layer_vnops.c revision 1.18 1 /* $NetBSD: layer_vnops.c,v 1.18 2004/06/11 12:34:13 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.18 2004/06/11 12:34:13 yamt Exp $
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.18 2004/06/11 12:34:13 yamt Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249
250
251 /*
252 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 * routine by John Heidemann.
254 * The new element for this version is that the whole nullfs
255 * system gained the concept of locks on the lower node, and locks on
256 * our nodes. When returning from a call to the lower layer, we may
257 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 * macros provide this functionality.
259 * The 10-Apr-92 version was optimized for speed, throwing away some
260 * safety checks. It should still always work, but it's not as
261 * robust to programmer errors.
262 * Define SAFETY to include some error checking code.
263 *
264 * In general, we map all vnodes going down and unmap them on the way back.
265 *
266 * Also, some BSD vnode operations have the side effect of vrele'ing
267 * their arguments. With stacking, the reference counts are held
268 * by the upper node, not the lower one, so we must handle these
269 * side-effects here. This is not of concern in Sun-derived systems
270 * since there are no such side-effects.
271 *
272 * New for the 08-June-99 version: we also handle operations which unlock
273 * the passed-in node (typically they vput the node).
274 *
275 * This makes the following assumptions:
276 * - only one returned vpp
277 * - no INOUT vpp's (Sun's vop_open has one of these)
278 * - the vnode operation vector of the first vnode should be used
279 * to determine what implementation of the op should be invoked
280 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 * problems on rmdir'ing mount points and renaming?)
282 */
283 int
284 layer_bypass(v)
285 void *v;
286 {
287 struct vop_generic_args /* {
288 struct vnodeop_desc *a_desc;
289 <other random data follows, presumably>
290 } */ *ap = v;
291 int (**our_vnodeop_p) __P((void *));
292 struct vnode **this_vp_p;
293 int error, error1;
294 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 struct vnode **vps_p[VDESC_MAX_VPS];
296 struct vnode ***vppp;
297 struct vnodeop_desc *descp = ap->a_desc;
298 int reles, i, flags;
299
300 #ifdef SAFETY
301 /*
302 * We require at least one vp.
303 */
304 if (descp->vdesc_vp_offsets == NULL ||
305 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 panic ("layer_bypass: no vp's in map.\n");
307 #endif
308
309 vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
310 vp0 = *vps_p[0];
311 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
312 our_vnodeop_p = vp0->v_op;
313
314 if (flags & LAYERFS_MBYPASSDEBUG)
315 printf ("layer_bypass: %s\n", descp->vdesc_name);
316
317 /*
318 * Map the vnodes going in.
319 * Later, we'll invoke the operation based on
320 * the first mapped vnode's operation vector.
321 */
322 reles = descp->vdesc_flags;
323 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 break; /* bail out at end of list */
326 vps_p[i] = this_vp_p =
327 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
328 /*
329 * We're not guaranteed that any but the first vnode
330 * are of our type. Check for and don't map any
331 * that aren't. (We must always map first vp or vclean fails.)
332 */
333 if (i && (*this_vp_p == NULL ||
334 (*this_vp_p)->v_op != our_vnodeop_p)) {
335 old_vps[i] = NULL;
336 } else {
337 old_vps[i] = *this_vp_p;
338 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
339 /*
340 * XXX - Several operations have the side effect
341 * of vrele'ing their vp's. We must account for
342 * that. (This should go away in the future.)
343 */
344 if (reles & VDESC_VP0_WILLRELE)
345 VREF(*this_vp_p);
346 }
347
348 }
349
350 /*
351 * Call the operation on the lower layer
352 * with the modified argument structure.
353 */
354 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
355
356 /*
357 * Maintain the illusion of call-by-value
358 * by restoring vnodes in the argument structure
359 * to their original value.
360 */
361 reles = descp->vdesc_flags;
362 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
363 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
364 break; /* bail out at end of list */
365 if (old_vps[i]) {
366 *(vps_p[i]) = old_vps[i];
367 if (reles & VDESC_VP0_WILLUNLOCK)
368 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
369 if (reles & VDESC_VP0_WILLRELE)
370 vrele(*(vps_p[i]));
371 }
372 }
373
374 /*
375 * Map the possible out-going vpp
376 * (Assumes that the lower layer always returns
377 * a VREF'ed vpp unless it gets an error.)
