layer_vnops.c revision 1.16 1 /* $NetBSD: layer_vnops.c,v 1.16 2004/05/28 18:55:20 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.16 2004/05/28 18:55:20 wrstuden Exp $
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.16 2004/05/28 18:55:20 wrstuden Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249
250
251 /*
252 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 * routine by John Heidemann.
254 * The new element for this version is that the whole nullfs
255 * system gained the concept of locks on the lower node, and locks on
256 * our nodes. When returning from a call to the lower layer, we may
257 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 * macros provide this functionality.
259 * The 10-Apr-92 version was optimized for speed, throwing away some
260 * safety checks. It should still always work, but it's not as
261 * robust to programmer errors.
262 * Define SAFETY to include some error checking code.
263 *
264 * In general, we map all vnodes going down and unmap them on the way back.
265 *
266 * Also, some BSD vnode operations have the side effect of vrele'ing
267 * their arguments. With stacking, the reference counts are held
268 * by the upper node, not the lower one, so we must handle these
269 * side-effects here. This is not of concern in Sun-derived systems
270 * since there are no such side-effects.
271 *
272 * New for the 08-June-99 version: we also handle operations which unlock
273 * the passed-in node (typically they vput the node).
274 *
275 * This makes the following assumptions:
276 * - only one returned vpp
277 * - no INOUT vpp's (Sun's vop_open has one of these)
278 * - the vnode operation vector of the first vnode should be used
279 * to determine what implementation of the op should be invoked
280 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 * problems on rmdir'ing mount points and renaming?)
282 */
283 int
284 layer_bypass(v)
285 void *v;
286 {
287 struct vop_generic_args /* {
288 struct vnodeop_desc *a_desc;
289 <other random data follows, presumably>
290 } */ *ap = v;
291 int (**our_vnodeop_p) __P((void *));
292 struct vnode **this_vp_p;
293 int error, error1;
294 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 struct vnode **vps_p[VDESC_MAX_VPS];
296 struct vnode ***vppp;
297 struct vnodeop_desc *descp = ap->a_desc;
298 int reles, i, flags;
299
300 #ifdef SAFETY
301 /*
302 * We require at least one vp.
303 */
304 if (descp->vdesc_vp_offsets == NULL ||
305 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 panic ("layer_bypass: no vp's in map.\n");
307 #endif
308
309 vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
310 vp0 = *vps_p[0];
311 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
312 our_vnodeop_p = vp0->v_op;
313
314 if (flags & LAYERFS_MBYPASSDEBUG)
315 printf ("layer_bypass: %s\n", descp->vdesc_name);
316
317 /*
318 * Map the vnodes going in.
319 * Later, we'll invoke the operation based on
320 * the first mapped vnode's operation vector.
321 */
322 reles = descp->vdesc_flags;
323 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 break; /* bail out at end of list */
326 vps_p[i] = this_vp_p =
327 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
328 /*
329 * We're not guaranteed that any but the first vnode
330 * are of our type. Check for and don't map any
331 * that aren't. (We must always map first vp or vclean fails.)
332 */
333 if (i && (*this_vp_p == NULL ||
334 (*this_vp_p)->v_op != our_vnodeop_p)) {
335 old_vps[i] = NULL;
336 } else {
337 old_vps[i] = *this_vp_p;
338 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
339 /*
340 * XXX - Several operations have the side effect
341 * of vrele'ing their vp's. We must account for
342 * that. (This should go away in the future.)
343 */
344 if (reles & VDESC_VP0_WILLRELE)
345 VREF(*this_vp_p);
346 }
347
348 }
349
350 /*
351 * Call the operation on the lower layer
352 * with the modified argument structure.
353 */
354 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
355
356 /*
357 * Maintain the illusion of call-by-value
358 * by restoring vnodes in the argument structure
359 * to their original value.
