Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.19
      1 /*	$NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*
     36  * Copyright (c) 1992, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * This code is derived from software contributed to Berkeley by
     40  * John Heidemann of the UCLA Ficus project.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67  *
     68  * Ancestors:
     69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  *	$Id: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $
     71  *	...and...
     72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     73  */
     74 
     75 /*
     76  * Null Layer vnode routines.
     77  *
     78  * (See mount_null(8) for more information.)
     79  *
     80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     81  * the core implementation of the null file system and most other stacked
     82  * fs's. The description below refers to the null file system, but the
     83  * services provided by the layer* files are useful for all layered fs's.
     84  *
     85  * The null layer duplicates a portion of the file system
     86  * name space under a new name.  In this respect, it is
     87  * similar to the loopback file system.  It differs from
     88  * the loopback fs in two respects:  it is implemented using
     89  * a stackable layers techniques, and it's "null-node"s stack above
     90  * all lower-layer vnodes, not just over directory vnodes.
     91  *
     92  * The null layer has two purposes.  First, it serves as a demonstration
     93  * of layering by proving a layer which does nothing.  (It actually
     94  * does everything the loopback file system does, which is slightly
     95  * more than nothing.)  Second, the null layer can serve as a prototype
     96  * layer.  Since it provides all necessary layer framework,
     97  * new file system layers can be created very easily be starting
     98  * with a null layer.
     99  *
    100  * The remainder of the man page examines the null layer as a basis
    101  * for constructing new layers.
    102  *
    103  *
    104  * INSTANTIATING NEW NULL LAYERS
    105  *
    106  * New null layers are created with mount_null(8).
    107  * Mount_null(8) takes two arguments, the pathname
    108  * of the lower vfs (target-pn) and the pathname where the null
    109  * layer will appear in the namespace (alias-pn).  After
    110  * the null layer is put into place, the contents
    111  * of target-pn subtree will be aliased under alias-pn.
    112  *
    113  * It is conceivable that other overlay filesystems will take different
    114  * parameters. For instance, data migration or access controll layers might
    115  * only take one pathname which will serve both as the target-pn and
    116  * alias-pn described above.
    117  *
    118  *
    119  * OPERATION OF A NULL LAYER
    120  *
    121  * The null layer is the minimum file system layer,
    122  * simply bypassing all possible operations to the lower layer
    123  * for processing there.  The majority of its activity centers
    124  * on the bypass routine, through which nearly all vnode operations
    125  * pass.
    126  *
    127  * The bypass routine accepts arbitrary vnode operations for
    128  * handling by the lower layer.  It begins by examing vnode
    129  * operation arguments and replacing any layered nodes by their
    130  * lower-layer equivalents.  It then invokes the operation
    131  * on the lower layer.  Finally, it replaces the layered nodes
    132  * in the arguments and, if a vnode is return by the operation,
    133  * stacks a layered node on top of the returned vnode.
    134  *
    135  * The bypass routine in this file, layer_bypass(), is suitable for use
    136  * by many different layered filesystems. It can be used by multiple
    137  * filesystems simultaneously. Alternatively, a layered fs may provide
    138  * its own bypass routine, in which case layer_bypass() should be used as
    139  * a model. For instance, the main functionality provided by umapfs, the user
    140  * identity mapping file system, is handled by a custom bypass routine.
    141  *
    142  * Typically a layered fs registers its selected bypass routine as the
    143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    144  * the filesystem must store the bypass entry point in the layerm_bypass
    145  * field of struct layer_mount. All other layer routines in this file will
    146  * use the layerm_bypass routine.
    147  *
    148  * Although the bypass routine handles most operations outright, a number
    149  * of operations are special cased, and handled by the layered fs. One
    150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    151  * layer_fsync, perform layer-specific manipulation in addition to calling
    152  * the bypass routine. The other group
    153 
    154  * Although bypass handles most operations, vop_getattr, vop_lock,
    155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    156  * bypassed. Vop_getattr must change the fsid being returned.