378 */
379 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
380 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
381 !error) {
382 /*
383 * XXX - even though some ops have vpp returned vp's,
384 * several ops actually vrele this before returning.
385 * We must avoid these ops.
386 * (This should go away when these ops are regularized.)
387 */
388 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
389 goto out;
390 vppp = VOPARG_OFFSETTO(struct vnode***,
391 descp->vdesc_vpp_offset,ap);
392 /*
393 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
394 * vop_mknod, and vop_symlink return vpp's. vop_bmap
395 * doesn't call bypass as the lower vpp is fine (we're just
396 * going to do i/o on it). vop_loookup doesn't call bypass
397 * as a lookup on "." would generate a locking error.
398 * So all the calls which get us here have a locked vpp. :-)
399 */
400 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
401 }
402
403 out:
404 return (error);
405 }
406
407 /*
408 * We have to carry on the locking protocol on the layer vnodes
409 * as we progress through the tree. We also have to enforce read-only
410 * if this layer is mounted read-only.
411 */
412 int
413 layer_lookup(v)
414 void *v;
415 {
416 struct vop_lookup_args /* {
417 struct vnodeop_desc *a_desc;
418 struct vnode * a_dvp;
419 struct vnode ** a_vpp;
420 struct componentname * a_cnp;
421 } */ *ap = v;
422 struct componentname *cnp = ap->a_cnp;
423 int flags = cnp->cn_flags;
424 struct vnode *dvp, *vp, *ldvp;
425 int error, r;
426
427 dvp = ap->a_dvp;
428
429 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
430 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
431 return (EROFS);
432
433 ldvp = LAYERVPTOLOWERVP(dvp);
434 ap->a_dvp = ldvp;
435 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
436 vp = *ap->a_vpp;
437 *ap->a_vpp = NULL;
438
439 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
440 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
441 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
442 error = EROFS;
443 /*
444 * We must do the same locking and unlocking at this layer as
445 * is done in the layers below us. It used to be we would try
446 * to guess based on what was set with the flags and error codes.
447 *
448 * But that doesn't work. So now we have the underlying VOP_LOOKUP
449 * tell us if it released the parent vnode, and we adjust the
450 * upper node accordingly. We can't just look at the lock states
451 * of the lower nodes as someone else might have come along and
452 * locked the parent node after our call to VOP_LOOKUP locked it.
453 */
454 if ((cnp->cn_flags & PDIRUNLOCK)) {
455 LAYERFS_UPPERUNLOCK(dvp, 0, r);
456 }
457 if (ldvp == vp) {
458 /*
459 * Did lookup on "." or ".." in the root node of a mount point.
460 * So we return dvp after a VREF.
461 */
462 *ap->a_vpp = dvp;
463 VREF(dvp);
464 vrele(vp);
465 } else if (vp != NULL) {
466 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
467 }
468 return (error);
469 }
470
471 /*
472 * Setattr call. Disallow write attempts if the layer is mounted read-only.
473 */
474 int
475 layer_setattr(v)
476 void *v;
477 {
478 struct vop_setattr_args /* {
479 struct vnodeop_desc *a_desc;
480 struct vnode *a_vp;
481 struct vattr *a_vap;
482 struct ucred *a_cred;
483 struct proc *a_p;
484 } */ *ap = v;
485 struct vnode *vp = ap->a_vp;
486 struct vattr *vap = ap->a_vap;
487
488 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
489 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
490 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
491 (vp->v_mount->mnt_flag & MNT_RDONLY))
492 return (EROFS);
493 if (vap->va_size != VNOVAL) {
494 switch (vp->v_type) {
495 case VDIR:
496 return (EISDIR);
497 case VCHR:
498 case VBLK:
499 case VSOCK:
500 case VFIFO:
501 return (0);
502 case VREG:
503 case VLNK:
504 default:
505 /*
506 * Disallow write attempts if the filesystem is
507 * mounted read-only.