360 */
361 reles = descp->vdesc_flags;
362 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
363 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
364 break; /* bail out at end of list */
365 if (old_vps[i]) {
366 *(vps_p[i]) = old_vps[i];
367 if (reles & VDESC_VP0_WILLUNLOCK)
368 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
369 if (reles & VDESC_VP0_WILLRELE)
370 vrele(*(vps_p[i]));
371 }
372 }
373
374 /*
375 * Map the possible out-going vpp
376 * (Assumes that the lower layer always returns
377 * a VREF'ed vpp unless it gets an error.)
378 */
379 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
380 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
381 !error) {
382 /*
383 * XXX - even though some ops have vpp returned vp's,
384 * several ops actually vrele this before returning.
385 * We must avoid these ops.
386 * (This should go away when these ops are regularized.)
387 */
388 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
389 goto out;
390 vppp = VOPARG_OFFSETTO(struct vnode***,
391 descp->vdesc_vpp_offset,ap);
392 /*
393 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
394 * vop_mknod, and vop_symlink return vpp's. vop_bmap
395 * doesn't call bypass as the lower vpp is fine (we're just
396 * going to do i/o on it). vop_loookup doesn't call bypass
397 * as a lookup on "." would generate a locking error.
398 * So all the calls which get us here have a locked vpp. :-)
399 */
400 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
401 }
402
403 out:
404 return (error);
405 }
406
407 /*
408 * We have to carry on the locking protocol on the layer vnodes
409 * as we progress through the tree. We also have to enforce read-only
410 * if this layer is mounted read-only.
411 */
412 int
413 layer_lookup(v)
414 void *v;
415 {
416 struct vop_lookup_args /* {
417 struct vnodeop_desc *a_desc;
418 struct vnode * a_dvp;
419 struct vnode ** a_vpp;
420 struct componentname * a_cnp;
421 } */ *ap = v;
422 struct componentname *cnp = ap->a_cnp;
423 int flags = cnp->cn_flags;
424 struct vnode *dvp, *vp, *ldvp;
425 int error, r;
426
427 dvp = ap->a_dvp;
428
429 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
430 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
431 return (EROFS);
432
433 ldvp = LAYERVPTOLOWERVP(dvp);
434 ap->a_dvp = ldvp;
435 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
436 vp = *ap->a_vpp;
437
438 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
439 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
441 error = EROFS;
442 /*
443 * We must do the same locking and unlocking at this layer as
444 * is done in the layers below us. It used to be we would try
445 * to guess based on what was set with the flags and error codes.
446 *
447 * But that doesn't work. So now we have the underlying VOP_LOOKUP
448 * tell us if it released the parent vnode, and we adjust the
449 * upper node accordingly. We can't just look at the lock states
450 * of the lower nodes as someone else might have come along and
451 * locked the parent node after our call to VOP_LOOKUP locked it.
452 */
453 if ((cnp->cn_flags & PDIRUNLOCK)) {
454 LAYERFS_UPPERUNLOCK(dvp, 0, r);
455 }
456 if (ldvp == vp) {
457 /*
458 * Did lookup on "." or ".." in the root node of a mount point.
459 * So we return dvp after a VREF.
460 */
461 *ap->a_vpp = dvp;
462 VREF(dvp);
463 vrele(vp);
464 } else if (vp != NULL) {
465 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
466 }
467 return (error);
468 }
469
470 /*
471 * Setattr call. Disallow write attempts if the layer is mounted read-only.
472 */
473 int
474 layer_setattr(v)
475 void *v;
476 {
477 struct vop_setattr_args /* {
478 struct vnodeop_desc *a_desc;
479 struct vnode *a_vp;
480 struct vattr *a_vap;
481 struct ucred *a_cred;
482 struct proc *a_p;
483 } */ *ap = v;
484 struct vnode *vp = ap->a_vp;
485 struct vattr *vap = ap->a_vap;
486
487 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
488 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
489 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
490 (vp->v_mount->mnt_flag & MNT_RDONLY))
491 return (EROFS);
492 if (vap->va_size != VNOVAL) {
493 switch (vp->v_type) {
494 case VDIR:
495 return (EISDIR);
496 case VCHR:
497 case VBLK:
498 case VSOCK:
499 case VFIFO:
500 return (0);
501 case VREG:
502 case VLNK:
503 default:
504 /*
505 * Disallow write attempts if the filesystem is
506 * mounted read-only.
