wrstuden case VFIFO:
425 1.42 rmind return 0;
426 1.1 wrstuden case VREG:
427 1.1 wrstuden case VLNK:
428 1.1 wrstuden default:
429 1.1 wrstuden /*
430 1.1 wrstuden * Disallow write attempts if the filesystem is
431 1.1 wrstuden * mounted read-only.
432 1.1 wrstuden */
433 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
434 1.42 rmind return EROFS;
435 1.1 wrstuden }
436 1.1 wrstuden }
437 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
438 1.1 wrstuden }
439 1.1 wrstuden
440 1.1 wrstuden /*
441 1.1 wrstuden * We handle getattr only to change the fsid.
442 1.1 wrstuden */
443 1.1 wrstuden int
444 1.38 dsl layer_getattr(void *v)
445 1.1 wrstuden {
446 1.1 wrstuden struct vop_getattr_args /* {
447 1.1 wrstuden struct vnode *a_vp;
448 1.1 wrstuden struct vattr *a_vap;
449 1.27 elad kauth_cred_t a_cred;
450 1.26 christos struct lwp *a_l;
451 1.1 wrstuden } */ *ap = v;
452 1.1 wrstuden struct vnode *vp = ap->a_vp;
453 1.1 wrstuden int error;
454 1.1 wrstuden
455 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
456 1.42 rmind if (error) {
457 1.42 rmind return error;
458 1.42 rmind }
459 1.1 wrstuden /* Requires that arguments be restored. */
460 1.15 christos ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
461 1.42 rmind return 0;
462 1.1 wrstuden }
463 1.1 wrstuden
464 1.1 wrstuden int
465 1.38 dsl layer_access(void *v)
466 1.1 wrstuden {
467 1.1 wrstuden struct vop_access_args /* {
468 1.1 wrstuden struct vnode *a_vp;
469 1.71 christos accmode_t a_accmode;
470 1.27 elad kauth_cred_t a_cred;
471 1.26 christos struct lwp *a_l;
472 1.1 wrstuden } */ *ap = v;
473 1.1 wrstuden struct vnode *vp = ap->a_vp;
474 1.71 christos accmode_t accmode = ap->a_accmode;
475 1.1 wrstuden
476 1.1 wrstuden /*
477 1.1 wrstuden * Disallow write attempts on read-only layers;
478 1.1 wrstuden * unless the file is a socket, fifo, or a block or
479 1.1 wrstuden * character device resident on the file system.
480 1.1 wrstuden */
481 1.71 christos if (accmode & VWRITE) {
482 1.1 wrstuden switch (vp->v_type) {
483 1.1 wrstuden case VDIR:
484 1.1 wrstuden case VLNK:
485 1.1 wrstuden case VREG:
486 1.1 wrstuden if (vp->v_mount->mnt_flag & MNT_RDONLY)
487 1.42 rmind return EROFS;
488 1.1 wrstuden break;
489 1.1 wrstuden default:
490 1.1 wrstuden break;
491 1.1 wrstuden }
492 1.1 wrstuden }
493 1.42 rmind return LAYERFS_DO_BYPASS(vp, ap);
494 1.1 wrstuden }
495 1.1 wrstuden
496 1.1 wrstuden /*
497 1.60 hannken * We must handle open to be able to catch MNT_NODEV and friends
498 1.60 hannken * and increment the lower v_writecount.
499 1.1 wrstuden */
500 1.1 wrstuden int
501 1.38 dsl layer_open(void *v)
502 1.1 wrstuden {
503 1.42 rmind struct vop_open_args /* {
504 1.42 rmind const struct vnodeop_desc *a_desc;
505 1.42 rmind struct vnode *a_vp;
506 1.42 rmind int a_mode;
507 1.42 rmind kauth_cred_t a_cred;
508 1.42 rmind } */ *ap = v;
509 1.1 wrstuden struct vnode *vp = ap->a_vp;
510 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
511 1.60 hannken int error;
512 1.1 wrstuden
513 1.60 hannken if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
514 1.1 wrstuden (vp->v_mount->mnt_flag & MNT_NODEV))
515 1.1 wrstuden return ENXIO;
516 1.1 wrstuden
517 1.60 hannken error = LAYERFS_DO_BYPASS(vp, ap);
518 1.60 hannken if (error == 0 && (ap->a_mode & FWRITE)) {
519 1.60 hannken mutex_enter(lvp->v_interlock);
520 1.60 hannken lvp->v_writecount++;
521 1.60 hannken mutex_exit(lvp->v_interlock);
522 1.60 hannken }
523 1.60 hannken return error;
524 1.60 hannken }
525 1.60 hannken
526 1.60 hannken /*
527 1.60 hannken * We must handle close to decrement the lower v_writecount.