    157  * Vop_lock and vop_unlock must handle any locking for the
    158  * current vnode as well as pass the lock request down.
    159  * Vop_inactive and vop_reclaim are not bypassed so that
    160  * they can handle freeing null-layer specific data. Vop_print
    161  * is not bypassed to avoid excessive debugging information.
    162  * Also, certain vnode operations change the locking state within
    163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    164  * and symlink). Ideally these operations should not change the
    165  * lock state, but should be changed to let the caller of the
    166  * function unlock them. Otherwise all intermediate vnode layers
    167  * (such as union, umapfs, etc) must catch these functions to do
    168  * the necessary locking at their layer.
    169  *
    170  *
    171  * INSTANTIATING VNODE STACKS
    172  *
    173  * Mounting associates the null layer with a lower layer,
    174  * effect stacking two VFSes.  Vnode stacks are instead
    175  * created on demand as files are accessed.
    176  *
    177  * The initial mount creates a single vnode stack for the
    178  * root of the new null layer.  All other vnode stacks
    179  * are created as a result of vnode operations on
    180  * this or other null vnode stacks.
    181  *
    182  * New vnode stacks come into existence as a result of
    183  * an operation which returns a vnode.
    184  * The bypass routine stacks a null-node above the new
    185  * vnode before returning it to the caller.
    186  *
    187  * For example, imagine mounting a null layer with
    188  * "mount_null /usr/include /dev/layer/null".
    189  * Changing directory to /dev/layer/null will assign
    190  * the root null-node (which was created when the null layer was mounted).
    191  * Now consider opening "sys".  A vop_lookup would be
    192  * done on the root null-node.  This operation would bypass through
    193  * to the lower layer which would return a vnode representing
    194  * the UFS "sys".  layer_bypass then builds a null-node
    195  * aliasing the UFS "sys" and returns this to the caller.
    196  * Later operations on the null-node "sys" will repeat this
    197  * process when constructing other vnode stacks.
    198  *
    199  *
    200  * CREATING OTHER FILE SYSTEM LAYERS
    201  *
    202  * One of the easiest ways to construct new file system layers is to make
    203  * a copy of the null layer, rename all files and variables, and
    204  * then begin modifing the copy.  Sed can be used to easily rename
    205  * all variables.
    206  *
    207  * The umap layer is an example of a layer descended from the
    208  * null layer.
    209  *
    210  *
    211  * INVOKING OPERATIONS ON LOWER LAYERS
    212  *
    213  * There are two techniques to invoke operations on a lower layer
    214  * when the operation cannot be completely bypassed.  Each method
    215  * is appropriate in different situations.  In both cases,
    216  * it is the responsibility of the aliasing layer to make
    217  * the operation arguments "correct" for the lower layer
    218  * by mapping an vnode arguments to the lower layer.
    219  *
    220  * The first approach is to call the aliasing layer's bypass routine.
    221  * This method is most suitable when you wish to invoke the operation
    222  * currently being handled on the lower layer.  It has the advantage
    223  * that the bypass routine already must do argument mapping.
    224  * An example of this is null_getattrs in the null layer.
    225  *
    226  * A second approach is to directly invoke vnode operations on
    227  * the lower layer with the VOP_OPERATIONNAME interface.
    228  * The advantage of this method is that it is easy to invoke
    229  * arbitrary operations on the lower layer.  The disadvantage
    230  * is that vnodes' arguments must be manually mapped.
    231  *
    232  */
    233 
    234 #include <sys/cdefs.h>
    235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.19 2004/06/16 12:37:01 yamt Exp $");
    236 
    237 #include <sys/param.h>
    238 #include <sys/systm.h>
    239 #include <sys/proc.h>
    240 #include <sys/time.h>
    241 #include <sys/vnode.h>
    242 #include <sys/mount.h>
    243 #include <sys/namei.h>
    244 #include <sys/malloc.h>
    245 #include <sys/buf.h>
    246 #include <miscfs/genfs/layer.h>
    247 #include <miscfs/genfs/layer_extern.h>
    248 #include <miscfs/genfs/genfs.h>
    249 
    250 
    251 /*
    252  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    253  *		routine by John Heidemann.
