layer_vnops.c revision 1.19 1 /* $NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249
250
251 /*
252 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 * routine by John Heidemann.
254 * The new element for this version is that the whole nullfs
255 * system gained the concept of locks on the lower node, and locks on
256 * our nodes. When returning from a call to the lower layer, we may
257 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 * macros provide this functionality.
259 * The 10-Apr-92 version was optimized for speed, throwing away some
260 * safety checks. It should still always work, but it's not as
261 * robust to programmer errors.
262 * Define SAFETY to include some error checking code.
263 *
264 * In general, we map all vnodes going down and unmap them on the way back.
265 *
266 * Also, some BSD vnode operations have the side effect of vrele'ing
267 * their arguments. With stacking, the reference counts are held
268 * by the upper node, not the lower one, so we must handle these
269 * side-effects here. This is not of concern in Sun-derived systems
270 * since there are no such side-effects.
271 *
272 * New for the 08-June-99 version: we also handle operations which unlock
273 * the passed-in node (typically they vput the node).
274 *
275 * This makes the following assumptions:
276 * - only one returned vpp
277 * - no INOUT vpp's (Sun's vop_open has one of these)
278 * - the vnode operation vector of the first vnode should be used
279 * to determine what implementation of the op should be invoked
280 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 * problems on rmdir'ing mount points and renaming?)
282 */
283 int
284 layer_bypass(v)
285 void *v;
286 {
287 struct vop_generic_args /* {
288 struct vnodeop_desc *a_desc;
289 <other random data follows, presumably>
290 } */ *ap = v;
291 int (**our_vnodeop_p) __P((void *));
292 struct vnode **this_vp_p;
293 int error, error1;
294 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 struct vnode **vps_p[VDESC_MAX_VPS];
296 struct vnode ***vppp;
297 struct vnodeop_desc *descp = ap->a_desc;
298 int reles, i, flags;
299
300 #ifdef SAFETY
301 /*
302 * We require at least one vp.
303 */
304 if (descp->vdesc_vp_offsets == NULL ||
305 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 panic ("layer_bypass: no vp's in map.\n");
307 #endif
308
309 vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
310 vp0 = *vps_p[0];
311 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
312 our_vnodeop_p = vp0->v_op;
313
314 if (flags & LAYERFS_MBYPASSDEBUG)
315 printf ("layer_bypass: %s\n", descp->vdesc_name);
316
317 /*
318 * Map the vnodes going in.
319 * Later, we'll invoke the operation based on
320 * the first mapped vnode's operation vector.
321 */
322 reles = descp->vdesc_flags;
323 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 break; /* bail out at end of list */
326 vps_p[i] = this_vp_p =
327 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
328 /*
329 * We're not guaranteed that any but the first vnode
330 * are of our type. Check for and don't map any
331 * that aren't. (We must always map first vp or vclean fails.)
332 */
333 if (i && (*this_vp_p == NULL ||
334 (*this_vp_p)->v_op != our_vnodeop_p)) {
335 old_vps[i] = NULL;
336 } else {
337 old_vps[i] = *this_vp_p;
338 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
339 /*
340 * XXX - Several operations have the side effect
341 * of vrele'ing their vp's. We must account for
342 * that. (This should go away in the future.)
343 */
344 if (reles & VDESC_VP0_WILLRELE)
345 VREF(*this_vp_p);
346 }
347
348 }
349
350 /*
351 * Call the operation on the lower layer
352 * with the modified argument structure.
353 */
354 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
355
356 /*
357 * Maintain the illusion of call-by-value
358 * by restoring vnodes in the argument structure
359 * to their original value.
360 */
361 reles = descp->vdesc_flags;
362 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
363 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
364 break; /* bail out at end of list */
365 if (old_vps[i]) {
366 *(vps_p[i]) = old_vps[i];
367 if (reles & VDESC_VP0_WILLUNLOCK)
368 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
369 if (reles & VDESC_VP0_WILLRELE)
370 vrele(*(vps_p[i]));
371 }
372 }
373
374 /*
375 * Map the possible out-going vpp
376 * (Assumes that the lower layer always returns
377 * a VREF'ed vpp unless it gets an error.)