508 */
509 if (vp->v_mount->mnt_flag & MNT_RDONLY)
510 return (EROFS);
511 }
512 }
513 return (LAYERFS_DO_BYPASS(vp, ap));
514 }
515
516 /*
517 * We handle getattr only to change the fsid.
518 */
519 int
520 layer_getattr(v)
521 void *v;
522 {
523 struct vop_getattr_args /* {
524 struct vnode *a_vp;
525 struct vattr *a_vap;
526 struct ucred *a_cred;
527 struct proc *a_p;
528 } */ *ap = v;
529 struct vnode *vp = ap->a_vp;
530 int error;
531
532 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
533 return (error);
534 /* Requires that arguments be restored. */
535 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
536 return (0);
537 }
538
539 int
540 layer_access(v)
541 void *v;
542 {
543 struct vop_access_args /* {
544 struct vnode *a_vp;
545 int a_mode;
546 struct ucred *a_cred;
547 struct proc *a_p;
548 } */ *ap = v;
549 struct vnode *vp = ap->a_vp;
550 mode_t mode = ap->a_mode;
551
552 /*
553 * Disallow write attempts on read-only layers;
554 * unless the file is a socket, fifo, or a block or
555 * character device resident on the file system.
556 */
557 if (mode & VWRITE) {
558 switch (vp->v_type) {
559 case VDIR:
560 case VLNK:
561 case VREG:
562 if (vp->v_mount->mnt_flag & MNT_RDONLY)
563 return (EROFS);
564 break;
565 default:
566 break;
567 }
568 }
569 return (LAYERFS_DO_BYPASS(vp, ap));
570 }
571
572 /*
573 * We must handle open to be able to catch MNT_NODEV and friends.
574 */
575 int
576 layer_open(v)
577 void *v;
578 {
579 struct vop_open_args *ap = v;
580 struct vnode *vp = ap->a_vp;
581 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
582
583 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
584 (vp->v_mount->mnt_flag & MNT_NODEV))
585 return ENXIO;
586
587 return LAYERFS_DO_BYPASS(vp, ap);
588 }
589
590 /*
591 * We need to process our own vnode lock and then clear the
592 * interlock flag as it applies only to our vnode, not the
593 * vnodes below us on the stack.
594 */
595 int
596 layer_lock(v)
597 void *v;
598 {
599 struct vop_lock_args /* {
600 struct vnode *a_vp;
601 int a_flags;
602 struct proc *a_p;
603 } */ *ap = v;
604 struct vnode *vp = ap->a_vp, *lowervp;
605 int flags = ap->a_flags, error;
606
607 if (vp->v_vnlock != NULL) {
608 /*
609 * The lower level has exported a struct lock to us. Use
610 * it so that all vnodes in the stack lock and unlock
611 * simultaneously. Note: we don't DRAIN the lock as DRAIN
612 * decommissions the lock - just because our vnode is
613 * going away doesn't mean the struct lock below us is.
614 * LK_EXCLUSIVE is fine.
615 */
616 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
617 return(lockmgr(vp->v_vnlock,
618 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
619 &vp->v_interlock));
620 } else
621 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
622 } else {
623 /*
624 * Ahh well. It would be nice if the fs we're over would
625 * export a struct lock for us to use, but it doesn't.
626 *
627 * To prevent race conditions involving doing a lookup
628 * on "..", we have to lock the lower node, then lock our
629 * node. Most of the time it won't matter that we lock our
630 * node (as any locking would need the lower one locked
631 * first). But we can LK_DRAIN the upper lock as a step
632 * towards decomissioning it.