    254  *	The new element for this version is that the whole nullfs
    255  * system gained the concept of locks on the lower node, and locks on
    256  * our nodes. When returning from a call to the lower layer, we may
    257  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    258  * macros provide this functionality.
    259  *    The 10-Apr-92 version was optimized for speed, throwing away some
    260  * safety checks.  It should still always work, but it's not as
    261  * robust to programmer errors.
    262  *    Define SAFETY to include some error checking code.
    263  *
    264  * In general, we map all vnodes going down and unmap them on the way back.
    265  *
    266  * Also, some BSD vnode operations have the side effect of vrele'ing
    267  * their arguments.  With stacking, the reference counts are held
    268  * by the upper node, not the lower one, so we must handle these
    269  * side-effects here.  This is not of concern in Sun-derived systems
    270  * since there are no such side-effects.
    271  *
    272  * New for the 08-June-99 version: we also handle operations which unlock
    273  * the passed-in node (typically they vput the node).
    274  *
    275  * This makes the following assumptions:
    276  * - only one returned vpp
    277  * - no INOUT vpp's (Sun's vop_open has one of these)
    278  * - the vnode operation vector of the first vnode should be used
    279  *   to determine what implementation of the op should be invoked
    280  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    281  *   problems on rmdir'ing mount points and renaming?)
    282  */
    283 int
    284 layer_bypass(v)
    285 	void *v;
    286 {
    287 	struct vop_generic_args /* {
    288 		struct vnodeop_desc *a_desc;
    289 		<other random data follows, presumably>
    290 	} */ *ap = v;
    291 	int (**our_vnodeop_p) __P((void *));
    292 	struct vnode **this_vp_p;
    293 	int error, error1;
    294 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    295 	struct vnode **vps_p[VDESC_MAX_VPS];
    296 	struct vnode ***vppp;
    297 	struct vnodeop_desc *descp = ap->a_desc;
    298 	int reles, i, flags;
    299 
    300 #ifdef SAFETY
    301 	/*
    302 	 * We require at least one vp.
    303 	 */
    304 	if (descp->vdesc_vp_offsets == NULL ||
    305 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    306 		panic ("layer_bypass: no vp's in map.\n");
    307 #endif
    308 
    309 	vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
    310 	vp0 = *vps_p[0];
    311 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    312 	our_vnodeop_p = vp0->v_op;
    313 
    314 	if (flags & LAYERFS_MBYPASSDEBUG)
    315 		printf ("layer_bypass: %s\n", descp->vdesc_name);
    316 
    317 	/*
    318 	 * Map the vnodes going in.
    319 	 * Later, we'll invoke the operation based on
    320 	 * the first mapped vnode's operation vector.
    321 	 */
    322 	reles = descp->vdesc_flags;
    323 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    324 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    325 			break;   /* bail out at end of list */
    326 		vps_p[i] = this_vp_p =
    327 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    328 		/*
    329 		 * We're not guaranteed that any but the first vnode
    330 		 * are of our type.  Check for and don't map any
    331 		 * that aren't.  (We must always map first vp or vclean fails.)
    332 		 */
    333 		if (i && (*this_vp_p == NULL ||
    334 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    335 			old_vps[i] = NULL;
    336 		} else {
    337 			old_vps[i] = *this_vp_p;
    338 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    339 			/*
    340 			 * XXX - Several operations have the side effect
    341 			 * of vrele'ing their vp's.  We must account for
    342 			 * that.  (This should go away in the future.)