378 */
379 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
380 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
381 !error) {
382 /*
383 * XXX - even though some ops have vpp returned vp's,
384 * several ops actually vrele this before returning.
385 * We must avoid these ops.
386 * (This should go away when these ops are regularized.)
387 */
388 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
389 goto out;
390 vppp = VOPARG_OFFSETTO(struct vnode***,
391 descp->vdesc_vpp_offset,ap);
392 /*
393 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
394 * vop_mknod, and vop_symlink return vpp's. vop_bmap
395 * doesn't call bypass as the lower vpp is fine (we're just
396 * going to do i/o on it). vop_loookup doesn't call bypass
397 * as a lookup on "." would generate a locking error.
398 * So all the calls which get us here have a locked vpp. :-)
399 */
400 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
401 if (error) {
402 vput(**vppp);
403 **vppp = NULL;
404 }
405 }
406
407 out:
408 return (error);
409 }
410
411 /*
412 * We have to carry on the locking protocol on the layer vnodes
413 * as we progress through the tree. We also have to enforce read-only
414 * if this layer is mounted read-only.
415 */
416 int
417 layer_lookup(v)
418 void *v;
419 {
420 struct vop_lookup_args /* {
421 struct vnodeop_desc *a_desc;
422 struct vnode * a_dvp;
423 struct vnode ** a_vpp;
424 struct componentname * a_cnp;
425 } */ *ap = v;
426 struct componentname *cnp = ap->a_cnp;
427 int flags = cnp->cn_flags;
428 struct vnode *dvp, *vp, *ldvp;
429 int error, r;
430
431 dvp = ap->a_dvp;
432
433 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
434 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
435 return (EROFS);
436
437 ldvp = LAYERVPTOLOWERVP(dvp);
438 ap->a_dvp = ldvp;
439 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
440 vp = *ap->a_vpp;
441 *ap->a_vpp = NULL;
442
443 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
444 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
445 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
446 error = EROFS;
447 /*
448 * We must do the same locking and unlocking at this layer as
449 * is done in the layers below us. It used to be we would try
450 * to guess based on what was set with the flags and error codes.
451 *
452 * But that doesn't work. So now we have the underlying VOP_LOOKUP
453 * tell us if it released the parent vnode, and we adjust the
454 * upper node accordingly. We can't just look at the lock states
455 * of the lower nodes as someone else might have come along and
456 * locked the parent node after our call to VOP_LOOKUP locked it.
457 */
458 if ((cnp->cn_flags & PDIRUNLOCK)) {
459 LAYERFS_UPPERUNLOCK(dvp, 0, r);
460 }
461 if (ldvp == vp) {
462 /*
463 * Did lookup on "." or ".." in the root node of a mount point.
464 * So we return dvp after a VREF.
465 */
466 *ap->a_vpp = dvp;
467 VREF(dvp);
468 vrele(vp);
469 } else if (vp != NULL) {
470 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
471 if (error) {
472 vput(vp);
473 if (cnp->cn_flags & PDIRUNLOCK) {
474 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
475 cnp->cn_flags &= ~PDIRUNLOCK;
476 }
477 }
478 }
479 return (error);
480 }
481
482 /*
483 * Setattr call. Disallow write attempts if the layer is mounted read-only.
484 */
485 int
486 layer_setattr(v)
487 void *v;
488 {
489 struct vop_setattr_args /* {
490 struct vnodeop_desc *a_desc;
491 struct vnode *a_vp;
492 struct vattr *a_vap;
493 struct ucred *a_cred;
494 struct proc *a_p;
495 } */ *ap = v;
496 struct vnode *vp = ap->a_vp;
497 struct vattr *vap = ap->a_vap;
498
499 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
500 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
501 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
502 (vp->v_mount->mnt_flag & MNT_RDONLY))
503 return (EROFS);
504 if (vap->va_size != VNOVAL) {
505 switch (vp->v_type) {
506 case VDIR:
507 return (EISDIR);
508 case VCHR:
509 case VBLK:
510 case VSOCK:
511 case VFIFO:
512 return (0);
513 case VREG:
514 case VLNK:
515 default:
516 /*
517 * Disallow write attempts if the filesystem is
518 * mounted read-only.