633 */
634 lowervp = LAYERVPTOLOWERVP(vp);
635 if (flags & LK_INTERLOCK) {
636 simple_unlock(&vp->v_interlock);
637 flags &= ~LK_INTERLOCK;
638 }
639 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
640 error = VOP_LOCK(lowervp,
641 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
642 } else
643 error = VOP_LOCK(lowervp, flags);
644 if (error)
645 return (error);
646 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
647 VOP_UNLOCK(lowervp, 0);
648 }
649 return (error);
650 }
651 }
652
653 /*
654 */
655 int
656 layer_unlock(v)
657 void *v;
658 {
659 struct vop_unlock_args /* {
660 struct vnode *a_vp;
661 int a_flags;
662 struct proc *a_p;
663 } */ *ap = v;
664 struct vnode *vp = ap->a_vp;
665 int flags = ap->a_flags;
666
667 if (vp->v_vnlock != NULL) {
668 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
669 &vp->v_interlock));
670 } else {
671 if (flags & LK_INTERLOCK) {
672 simple_unlock(&vp->v_interlock);
673 flags &= ~LK_INTERLOCK;
674 }
675 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
676 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
677 &vp->v_interlock));
678 }
679 }
680
681 /*
682 * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
683 * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
684 */
685 int
686 layer_islocked(v)
687 void *v;
688 {
689 struct vop_islocked_args /* {
690 struct vnode *a_vp;
691 } */ *ap = v;
692 struct vnode *vp = ap->a_vp;
693
694 if (vp->v_vnlock != NULL)
695 return (lockstatus(vp->v_vnlock));
696 else
697 return (lockstatus(&vp->v_lock));
698 }
699
700 /*
701 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
702 * syncing the underlying vnodes, since they'll be fsync'ed when
703 * reclaimed; otherwise,
704 * pass it through to the underlying layer.
705 *
706 * XXX Do we still need to worry about shallow fsync?
707 */
708
709 int
710 layer_fsync(v)
711 void *v;
712 {
713 struct vop_fsync_args /* {
714 struct vnode *a_vp;
715 struct ucred *a_cred;
716 int a_flags;
717 off_t offlo;
718 off_t offhi;
719 struct proc *a_p;
720 } */ *ap = v;
721
722 if (ap->a_flags & FSYNC_RECLAIM) {
723 return 0;
724 }
725
726 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
727 }
728
729
730 int
731 layer_inactive(v)
732 void *v;
733 {
734 struct vop_inactive_args /* {
735 struct vnode *a_vp;
736 struct proc *a_p;
737 } */ *ap = v;
738 struct vnode *vp = ap->a_vp;
739
740 /*
741 * Do nothing (and _don't_ bypass).
742 * Wait to vrele lowervp until reclaim,
743 * so that until then our layer_node is in the
744 * cache and reusable.
745 *
746 * NEEDSWORK: Someday, consider inactive'ing
747 * the lowervp and then trying to reactivate it
748 * with capabilities (v_id)
749 * like they do in the name lookup cache code.
750 * That's too much work for now.
751 */
752 VOP_UNLOCK(vp, 0);
753
754 /*
755 * ..., but don't cache the device node. Also, if we did a
756 * remove, don't cache the node.
757 */
758 if (vp->v_type == VBLK || vp->v_type == VCHR
759 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
760 vgone(vp);
761 return (0);
762 }
763
764 int
765 layer_remove(v)
766 void *v;
767 {
768 struct vop_remove_args /* {
769 struct vonde *a_dvp;
770 struct vnode *a_vp;
771 struct componentname *a_cnp;
772 } */ *ap = v;
773
774 int error;
775 struct vnode *vp = ap->a_vp;
776
777 vref(vp);
778 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
779 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
780
781 vrele(vp);
782
783 return (error);
784 }
785
786 int
787 layer_rename(v)
788 void *v;
789 {
790 struct vop_rename_args /* {
791 struct vnode *a_fdvp;
792 struct vnode *a_fvp;
793 struct componentname *a_fcnp;
794 struct vnode *a_tdvp;
795 struct vnode *a_tvp;
796 struct componentname *a_tcnp;
797 } */ *ap = v;
798
799 int error;
800 struct vnode *fdvp = ap->a_fdvp;
801 struct vnode *tvp;
802
803 tvp = ap->a_tvp;
804 if (tvp) {
805 if (tvp->v_mount != fdvp->v_mount)
806 tvp = NULL;
807 else
808 vref(tvp);
809 }
810 error = LAYERFS_DO_BYPASS(fdvp, ap);
811 if (tvp) {
812 if (error == 0)
813 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
814 vrele(tvp);
815 }
816
817 return (error);
818 }
819
820 int
821 layer_reclaim(v)
822 void *v;
823 {
824 struct vop_reclaim_args /* {
825 struct vnode *a_vp;
826 struct proc *a_p;
827 } */ *ap = v;
828 struct vnode *vp = ap->a_vp;
829 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
830 struct layer_node *xp = VTOLAYER(vp);
831 struct vnode *lowervp = xp->layer_lowervp;
832
833 /*
834 * Note: in vop_reclaim, the node's struct lock has been
835 * decomissioned, so we have to be careful about calling
836 * VOP's on ourself. Even if we turned a LK_DRAIN into an
837 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
838 * set.