    343 			 */
    344 			if (reles & VDESC_VP0_WILLRELE)
    345 				VREF(*this_vp_p);
    346 		}
    347 
    348 	}
    349 
    350 	/*
    351 	 * Call the operation on the lower layer
    352 	 * with the modified argument structure.
    353 	 */
    354 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    355 
    356 	/*
    357 	 * Maintain the illusion of call-by-value
    358 	 * by restoring vnodes in the argument structure
    359 	 * to their original value.
    360 	 */
    361 	reles = descp->vdesc_flags;
    362 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    363 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    364 			break;   /* bail out at end of list */
    365 		if (old_vps[i]) {
    366 			*(vps_p[i]) = old_vps[i];
    367 			if (reles & VDESC_VP0_WILLUNLOCK)
    368 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    369 			if (reles & VDESC_VP0_WILLRELE)
    370 				vrele(*(vps_p[i]));
    371 		}
    372 	}
    373 
    374 	/*
    375 	 * Map the possible out-going vpp
    376 	 * (Assumes that the lower layer always returns
    377 	 * a VREF'ed vpp unless it gets an error.)
    378 	 */
    379 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    380 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    381 	    !error) {
    382 		/*
    383 		 * XXX - even though some ops have vpp returned vp's,
    384 		 * several ops actually vrele this before returning.
    385 		 * We must avoid these ops.
    386 		 * (This should go away when these ops are regularized.)
    387 		 */
    388 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    389 			goto out;
    390 		vppp = VOPARG_OFFSETTO(struct vnode***,
    391 				 descp->vdesc_vpp_offset,ap);
    392 		/*
    393 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    394 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    395 		 * doesn't call bypass as the lower vpp is fine (we're just
    396 		 * going to do i/o on it). vop_loookup doesn't call bypass
    397 		 * as a lookup on "." would generate a locking error.
    398 		 * So all the calls which get us here have a locked vpp. :-)
    399 		 */
    400 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    401 		if (error) {
    402 			vput(**vppp);
    403 			**vppp = NULL;
    404 		}
    405 	}
    406 
    407  out:
    408 	return (error);
    409 }
    410 
    411 /*
    412  * We have to carry on the locking protocol on the layer vnodes
    413  * as we progress through the tree. We also have to enforce read-only
    414  * if this layer is mounted read-only.
    415  */
    416 int
    417 layer_lookup(v)
    418 	void *v;
    419 {
    420 	struct vop_lookup_args /* {
    421 		struct vnodeop_desc *a_desc;
    422 		struct vnode * a_dvp;
    423 		struct vnode ** a_vpp;
    424 		struct componentname * a_cnp;
    425 	} */ *ap = v;
    426 	struct componentname *cnp = ap->a_cnp;
    427 	int flags = cnp->cn_flags;
    428 	struct vnode *dvp, *vp, *ldvp;
    429 	int error, r;
    430 
    431 	dvp = ap->a_dvp;
    432 
    433 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    434 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    435 		return (EROFS);
    436 
    437 	ldvp = LAYERVPTOLOWERVP(dvp);
    438 	ap->a_dvp = ldvp;
    439 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    440 	vp = *ap->a_vpp;
    441 	*ap->a_vpp = NULL;
    442 
    443 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    444 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    445 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    446 		error = EROFS;
    447 	/*
    448 	 * We must do the same locking and unlocking at this layer as
    449 	 * is done in the layers below us. It used to be we would try
    450 	 * to guess based on what was set with the flags and error codes.
    451 	 *
    452 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    453 	 * tell us if it released the parent vnode, and we adjust the
    454 	 * upper node accordingly. We can't just look at the lock states
    455 	 * of the lower nodes as someone else might have come along and
    456 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    457 	 */
    458 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    459 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    460 	}
    461 	if (ldvp == vp) {
    462 		/*
    463 		 * Did lookup on "." or ".." in the root node of a mount point.
    464 		 * So we return dvp after a VREF.