519 */
520 if (vp->v_mount->mnt_flag & MNT_RDONLY)
521 return (EROFS);
522 }
523 }
524 return (LAYERFS_DO_BYPASS(vp, ap));
525 }
526
527 /*
528 * We handle getattr only to change the fsid.
529 */
530 int
531 layer_getattr(v)
532 void *v;
533 {
534 struct vop_getattr_args /* {
535 struct vnode *a_vp;
536 struct vattr *a_vap;
537 struct ucred *a_cred;
538 struct proc *a_p;
539 } */ *ap = v;
540 struct vnode *vp = ap->a_vp;
541 int error;
542
543 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
544 return (error);
545 /* Requires that arguments be restored. */
546 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
547 return (0);
548 }
549
550 int
551 layer_access(v)
552 void *v;
553 {
554 struct vop_access_args /* {
555 struct vnode *a_vp;
556 int a_mode;
557 struct ucred *a_cred;
558 struct proc *a_p;
559 } */ *ap = v;
560 struct vnode *vp = ap->a_vp;
561 mode_t mode = ap->a_mode;
562
563 /*
564 * Disallow write attempts on read-only layers;
565 * unless the file is a socket, fifo, or a block or
566 * character device resident on the file system.
567 */
568 if (mode & VWRITE) {
569 switch (vp->v_type) {
570 case VDIR:
571 case VLNK:
572 case VREG:
573 if (vp->v_mount->mnt_flag & MNT_RDONLY)
574 return (EROFS);
575 break;
576 default:
577 break;
578 }
579 }
580 return (LAYERFS_DO_BYPASS(vp, ap));
581 }
582
583 /*
584 * We must handle open to be able to catch MNT_NODEV and friends.
585 */
586 int
587 layer_open(v)
588 void *v;
589 {
590 struct vop_open_args *ap = v;
591 struct vnode *vp = ap->a_vp;
592 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
593
594 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
595 (vp->v_mount->mnt_flag & MNT_NODEV))
596 return ENXIO;
597
598 return LAYERFS_DO_BYPASS(vp, ap);
599 }
600
601 /*
602 * We need to process our own vnode lock and then clear the
603 * interlock flag as it applies only to our vnode, not the
604 * vnodes below us on the stack.
605 */
606 int
607 layer_lock(v)
608 void *v;
609 {
610 struct vop_lock_args /* {
611 struct vnode *a_vp;
612 int a_flags;
613 struct proc *a_p;
614 } */ *ap = v;
615 struct vnode *vp = ap->a_vp, *lowervp;
616 int flags = ap->a_flags, error;
617
618 if (vp->v_vnlock != NULL) {
619 /*
620 * The lower level has exported a struct lock to us. Use
621 * it so that all vnodes in the stack lock and unlock
622 * simultaneously. Note: we don't DRAIN the lock as DRAIN
623 * decommissions the lock - just because our vnode is
624 * going away doesn't mean the struct lock below us is.
625 * LK_EXCLUSIVE is fine.
626 */
627 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
628 return(lockmgr(vp->v_vnlock,
629 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
630 &vp->v_interlock));
631 } else
632 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
633 } else {
634 /*
635 * Ahh well. It would be nice if the fs we're over would
636 * export a struct lock for us to use, but it doesn't.
637 *
638 * To prevent race conditions involving doing a lookup
639 * on "..", we have to lock the lower node, then lock our
640 * node. Most of the time it won't matter that we lock our
641 * node (as any locking would need the lower one locked
642 * first). But we can LK_DRAIN the upper lock as a step
643 * towards decomissioning it.