507 */
508 if (vp->v_mount->mnt_flag & MNT_RDONLY)
509 return (EROFS);
510 }
511 }
512 return (LAYERFS_DO_BYPASS(vp, ap));
513 }
514
515 /*
516 * We handle getattr only to change the fsid.
517 */
518 int
519 layer_getattr(v)
520 void *v;
521 {
522 struct vop_getattr_args /* {
523 struct vnode *a_vp;
524 struct vattr *a_vap;
525 struct ucred *a_cred;
526 struct proc *a_p;
527 } */ *ap = v;
528 struct vnode *vp = ap->a_vp;
529 int error;
530
531 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
532 return (error);
533 /* Requires that arguments be restored. */
534 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
535 return (0);
536 }
537
538 int
539 layer_access(v)
540 void *v;
541 {
542 struct vop_access_args /* {
543 struct vnode *a_vp;
544 int a_mode;
545 struct ucred *a_cred;
546 struct proc *a_p;
547 } */ *ap = v;
548 struct vnode *vp = ap->a_vp;
549 mode_t mode = ap->a_mode;
550
551 /*
552 * Disallow write attempts on read-only layers;
553 * unless the file is a socket, fifo, or a block or
554 * character device resident on the file system.
555 */
556 if (mode & VWRITE) {
557 switch (vp->v_type) {
558 case VDIR:
559 case VLNK:
560 case VREG:
561 if (vp->v_mount->mnt_flag & MNT_RDONLY)
562 return (EROFS);
563 break;
564 default:
565 break;
566 }
567 }
568 return (LAYERFS_DO_BYPASS(vp, ap));
569 }
570
571 /*
572 * We must handle open to be able to catch MNT_NODEV and friends.
573 */
574 int
575 layer_open(v)
576 void *v;
577 {
578 struct vop_open_args *ap = v;
579 struct vnode *vp = ap->a_vp;
580 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
581
582 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
583 (vp->v_mount->mnt_flag & MNT_NODEV))
584 return ENXIO;
585
586 return LAYERFS_DO_BYPASS(vp, ap);
587 }
588
589 /*
590 * We need to process our own vnode lock and then clear the
591 * interlock flag as it applies only to our vnode, not the
592 * vnodes below us on the stack.
593 */
594 int
595 layer_lock(v)
596 void *v;
597 {
598 struct vop_lock_args /* {
599 struct vnode *a_vp;
600 int a_flags;
601 struct proc *a_p;
602 } */ *ap = v;
603 struct vnode *vp = ap->a_vp, *lowervp;
604 int flags = ap->a_flags, error;
605
606 if (vp->v_vnlock != NULL) {
607 /*
608 * The lower level has exported a struct lock to us. Use
609 * it so that all vnodes in the stack lock and unlock
610 * simultaneously. Note: we don't DRAIN the lock as DRAIN
611 * decommissions the lock - just because our vnode is
612 * going away doesn't mean the struct lock below us is.
613 * LK_EXCLUSIVE is fine.
614 */
615 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
616 return(lockmgr(vp->v_vnlock,
617 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
618 &vp->v_interlock));
619 } else
620 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
621 } else {
622 /*
623 * Ahh well. It would be nice if the fs we're over would
624 * export a struct lock for us to use, but it doesn't.
625 *
626 * To prevent race conditions involving doing a lookup
627 * on "..", we have to lock the lower node, then lock our
628 * node. Most of the time it won't matter that we lock our
629 * node (as any locking would need the lower one locked
630 * first). But we can LK_DRAIN the upper lock as a step
631 * towards decomissioning it.