528 1.60 hannken */
529 1.60 hannken int
530 1.60 hannken layer_close(void *v)
531 1.60 hannken {
532 1.60 hannken struct vop_close_args /* {
533 1.60 hannken const struct vnodeop_desc *a_desc;
534 1.60 hannken struct vnode *a_vp;
535 1.60 hannken int a_fflag;
536 1.60 hannken kauth_cred_t a_cred;
537 1.60 hannken } */ *ap = v;
538 1.60 hannken struct vnode *vp = ap->a_vp;
539 1.60 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
540 1.60 hannken
541 1.60 hannken if ((ap->a_fflag & FWRITE)) {
542 1.60 hannken mutex_enter(lvp->v_interlock);
543 1.60 hannken KASSERT(lvp->v_writecount > 0);
544 1.60 hannken lvp->v_writecount--;
545 1.60 hannken mutex_exit(lvp->v_interlock);
546 1.60 hannken }
547 1.1 wrstuden return LAYERFS_DO_BYPASS(vp, ap);
548 1.1 wrstuden }
549 1.1 wrstuden
550 1.1 wrstuden /*
551 1.1 wrstuden * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
552 1.1 wrstuden * syncing the underlying vnodes, since they'll be fsync'ed when
553 1.42 rmind * reclaimed; otherwise, pass it through to the underlying layer.
554 1.1 wrstuden *
555 1.1 wrstuden * XXX Do we still need to worry about shallow fsync?
556 1.1 wrstuden */
557 1.1 wrstuden int
558 1.38 dsl layer_fsync(void *v)
559 1.1 wrstuden {
560 1.1 wrstuden struct vop_fsync_args /* {
561 1.1 wrstuden struct vnode *a_vp;
562 1.27 elad kauth_cred_t a_cred;
563 1.1 wrstuden int a_flags;
564 1.4 fvdl off_t offlo;
565 1.4 fvdl off_t offhi;
566 1.26 christos struct lwp *a_l;
567 1.1 wrstuden } */ *ap = v;
568 1.50 hannken int error;
569 1.1 wrstuden
570 1.1 wrstuden if (ap->a_flags & FSYNC_RECLAIM) {
571 1.1 wrstuden return 0;
572 1.1 wrstuden }
573 1.50 hannken if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
574 1.50 hannken error = spec_fsync(v);
575 1.50 hannken if (error)
576 1.50 hannken return error;
577 1.50 hannken }
578 1.42 rmind return LAYERFS_DO_BYPASS(ap->a_vp, ap);
579 1.1 wrstuden }
580 1.1 wrstuden
581 1.1 wrstuden int
582 1.38 dsl layer_inactive(void *v)
583 1.1 wrstuden {
584 1.62 riastrad struct vop_inactive_v2_args /* {
585 1.1 wrstuden struct vnode *a_vp;
586 1.34 ad bool *a_recycle;
587 1.1 wrstuden } */ *ap = v;
588 1.5 enami struct vnode *vp = ap->a_vp;
589 1.1 wrstuden
590 1.1 wrstuden /*
591 1.44 hannken * If we did a remove, don't cache the node.
592 1.34 ad */
593 1.44 hannken *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
594 1.34 ad
595 1.34 ad /*
596 1.1 wrstuden * Do nothing (and _don't_ bypass).