    465 		 */
    466 		*ap->a_vpp = dvp;
    467 		VREF(dvp);
    468 		vrele(vp);
    469 	} else if (vp != NULL) {
    470 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    471 		if (error) {
    472 			vput(vp);
    473 			if (cnp->cn_flags & PDIRUNLOCK) {
    474 				vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
    475 				cnp->cn_flags &= ~PDIRUNLOCK;
    476 			}
    477 		}
    478 	}
    479 	return (error);
    480 }
    481 
    482 /*
    483  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    484  */
    485 int
    486 layer_setattr(v)
    487 	void *v;
    488 {
    489 	struct vop_setattr_args /* {
    490 		struct vnodeop_desc *a_desc;
    491 		struct vnode *a_vp;
    492 		struct vattr *a_vap;
    493 		struct ucred *a_cred;
    494 		struct proc *a_p;
    495 	} */ *ap = v;
    496 	struct vnode *vp = ap->a_vp;
    497 	struct vattr *vap = ap->a_vap;
    498 
    499   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    500 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    501 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    502 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    503 		return (EROFS);
    504 	if (vap->va_size != VNOVAL) {
    505  		switch (vp->v_type) {
    506  		case VDIR:
    507  			return (EISDIR);
    508  		case VCHR:
    509  		case VBLK:
    510  		case VSOCK:
    511  		case VFIFO:
    512 			return (0);
    513 		case VREG:
    514 		case VLNK:
    515  		default:
    516 			/*
    517 			 * Disallow write attempts if the filesystem is
    518 			 * mounted read-only.
    519 			 */
    520 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    521 				return (EROFS);
    522 		}
    523 	}
    524 	return (LAYERFS_DO_BYPASS(vp, ap));
    525 }
    526 
    527 /*
    528  *  We handle getattr only to change the fsid.
    529  */
    530 int
    531 layer_getattr(v)
    532 	void *v;
    533 {
    534 	struct vop_getattr_args /* {
    535 		struct vnode *a_vp;
    536 		struct vattr *a_vap;
    537 		struct ucred *a_cred;
    538 		struct proc *a_p;
    539 	} */ *ap = v;
    540 	struct vnode *vp = ap->a_vp;
    541 	int error;
    542 
    543 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    544 		return (error);
    545 	/* Requires that arguments be restored. */
    546 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    547 	return (0);
    548 }
    549 
    550 int
    551 layer_access(v)
    552 	void *v;
    553 {
    554 	struct vop_access_args /* {
    555 		struct vnode *a_vp;
    556 		int  a_mode;
    557 		struct ucred *a_cred;
    558 		struct proc *a_p;
    559 	} */ *ap = v;
    560 	struct vnode *vp = ap->a_vp;
    561 	mode_t mode = ap->a_mode;
    562 
    563 	/*
    564 	 * Disallow write attempts on read-only layers;
    565 	 * unless the file is a socket, fifo, or a block or
    566 	 * character device resident on the file system.
    567 	 */
    568 	if (mode & VWRITE) {
    569 		switch (vp->v_type) {
    570 		case VDIR:
    571 		case VLNK:
    572 		case VREG:
    573 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    574 				return (EROFS);
    575 			break;
    576 		default:
    577 			break;
    578 		}
    579 	}
    580 	return (LAYERFS_DO_BYPASS(vp, ap));
    581 }
    582 
    583 /*
    584  * We must handle open to be able to catch MNT_NODEV and friends.
    585  */
    586 int
    587 layer_open(v)
    588 	void *v;
    589 {
    590 	struct vop_open_args *ap = v;
    591 	struct vnode *vp = ap->a_vp;
    592 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    593 
    594 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    595 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    596 		return ENXIO;
    597 
    598 	return LAYERFS_DO_BYPASS(vp, ap);
    599 }
    600 
    601 /*
    602  * We need to process our own vnode lock and then clear the
    603  * interlock flag as it applies only to our vnode, not the
    604  * vnodes below us on the stack.