632 */
633 lowervp = LAYERVPTOLOWERVP(vp);
634 if (flags & LK_INTERLOCK) {
635 simple_unlock(&vp->v_interlock);
636 flags &= ~LK_INTERLOCK;
637 }
638 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
639 error = VOP_LOCK(lowervp,
640 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
641 } else
642 error = VOP_LOCK(lowervp, flags);
643 if (error)
644 return (error);
645 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
646 VOP_UNLOCK(lowervp, 0);
647 }
648 return (error);
649 }
650 }
651
652 /*
653 */
654 int
655 layer_unlock(v)
656 void *v;
657 {
658 struct vop_unlock_args /* {
659 struct vnode *a_vp;
660 int a_flags;
661 struct proc *a_p;
662 } */ *ap = v;
663 struct vnode *vp = ap->a_vp;
664 int flags = ap->a_flags;
665
666 if (vp->v_vnlock != NULL) {
667 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
668 &vp->v_interlock));
669 } else {
670 if (flags & LK_INTERLOCK) {
671 simple_unlock(&vp->v_interlock);
672 flags &= ~LK_INTERLOCK;
673 }
674 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
675 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
676 &vp->v_interlock));
677 }
678 }
679
680 /*
681 * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
682 * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
683 */
684 int
685 layer_islocked(v)
686 void *v;
687 {
688 struct vop_islocked_args /* {
689 struct vnode *a_vp;
690 } */ *ap = v;
691 struct vnode *vp = ap->a_vp;
692
693 if (vp->v_vnlock != NULL)
694 return (lockstatus(vp->v_vnlock));
695 else
696 return (lockstatus(&vp->v_lock));
697 }
698
699 /*
700 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
701 * syncing the underlying vnodes, since they'll be fsync'ed when
702 * reclaimed; otherwise,
703 * pass it through to the underlying layer.
704 *
705 * XXX Do we still need to worry about shallow fsync?
706 */
707
708 int
709 layer_fsync(v)
710 void *v;
711 {
712 struct vop_fsync_args /* {
713 struct vnode *a_vp;
714 struct ucred *a_cred;
715 int a_flags;
716 off_t offlo;
717 off_t offhi;
718 struct proc *a_p;
719 } */ *ap = v;
720
721 if (ap->a_flags & FSYNC_RECLAIM) {
722 return 0;
723 }
724
725 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
726 }
727
728
729 int
730 layer_inactive(v)
731 void *v;
732 {
733 struct vop_inactive_args /* {
734 struct vnode *a_vp;
735 struct proc *a_p;
736 } */ *ap = v;
737 struct vnode *vp = ap->a_vp;
738
739 /*
740 * Do nothing (and _don't_ bypass).
741 * Wait to vrele lowervp until reclaim,
742 * so that until then our layer_node is in the
743 * cache and reusable.
744 *
745 * NEEDSWORK: Someday, consider inactive'ing
746 * the lowervp and then trying to reactivate it
747 * with capabilities (v_id)
748 * like they do in the name lookup cache code.
749 * That's too much work for now.
750 */
751 VOP_UNLOCK(vp, 0);
752
753 /*
754 * ..., but don't cache the device node. Also, if we did a
755 * remove, don't cache the node.
756 */
757 if (vp->v_type == VBLK || vp->v_type == VCHR
758 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
759 vgone(vp);
760 return (0);
761 }
762
763 int
764 layer_remove(v)
765 void *v;
766 {
767 struct vop_remove_args /* {
768 struct vonde *a_dvp;
769 struct vnode *a_vp;
770 struct componentname *a_cnp;
771 } */ *ap = v;
772
773 int error;
774 struct vnode *vp = ap->a_vp;
775
776 vref(vp);
777 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
778 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
779
780 vrele(vp);
781
782 return (error);
783 }
784
785 int
786 layer_reclaim(v)
787 void *v;
788 {
789 struct vop_reclaim_args /* {
790 struct vnode *a_vp;
791 struct proc *a_p;
792 } */ *ap = v;
793 struct vnode *vp = ap->a_vp;
794 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
795 struct layer_node *xp = VTOLAYER(vp);
796 struct vnode *lowervp = xp->layer_lowervp;
797
798 /*
799 * Note: in vop_reclaim, the node's struct lock has been
800 * decomissioned, so we have to be careful about calling
801 * VOP's on ourself. Even if we turned a LK_DRAIN into an
802 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
803 * set.