597 1.1 wrstuden * Wait to vrele lowervp until reclaim,
598 1.1 wrstuden * so that until then our layer_node is in the
599 1.1 wrstuden * cache and reusable.
600 1.1 wrstuden *
601 1.1 wrstuden * NEEDSWORK: Someday, consider inactive'ing
602 1.1 wrstuden * the lowervp and then trying to reactivate it
603 1.1 wrstuden * with capabilities (v_id)
604 1.1 wrstuden * like they do in the name lookup cache code.
605 1.1 wrstuden * That's too much work for now.
606 1.1 wrstuden */
607 1.62 riastrad
608 1.42 rmind return 0;
609 1.1 wrstuden }
610 1.1 wrstuden
611 1.1 wrstuden int
612 1.38 dsl layer_remove(void *v)
613 1.16 wrstuden {
614 1.63 riastrad struct vop_remove_v2_args /* {
615 1.63 riastrad struct vnode *a_dvp;
616 1.16 wrstuden struct vnode *a_vp;
617 1.16 wrstuden struct componentname *a_cnp;
618 1.16 wrstuden } */ *ap = v;
619 1.42 rmind struct vnode *vp = ap->a_vp;
620 1.42 rmind int error;
621 1.16 wrstuden
622 1.16 wrstuden vref(vp);
623 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
624 1.42 rmind if (error == 0) {
625 1.16 wrstuden VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
626 1.42 rmind }
627 1.16 wrstuden vrele(vp);
628 1.16 wrstuden
629 1.42 rmind return error;
630 1.16 wrstuden }
631 1.16 wrstuden
632 1.16 wrstuden int
633 1.38 dsl layer_rename(void *v)
634 1.17 yamt {
635 1.17 yamt struct vop_rename_args /* {
636 1.17 yamt struct vnode *a_fdvp;
637 1.17 yamt struct vnode *a_fvp;
638 1.17 yamt struct componentname *a_fcnp;
639 1.17 yamt struct vnode *a_tdvp;
640 1.17 yamt struct vnode *a_tvp;
641 1.17 yamt struct componentname *a_tcnp;
642 1.17 yamt } */ *ap = v;
643 1.42 rmind struct vnode *fdvp = ap->a_fdvp, *tvp;
644 1.17 yamt int error;
645 1.17 yamt
646 1.17 yamt tvp = ap->a_tvp;
647 1.17 yamt if (tvp) {
648 1.17 yamt if (tvp->v_mount != fdvp->v_mount)
649 1.17 yamt tvp = NULL;
650 1.17 yamt else
651 1.17 yamt vref(tvp);
652 1.17 yamt }
653 1.17 yamt error = LAYERFS_DO_BYPASS(fdvp, ap);
654 1.17 yamt if (tvp) {
655 1.17 yamt if (error == 0)
656 1.17 yamt VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
657 1.17 yamt vrele(tvp);
658 1.17 yamt }
659 1.42 rmind return error;
660 1.17 yamt }
661 1.17 yamt
662 1.17 yamt int
663 1.38 dsl layer_rmdir(void *v)
664 1.23 hannken {
665 1.63 riastrad struct vop_rmdir_v2_args /* {
666 1.23 hannken struct vnode *a_dvp;
667 1.23 hannken struct vnode *a_vp;
668 1.23 hannken struct componentname *a_cnp;
669 1.23 hannken } */ *ap = v;
670 1.23 hannken int error;
671 1.23 hannken struct vnode *vp = ap->a_vp;
672 1.23 hannken
673 1.23 hannken vref(vp);
674 1.42 rmind error = LAYERFS_DO_BYPASS(vp, ap);
675 1.42 rmind if (error == 0) {
676 1.23 hannken VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
677 1.42 rmind }
678 1.23 hannken vrele(vp);
679 1.23 hannken
680 1.42 rmind return error;
681 1.23 hannken }
682 1.23 hannken
683 1.23 hannken int
684 1.45 hannken layer_revoke(void *v)
685 1.45 hannken {
686 1.45 hannken struct vop_revoke_args /* {
687 1.45 hannken struct vnode *a_vp;
688 1.45 hannken int a_flags;
689 1.45 hannken } */ *ap = v;
690 1.45 hannken struct vnode *vp = ap->a_vp;
691 1.45 hannken struct vnode *lvp = LAYERVPTOLOWERVP(vp);
692 1.46 hannken int error;
693 1.45 hannken
694 1.45 hannken /*
695 1.70 ad * We will most likely end up in vclean which uses the usecount
696 1.46 hannken * to determine if a vnode is active. Take an extra reference on
697 1.46 hannken * the lower vnode so it will always close and inactivate.