    605  */
    606 int
    607 layer_lock(v)
    608 	void *v;
    609 {
    610 	struct vop_lock_args /* {
    611 		struct vnode *a_vp;
    612 		int a_flags;
    613 		struct proc *a_p;
    614 	} */ *ap = v;
    615 	struct vnode *vp = ap->a_vp, *lowervp;
    616 	int	flags = ap->a_flags, error;
    617 
    618 	if (vp->v_vnlock != NULL) {
    619 		/*
    620 		 * The lower level has exported a struct lock to us. Use
    621 		 * it so that all vnodes in the stack lock and unlock
    622 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    623 		 * decommissions the lock - just because our vnode is
    624 		 * going away doesn't mean the struct lock below us is.
    625 		 * LK_EXCLUSIVE is fine.
    626 		 */
    627 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    628 			return(lockmgr(vp->v_vnlock,
    629 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    630 				&vp->v_interlock));
    631 		} else
    632 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    633 	} else {
    634 		/*
    635 		 * Ahh well. It would be nice if the fs we're over would
    636 		 * export a struct lock for us to use, but it doesn't.
    637 		 *
    638 		 * To prevent race conditions involving doing a lookup
    639 		 * on "..", we have to lock the lower node, then lock our
    640 		 * node. Most of the time it won't matter that we lock our
    641 		 * node (as any locking would need the lower one locked
    642 		 * first). But we can LK_DRAIN the upper lock as a step
    643 		 * towards decomissioning it.
    644 		 */
    645 		lowervp = LAYERVPTOLOWERVP(vp);
    646 		if (flags & LK_INTERLOCK) {
    647 			simple_unlock(&vp->v_interlock);
    648 			flags &= ~LK_INTERLOCK;
    649 		}
    650 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    651 			error = VOP_LOCK(lowervp,
    652 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    653 		} else
    654 			error = VOP_LOCK(lowervp, flags);
    655 		if (error)
    656 			return (error);
    657 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    658 			VOP_UNLOCK(lowervp, 0);
    659 		}
    660 		return (error);
    661 	}
    662 }
    663 
    664 /*
    665  */
    666 int
    667 layer_unlock(v)
    668 	void *v;
    669 {
    670 	struct vop_unlock_args /* {
    671 		struct vnode *a_vp;
    672 		int a_flags;
    673 		struct proc *a_p;
    674 	} */ *ap = v;
    675 	struct vnode *vp = ap->a_vp;
    676 	int	flags = ap->a_flags;
    677 
    678 	if (vp->v_vnlock != NULL) {
    679 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    680 			&vp->v_interlock));
    681 	} else {
    682 		if (flags & LK_INTERLOCK) {
    683 			simple_unlock(&vp->v_interlock);
    684 			flags &= ~LK_INTERLOCK;
    685 		}
    686 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    687 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    688 			&vp->v_interlock));
    689 	}
    690 }
    691 
    692 /*
    693  * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
    694  * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
    695  */
    696 int
    697 layer_islocked(v)
    698 	void *v;
    699 {
    700 	struct vop_islocked_args /* {
    701 		struct vnode *a_vp;
    702 	} */ *ap = v;
    703 	struct vnode *vp = ap->a_vp;
    704 
    705 	if (vp->v_vnlock != NULL)
    706 		return (lockstatus(vp->v_vnlock));
    707 	else
    708 		return (lockstatus(&vp->v_lock));
    709 }
    710 
    711 /*
    712  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    713  * syncing the underlying vnodes, since they'll be fsync'ed when
    714  * reclaimed; otherwise,
    715  * pass it through to the underlying layer.
    716  *
    717  * XXX Do we still need to worry about shallow fsync?