804 */
805 /* After this assignment, this node will not be re-used. */
806 if ((vp == lmp->layerm_rootvp)) {
807 /*
808 * Oops! We no longer have a root node. Most likely reason is
809 * that someone forcably unmunted the underlying fs.
810 *
811 * Now getting the root vnode will fail. We're dead. :-(
812 */
813 lmp->layerm_rootvp = NULL;
814 }
815 xp->layer_lowervp = NULL;
816 simple_lock(&lmp->layerm_hashlock);
817 LIST_REMOVE(xp, layer_hash);
818 simple_unlock(&lmp->layerm_hashlock);
819 FREE(vp->v_data, M_TEMP);
820 vp->v_data = NULL;
821 vrele (lowervp);
822 return (0);
823 }
824
825 /*
826 * We just feed the returned vnode up to the caller - there's no need
827 * to build a layer node on top of the node on which we're going to do
828 * i/o. :-)
829 */
830 int
831 layer_bmap(v)
832 void *v;
833 {
834 struct vop_bmap_args /* {
835 struct vnode *a_vp;
836 daddr_t a_bn;
837 struct vnode **a_vpp;
838 daddr_t *a_bnp;
839 int *a_runp;
840 } */ *ap = v;
841 struct vnode *vp;
842
843 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
844
845 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
846 }
847
848 int
849 layer_print(v)
850 void *v;
851 {
852 struct vop_print_args /* {
853 struct vnode *a_vp;
854 } */ *ap = v;
855 struct vnode *vp = ap->a_vp;
856 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
857 return (0);
858 }
859
860 /*
861 * XXX - vop_bwrite must be hand coded because it has no
862 * vnode in its arguments.
863 * This goes away with a merged VM/buffer cache.
864 */
865 int
866 layer_bwrite(v)
867 void *v;
868 {
869 struct vop_bwrite_args /* {
870 struct buf *a_bp;
871 } */ *ap = v;
872 struct buf *bp = ap->a_bp;
873 int error;
874 struct vnode *savedvp;
875
876 savedvp = bp->b_vp;
877 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
878
879 error = VOP_BWRITE(bp);
880
881 bp->b_vp = savedvp;
882
883 return (error);
884 }
885
886 int
887 layer_getpages(v)
888 void *v;
889 {
890 struct vop_getpages_args /* {
891 struct vnode *a_vp;
892 voff_t a_offset;
893 struct vm_page **a_m;
894 int *a_count;
895 int a_centeridx;
896 vm_prot_t a_access_type;
897 int a_advice;
898 int a_flags;
899 } */ *ap = v;
900 struct vnode *vp = ap->a_vp;
901 int error;
902
903 /*
904 * just pass the request on to the underlying layer.
905 */
906
907 if (ap->a_flags & PGO_LOCKED) {
908 return EBUSY;
909 }
910 ap->a_vp = LAYERVPTOLOWERVP(vp);
911 simple_unlock(&vp->v_interlock);
912 simple_lock(&ap->a_vp->v_interlock);
913 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
914 return error;
915 }
916
917 int
918 layer_putpages(v)
919 void *v;
920 {
921 struct vop_putpages_args /* {
922 struct vnode *a_vp;
923 voff_t a_offlo;
924 voff_t a_offhi;
925 int a_flags;
926 } */ *ap = v;
927 struct vnode *vp = ap->a_vp;
928 int error;
929
930 /*
931 * just pass the request on to the underlying layer.
932 */
933
934 ap->a_vp = LAYERVPTOLOWERVP(vp);
935 simple_unlock(&vp->v_interlock);
936 simple_lock(&ap->a_vp->v_interlock);
937 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
938 return error;
939 }
940