839 */
840 /* After this assignment, this node will not be re-used. */
841 if ((vp == lmp->layerm_rootvp)) {
842 /*
843 * Oops! We no longer have a root node. Most likely reason is
844 * that someone forcably unmunted the underlying fs.
845 *
846 * Now getting the root vnode will fail. We're dead. :-(
847 */
848 lmp->layerm_rootvp = NULL;
849 }
850 xp->layer_lowervp = NULL;
851 simple_lock(&lmp->layerm_hashlock);
852 LIST_REMOVE(xp, layer_hash);
853 simple_unlock(&lmp->layerm_hashlock);
854 FREE(vp->v_data, M_TEMP);
855 vp->v_data = NULL;
856 vrele (lowervp);
857 return (0);
858 }
859
860 /*
861 * We just feed the returned vnode up to the caller - there's no need
862 * to build a layer node on top of the node on which we're going to do
863 * i/o. :-)
864 */
865 int
866 layer_bmap(v)
867 void *v;
868 {
869 struct vop_bmap_args /* {
870 struct vnode *a_vp;
871 daddr_t a_bn;
872 struct vnode **a_vpp;
873 daddr_t *a_bnp;
874 int *a_runp;
875 } */ *ap = v;
876 struct vnode *vp;
877
878 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
879
880 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
881 }
882
883 int
884 layer_print(v)
885 void *v;
886 {
887 struct vop_print_args /* {
888 struct vnode *a_vp;
889 } */ *ap = v;
890 struct vnode *vp = ap->a_vp;
891 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
892 return (0);
893 }
894
895 /*
896 * XXX - vop_bwrite must be hand coded because it has no
897 * vnode in its arguments.
898 * This goes away with a merged VM/buffer cache.
899 */
900 int
901 layer_bwrite(v)
902 void *v;
903 {
904 struct vop_bwrite_args /* {
905 struct buf *a_bp;
906 } */ *ap = v;
907 struct buf *bp = ap->a_bp;
908 int error;
909 struct vnode *savedvp;
910
911 savedvp = bp->b_vp;
912 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
913
914 error = VOP_BWRITE(bp);
915
916 bp->b_vp = savedvp;
917
918 return (error);
919 }
920
921 int
922 layer_getpages(v)
923 void *v;
924 {
925 struct vop_getpages_args /* {
926 struct vnode *a_vp;
927 voff_t a_offset;
928 struct vm_page **a_m;
929 int *a_count;
930 int a_centeridx;
931 vm_prot_t a_access_type;
932 int a_advice;
933 int a_flags;
934 } */ *ap = v;
935 struct vnode *vp = ap->a_vp;
936 int error;
937
938 /*
939 * just pass the request on to the underlying layer.
940 */
941
942 if (ap->a_flags & PGO_LOCKED) {
943 return EBUSY;
944 }
945 ap->a_vp = LAYERVPTOLOWERVP(vp);
946 simple_unlock(&vp->v_interlock);
947 simple_lock(&ap->a_vp->v_interlock);
948 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
949 return error;
950 }
951
952 int
953 layer_putpages(v)
954 void *v;
955 {
956 struct vop_putpages_args /* {
957 struct vnode *a_vp;
958 voff_t a_offlo;
959 voff_t a_offhi;
960 int a_flags;
961 } */ *ap = v;
962 struct vnode *vp = ap->a_vp;
963 int error;
964
965 /*
966 * just pass the request on to the underlying layer.
967 */
968
969 ap->a_vp = LAYERVPTOLOWERVP(vp);
970 simple_unlock(&vp->v_interlock);
971 simple_lock(&ap->a_vp->v_interlock);
972 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
973 return error;
974 }
975