    718  */
    719 
    720 int
    721 layer_fsync(v)
    722 	void *v;
    723 {
    724 	struct vop_fsync_args /* {
    725 		struct vnode *a_vp;
    726 		struct ucred *a_cred;
    727 		int  a_flags;
    728 		off_t offlo;
    729 		off_t offhi;
    730 		struct proc *a_p;
    731 	} */ *ap = v;
    732 
    733 	if (ap->a_flags & FSYNC_RECLAIM) {
    734 		return 0;
    735 	}
    736 
    737 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    738 }
    739 
    740 
    741 int
    742 layer_inactive(v)
    743 	void *v;
    744 {
    745 	struct vop_inactive_args /* {
    746 		struct vnode *a_vp;
    747 		struct proc *a_p;
    748 	} */ *ap = v;
    749 	struct vnode *vp = ap->a_vp;
    750 
    751 	/*
    752 	 * Do nothing (and _don't_ bypass).
    753 	 * Wait to vrele lowervp until reclaim,
    754 	 * so that until then our layer_node is in the
    755 	 * cache and reusable.
    756 	 *
    757 	 * NEEDSWORK: Someday, consider inactive'ing
    758 	 * the lowervp and then trying to reactivate it
    759 	 * with capabilities (v_id)
    760 	 * like they do in the name lookup cache code.
    761 	 * That's too much work for now.
    762 	 */
    763 	VOP_UNLOCK(vp, 0);
    764 
    765 	/*
    766 	 * ..., but don't cache the device node. Also, if we did a
    767 	 * remove, don't cache the node.
    768 	 */
    769 	if (vp->v_type == VBLK || vp->v_type == VCHR
    770 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
    771 		vgone(vp);
    772 	return (0);
    773 }
    774 
    775 int
    776 layer_remove(v)
    777 	void *v;
    778 {
    779 	struct vop_remove_args /* {
    780 		struct vonde		*a_dvp;
    781 		struct vnode		*a_vp;
    782 		struct componentname	*a_cnp;
    783 	} */ *ap = v;
    784 
    785 	int		error;
    786 	struct vnode	*vp = ap->a_vp;
    787 
    788 	vref(vp);
    789 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    790 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    791 
    792 	vrele(vp);
    793 
    794 	return (error);
    795 }
    796 
    797 int
    798 layer_rename(v)
    799 	void *v;
    800 {
    801 	struct vop_rename_args  /* {
    802 		struct vnode		*a_fdvp;
    803 		struct vnode		*a_fvp;
    804 		struct componentname	*a_fcnp;
    805 		struct vnode		*a_tdvp;
    806 		struct vnode		*a_tvp;
    807 		struct componentname	*a_tcnp;
    808 	} */ *ap = v;
    809 
    810 	int error;
    811 	struct vnode *fdvp = ap->a_fdvp;
    812 	struct vnode *tvp;
    813 
    814 	tvp = ap->a_tvp;
    815 	if (tvp) {
    816 		if (tvp->v_mount != fdvp->v_mount)
    817 			tvp = NULL;
    818 		else
    819 			vref(tvp);
    820 	}
    821 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    822 	if (tvp) {
    823 		if (error == 0)
    824 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    825 		vrele(tvp);
    826 	}
    827 
    828 	return (error);
    829 }
    830 
    831 int
    832 layer_reclaim(v)
    833 	void *v;
    834 {
    835 	struct vop_reclaim_args /* {
    836 		struct vnode *a_vp;
    837 		struct proc *a_p;
    838 	} */ *ap = v;
    839 	struct vnode *vp = ap->a_vp;
    840 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    841 	struct layer_node *xp = VTOLAYER(vp);
    842 	struct vnode *lowervp = xp->layer_lowervp;
    843 
    844 	/*
    845 	 * Note: in vop_reclaim, the node's struct lock has been
    846 	 * decomissioned, so we have to be careful about calling
    847 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    848 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    849 	 * set.
    850 	 */
    851 	/* After this assignment, this node will not be re-used. */
    852 	if ((vp == lmp->layerm_rootvp)) {
    853 		/*
    854 		 * Oops! We no longer have a root node. Most likely reason is
    855 		 * that someone forcably unmunted the underlying fs.