698 1.45 hannken */
699 1.46 hannken vref(lvp);
700 1.45 hannken error = LAYERFS_DO_BYPASS(vp, ap);
701 1.46 hannken vrele(lvp);
702 1.45 hannken
703 1.45 hannken return error;
704 1.45 hannken }
705 1.45 hannken
706 1.45 hannken int
707 1.38 dsl layer_reclaim(void *v)
708 1.1 wrstuden {
709 1.66 riastrad struct vop_reclaim_v2_args /* {
710 1.1 wrstuden struct vnode *a_vp;
711 1.26 christos struct lwp *a_l;
712 1.1 wrstuden } */ *ap = v;
713 1.1 wrstuden struct vnode *vp = ap->a_vp;
714 1.1 wrstuden struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
715 1.1 wrstuden struct layer_node *xp = VTOLAYER(vp);
716 1.1 wrstuden struct vnode *lowervp = xp->layer_lowervp;
717 1.1 wrstuden
718 1.66 riastrad VOP_UNLOCK(vp);
719 1.66 riastrad
720 1.1 wrstuden /*
721 1.1 wrstuden * Note: in vop_reclaim, the node's struct lock has been
722 1.1 wrstuden * decomissioned, so we have to be careful about calling
723 1.34 ad * VOP's on ourself. We must be careful as VXLOCK is set.
724 1.1 wrstuden */
725 1.42 rmind if (vp == lmp->layerm_rootvp) {
726 1.1 wrstuden /*
727 1.1 wrstuden * Oops! We no longer have a root node. Most likely reason is
728 1.1 wrstuden * that someone forcably unmunted the underlying fs.
729 1.1 wrstuden *
730 1.1 wrstuden * Now getting the root vnode will fail. We're dead. :-(
731 1.1 wrstuden */
732 1.1 wrstuden lmp->layerm_rootvp = NULL;
733 1.1 wrstuden }
734 1.64 hannken
735 1.64 hannken mutex_enter(vp->v_interlock);
736 1.64 hannken KASSERT(vp->v_interlock == lowervp->v_interlock);
737 1.64 hannken lowervp->v_writecount -= vp->v_writecount;
738 1.64 hannken mutex_exit(vp->v_interlock);
739 1.64 hannken
740 1.42 rmind /* After this assignment, this node will not be re-used. */
741 1.1 wrstuden xp->layer_lowervp = NULL;
742 1.34 ad kmem_free(vp->v_data, lmp->layerm_size);
743 1.1 wrstuden vp->v_data = NULL;
744 1.29 chs vrele(lowervp);
745 1.34 ad
746 1.42 rmind return 0;
747 1.1 wrstuden }
748 1.1 wrstuden
749 1.1 wrstuden /*
750 1.1 wrstuden * We just feed the returned vnode up to the caller - there's no need
751 1.1 wrstuden * to build a layer node on top of the node on which we're going to do
752 1.1 wrstuden * i/o. :-)
753 1.1 wrstuden */
754 1.1 wrstuden int
755 1.38 dsl layer_bmap(void *v)
756 1.1 wrstuden {
757 1.1 wrstuden struct vop_bmap_args /* {
758 1.1 wrstuden struct vnode *a_vp;
759 1.1 wrstuden daddr_t a_bn;
760 1.1 wrstuden struct vnode **a_vpp;
761 1.1 wrstuden daddr_t *a_bnp;
762 1.1 wrstuden int *a_runp;
763 1.1 wrstuden } */ *ap = v;
764 1.1 wrstuden struct vnode *vp;
765 1.1 wrstuden
766 1.42 rmind vp = LAYERVPTOLOWERVP(ap->a_vp);
767 1.42 rmind ap->a_vp = vp;
768 1.1 wrstuden
769 1.42 rmind return VCALL(vp, ap->a_desc->vdesc_offset, ap);