644 */
645 lowervp = LAYERVPTOLOWERVP(vp);
646 if (flags & LK_INTERLOCK) {
647 simple_unlock(&vp->v_interlock);
648 flags &= ~LK_INTERLOCK;
649 }
650 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
651 error = VOP_LOCK(lowervp,
652 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
653 } else
654 error = VOP_LOCK(lowervp, flags);
655 if (error)
656 return (error);
657 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
658 VOP_UNLOCK(lowervp, 0);
659 }
660 return (error);
661 }
662 }
663
664 /*
665 */
666 int
667 layer_unlock(v)
668 void *v;
669 {
670 struct vop_unlock_args /* {
671 struct vnode *a_vp;
672 int a_flags;
673 struct proc *a_p;
674 } */ *ap = v;
675 struct vnode *vp = ap->a_vp;
676 int flags = ap->a_flags;
677
678 if (vp->v_vnlock != NULL) {
679 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
680 &vp->v_interlock));
681 } else {
682 if (flags & LK_INTERLOCK) {
683 simple_unlock(&vp->v_interlock);
684 flags &= ~LK_INTERLOCK;
685 }
686 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
687 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
688 &vp->v_interlock));
689 }
690 }
691
692 /*
693 * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
694 * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
695 */
696 int
697 layer_islocked(v)
698 void *v;
699 {
700 struct vop_islocked_args /* {
701 struct vnode *a_vp;
702 } */ *ap = v;
703 struct vnode *vp = ap->a_vp;
704
705 if (vp->v_vnlock != NULL)
706 return (lockstatus(vp->v_vnlock));
707 else
708 return (lockstatus(&vp->v_lock));
709 }
710
711 /*
712 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
713 * syncing the underlying vnodes, since they'll be fsync'ed when
714 * reclaimed; otherwise,
715 * pass it through to the underlying layer.
716 *
717 * XXX Do we still need to worry about shallow fsync?
718 */
719
720 int
721 layer_fsync(v)
722 void *v;
723 {
724 struct vop_fsync_args /* {
725 struct vnode *a_vp;
726 struct ucred *a_cred;
727 int a_flags;
728 off_t offlo;
729 off_t offhi;
730 struct proc *a_p;
731 } */ *ap = v;
732
733 if (ap->a_flags & FSYNC_RECLAIM) {
734 return 0;
735 }
736
737 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
738 }
739
740
741 int
742 layer_inactive(v)
743 void *v;
744 {
745 struct vop_inactive_args /* {
746 struct vnode *a_vp;
747 struct proc *a_p;
748 } */ *ap = v;
749 struct vnode *vp = ap->a_vp;
750
751 /*
752 * Do nothing (and _don't_ bypass).
753 * Wait to vrele lowervp until reclaim,
754 * so that until then our layer_node is in the
755 * cache and reusable.
756 *
757 * NEEDSWORK: Someday, consider inactive'ing
758 * the lowervp and then trying to reactivate it
759 * with capabilities (v_id)
760 * like they do in the name lookup cache code.
761 * That's too much work for now.
762 */
763 VOP_UNLOCK(vp, 0);
764
765 /*
766 * ..., but don't cache the device node. Also, if we did a
767 * remove, don't cache the node.
768 */
769 if (vp->v_type == VBLK || vp->v_type == VCHR
770 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
771 vgone(vp);
772 return (0);
773 }
774
775 int
776 layer_remove(v)
777 void *v;
778 {
779 struct vop_remove_args /* {
780 struct vonde *a_dvp;
781 struct vnode *a_vp;
782 struct componentname *a_cnp;
783 } */ *ap = v;
784
785 int error;
786 struct vnode *vp = ap->a_vp;
787
788 vref(vp);
789 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
790 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
791
792 vrele(vp);
793
794 return (error);
795 }
796
797 int
798 layer_rename(v)
799 void *v;
800 {
801 struct vop_rename_args /* {
802 struct vnode *a_fdvp;
803 struct vnode *a_fvp;
804 struct componentname *a_fcnp;
805 struct vnode *a_tdvp;
806 struct vnode *a_tvp;
807 struct componentname *a_tcnp;
808 } */ *ap = v;
809
810 int error;
811 struct vnode *fdvp = ap->a_fdvp;
812 struct vnode *tvp;
813
814 tvp = ap->a_tvp;
815 if (tvp) {
816 if (tvp->v_mount != fdvp->v_mount)
817 tvp = NULL;
818 else
819 vref(tvp);
820 }
821 error = LAYERFS_DO_BYPASS(fdvp, ap);
822 if (tvp) {
823 if (error == 0)
824 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
825 vrele(tvp);
826 }
827
828 return (error);
829 }
830
831 int
832 layer_reclaim(v)
833 void *v;
834 {
835 struct vop_reclaim_args /* {
836 struct vnode *a_vp;
837 struct proc *a_p;
838 } */ *ap = v;
839 struct vnode *vp = ap->a_vp;
840 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
841 struct layer_node *xp = VTOLAYER(vp);
842 struct vnode *lowervp = xp->layer_lowervp;
843
844 /*
845 * Note: in vop_reclaim, the node's struct lock has been
846 * decomissioned, so we have to be careful about calling
847 * VOP's on ourself. Even if we turned a LK_DRAIN into an
848 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
849 * set.