    856 		 *
    857 		 * Now getting the root vnode will fail. We're dead. :-(
    858 		 */
    859 		lmp->layerm_rootvp = NULL;
    860 	}
    861 	xp->layer_lowervp = NULL;
    862 	simple_lock(&lmp->layerm_hashlock);
    863 	LIST_REMOVE(xp, layer_hash);
    864 	simple_unlock(&lmp->layerm_hashlock);
    865 	FREE(vp->v_data, M_TEMP);
    866 	vp->v_data = NULL;
    867 	vrele (lowervp);
    868 	return (0);
    869 }
    870 
    871 /*
    872  * We just feed the returned vnode up to the caller - there's no need
    873  * to build a layer node on top of the node on which we're going to do
    874  * i/o. :-)
    875  */
    876 int
    877 layer_bmap(v)
    878 	void *v;
    879 {
    880 	struct vop_bmap_args /* {
    881 		struct vnode *a_vp;
    882 		daddr_t  a_bn;
    883 		struct vnode **a_vpp;
    884 		daddr_t *a_bnp;
    885 		int *a_runp;
    886 	} */ *ap = v;
    887 	struct vnode *vp;
    888 
    889 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    890 
    891 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    892 }
    893 
    894 int
    895 layer_print(v)
    896 	void *v;
    897 {
    898 	struct vop_print_args /* {
    899 		struct vnode *a_vp;
    900 	} */ *ap = v;
    901 	struct vnode *vp = ap->a_vp;
    902 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    903 	return (0);
    904 }
    905 
    906 /*
    907  * XXX - vop_bwrite must be hand coded because it has no
    908  * vnode in its arguments.
    909  * This goes away with a merged VM/buffer cache.
    910  */
    911 int
    912 layer_bwrite(v)
    913 	void *v;
    914 {
    915 	struct vop_bwrite_args /* {
    916 		struct buf *a_bp;
    917 	} */ *ap = v;
    918 	struct buf *bp = ap->a_bp;
    919 	int error;
    920 	struct vnode *savedvp;
    921 
    922 	savedvp = bp->b_vp;
    923 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    924 
    925 	error = VOP_BWRITE(bp);
    926 
    927 	bp->b_vp = savedvp;
    928 
    929 	return (error);
    930 }
    931 
    932 int
    933 layer_getpages(v)
    934 	void *v;
    935 {
    936 	struct vop_getpages_args /* {
    937 		struct vnode *a_vp;
    938 		voff_t a_offset;
    939 		struct vm_page **a_m;
    940 		int *a_count;
    941 		int a_centeridx;
    942 		vm_prot_t a_access_type;
    943 		int a_advice;
    944 		int a_flags;
    945 	} */ *ap = v;
    946 	struct vnode *vp = ap->a_vp;
    947 	int error;
    948 
    949 	/*
    950 	 * just pass the request on to the underlying layer.
    951 	 */
    952 
    953 	if (ap->a_flags & PGO_LOCKED) {
    954 		return EBUSY;
    955 	}
    956 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    957 	simple_unlock(&vp->v_interlock);
    958 	simple_lock(&ap->a_vp->v_interlock);
    959 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    960 	return error;
    961 }
    962 
    963 int
    964 layer_putpages(v)
    965 	void *v;
    966 {
    967 	struct vop_putpages_args /* {
    968 		struct vnode *a_vp;
    969 		voff_t a_offlo;
    970 		voff_t a_offhi;
    971 		int a_flags;
    972 	} */ *ap = v;
    973 	struct vnode *vp = ap->a_vp;
    974 	int error;
    975 
    976 	/*
    977 	 * just pass the request on to the underlying layer.
    978 	 */
    979 
    980 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    981 	simple_unlock(&vp->v_interlock);
    982 	simple_lock(&ap->a_vp->v_interlock);
    983 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    984 	return error;
    985 }
    986