770 1.1 wrstuden }
771 1.1 wrstuden
772 1.1 wrstuden int
773 1.38 dsl layer_print(void *v)
774 1.1 wrstuden {
775 1.1 wrstuden struct vop_print_args /* {
776 1.1 wrstuden struct vnode *a_vp;
777 1.1 wrstuden } */ *ap = v;
778 1.3 augustss struct vnode *vp = ap->a_vp;
779 1.1 wrstuden printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
780 1.42 rmind return 0;
781 1.1 wrstuden }
782 1.1 wrstuden
783 1.10 chs int
784 1.38 dsl layer_getpages(void *v)
785 1.10 chs {
786 1.10 chs struct vop_getpages_args /* {
787 1.10 chs struct vnode *a_vp;
788 1.10 chs voff_t a_offset;
789 1.10 chs struct vm_page **a_m;
790 1.10 chs int *a_count;
791 1.10 chs int a_centeridx;
792 1.10 chs vm_prot_t a_access_type;
793 1.10 chs int a_advice;
794 1.10 chs int a_flags;
795 1.10 chs } */ *ap = v;
796 1.10 chs struct vnode *vp = ap->a_vp;
797 1.65 hannken struct mount *mp = vp->v_mount;
798 1.65 hannken int error;
799 1.68 ad krw_t op;
800 1.10 chs
801 1.68 ad KASSERT(rw_lock_held(vp->v_uobj.vmobjlock));
802 1.10 chs
803 1.10 chs if (ap->a_flags & PGO_LOCKED) {
804 1.10 chs return EBUSY;
805 1.10 chs }
806 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
807 1.68 ad KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);
808 1.48 rmind
809 1.48 rmind /* Just pass the request on to the underlying layer. */
810 1.68 ad op = rw_lock_op(vp->v_uobj.vmobjlock);
811 1.68 ad rw_exit(vp->v_uobj.vmobjlock);
812 1.67 hannken fstrans_start(mp);
813 1.68 ad rw_enter(vp->v_uobj.vmobjlock, op);
814 1.65 hannken if (mp == vp->v_mount) {
815 1.68 ad /* Will release the lock. */
816 1.65 hannken error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
817 1.65 hannken } else {
818 1.68 ad rw_exit(vp->v_uobj.vmobjlock);
819 1.65 hannken error = ENOENT;
820 1.65 hannken }
821 1.65 hannken fstrans_done(mp);
822 1.65 hannken
823 1.65 hannken return error;
824 1.10 chs }
825 1.10 chs
826 1.10 chs int
827 1.38 dsl layer_putpages(void *v)
828 1.10 chs {
829 1.10 chs struct vop_putpages_args /* {
830 1.10 chs struct vnode *a_vp;
831 1.10 chs voff_t a_offlo;
832 1.10 chs voff_t a_offhi;
833 1.10 chs int a_flags;
834 1.10 chs } */ *ap = v;
835 1.10 chs struct vnode *vp = ap->a_vp;
836 1.10 chs
837 1.68 ad KASSERT(rw_write_held(vp->v_uobj.vmobjlock));
838 1.10 chs
839 1.10 chs ap->a_vp = LAYERVPTOLOWERVP(vp);
840 1.68 ad KASSERT(vp->v_uobj.vmobjlock == ap->a_vp->v_uobj.vmobjlock);
841 1.48 rmind
842 1.30 chs if (ap->a_flags & PGO_RECLAIM) {
843 1.68 ad rw_exit(vp->v_uobj.vmobjlock);
844 1.30 chs return 0;
845 1.30 chs }
846 1.48 rmind
847 1.48 rmind /* Just pass the request on to the underlying layer. */
848 1.48 rmind return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
849 1.1 wrstuden }
850