850 */
851 /* After this assignment, this node will not be re-used. */
852 if ((vp == lmp->layerm_rootvp)) {
853 /*
854 * Oops! We no longer have a root node. Most likely reason is
855 * that someone forcably unmunted the underlying fs.
856 *
857 * Now getting the root vnode will fail. We're dead. :-(
858 */
859 lmp->layerm_rootvp = NULL;
860 }
861 xp->layer_lowervp = NULL;
862 simple_lock(&lmp->layerm_hashlock);
863 LIST_REMOVE(xp, layer_hash);
864 simple_unlock(&lmp->layerm_hashlock);
865 FREE(vp->v_data, M_TEMP);
866 vp->v_data = NULL;
867 vrele (lowervp);
868 return (0);
869 }
870
871 /*
872 * We just feed the returned vnode up to the caller - there's no need
873 * to build a layer node on top of the node on which we're going to do
874 * i/o. :-)
875 */
876 int
877 layer_bmap(v)
878 void *v;
879 {
880 struct vop_bmap_args /* {
881 struct vnode *a_vp;
882 daddr_t a_bn;
883 struct vnode **a_vpp;
884 daddr_t *a_bnp;
885 int *a_runp;
886 } */ *ap = v;
887 struct vnode *vp;
888
889 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
890
891 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
892 }
893
894 int
895 layer_print(v)
896 void *v;
897 {
898 struct vop_print_args /* {
899 struct vnode *a_vp;
900 } */ *ap = v;
901 struct vnode *vp = ap->a_vp;
902 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
903 return (0);
904 }
905
906 /*
907 * XXX - vop_bwrite must be hand coded because it has no
908 * vnode in its arguments.
909 * This goes away with a merged VM/buffer cache.
910 */
911 int
912 layer_bwrite(v)
913 void *v;
914 {
915 struct vop_bwrite_args /* {
916 struct buf *a_bp;
917 } */ *ap = v;
918 struct buf *bp = ap->a_bp;
919 int error;
920 struct vnode *savedvp;
921
922 savedvp = bp->b_vp;
923 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
924
925 error = VOP_BWRITE(bp);
926
927 bp->b_vp = savedvp;
928
929 return (error);
930 }
931
932 int
933 layer_getpages(v)
934 void *v;
935 {
936 struct vop_getpages_args /* {
937 struct vnode *a_vp;
938 voff_t a_offset;
939 struct vm_page **a_m;
940 int *a_count;
941 int a_centeridx;
942 vm_prot_t a_access_type;
943 int a_advice;
944 int a_flags;
945 } */ *ap = v;
946 struct vnode *vp = ap->a_vp;
947 int error;
948
949 /*
950 * just pass the request on to the underlying layer.
951 */
952
953 if (ap->a_flags & PGO_LOCKED) {
954 return EBUSY;
955 }
956 ap->a_vp = LAYERVPTOLOWERVP(vp);
957 simple_unlock(&vp->v_interlock);
958 simple_lock(&ap->a_vp->v_interlock);
959 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
960 return error;
961 }
962
963 int
964 layer_putpages(v)
965 void *v;
966 {
967 struct vop_putpages_args /* {
968 struct vnode *a_vp;
969 voff_t a_offlo;
970 voff_t a_offhi;
971 int a_flags;
972 } */ *ap = v;
973 struct vnode *vp = ap->a_vp;
974 int error;
975
976 /*
977 * just pass the request on to the underlying layer.
978 */
979
980 ap->a_vp = LAYERVPTOLOWERVP(vp);
981 simple_unlock(&vp->v_interlock);
982 simple_lock(&ap->a_vp->v_interlock);
983 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
984 return error;
985 }
986