layer_vnops.c revision 1.25 1 /* $NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249
250
251 /*
252 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253 * routine by John Heidemann.
254 * The new element for this version is that the whole nullfs
255 * system gained the concept of locks on the lower node, and locks on
256 * our nodes. When returning from a call to the lower layer, we may
257 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258 * macros provide this functionality.
259 * The 10-Apr-92 version was optimized for speed, throwing away some
260 * safety checks. It should still always work, but it's not as
261 * robust to programmer errors.
262 * Define SAFETY to include some error checking code.
263 *
264 * In general, we map all vnodes going down and unmap them on the way back.
265 *
266 * Also, some BSD vnode operations have the side effect of vrele'ing
267 * their arguments. With stacking, the reference counts are held
268 * by the upper node, not the lower one, so we must handle these
269 * side-effects here. This is not of concern in Sun-derived systems
270 * since there are no such side-effects.
271 *
272 * New for the 08-June-99 version: we also handle operations which unlock
273 * the passed-in node (typically they vput the node).
274 *
275 * This makes the following assumptions:
276 * - only one returned vpp
277 * - no INOUT vpp's (Sun's vop_open has one of these)
278 * - the vnode operation vector of the first vnode should be used
279 * to determine what implementation of the op should be invoked
280 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281 * problems on rmdir'ing mount points and renaming?)
282 */
283 int
284 layer_bypass(v)
285 void *v;
286 {
287 struct vop_generic_args /* {
288 struct vnodeop_desc *a_desc;
289 <other random data follows, presumably>
290 } */ *ap = v;
291 int (**our_vnodeop_p)(void *);
292 struct vnode **this_vp_p;
293 int error, error1;
294 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 struct vnode **vps_p[VDESC_MAX_VPS];
296 struct vnode ***vppp;
297 struct vnodeop_desc *descp = ap->a_desc;
298 int reles, i, flags;
299
300 #ifdef SAFETY
301 /*
302 * We require at least one vp.
303 */
304 if (descp->vdesc_vp_offsets == NULL ||
305 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 panic("%s: no vp's in map.\n", __func__);
307 #endif
308
309 vps_p[0] =
310 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
311 vp0 = *vps_p[0];
312 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
313 our_vnodeop_p = vp0->v_op;
314
315 if (flags & LAYERFS_MBYPASSDEBUG)
316 printf("%s: %s\n", __func__, descp->vdesc_name);
317
318 /*
319 * Map the vnodes going in.
320 * Later, we'll invoke the operation based on
321 * the first mapped vnode's operation vector.
322 */
323 reles = descp->vdesc_flags;
324 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
325 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
326 break; /* bail out at end of list */
327 vps_p[i] = this_vp_p =
328 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
329 ap);
330 /*
331 * We're not guaranteed that any but the first vnode
332 * are of our type. Check for and don't map any
333 * that aren't. (We must always map first vp or vclean fails.)
334 */
335 if (i && (*this_vp_p == NULL ||
336 (*this_vp_p)->v_op != our_vnodeop_p)) {
337 old_vps[i] = NULL;
338 } else {
339 old_vps[i] = *this_vp_p;
340 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
341 /*
342 * XXX - Several operations have the side effect
343 * of vrele'ing their vp's. We must account for
344 * that. (This should go away in the future.)
345 */
346 if (reles & VDESC_VP0_WILLRELE)
347 VREF(*this_vp_p);
348 }
349
350 }
351
352 /*
353 * Call the operation on the lower layer
354 * with the modified argument structure.
355 */
356 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
357
358 /*
359 * Maintain the illusion of call-by-value
360 * by restoring vnodes in the argument structure
361 * to their original value.
362 */
363 reles = descp->vdesc_flags;
364 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
365 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
366 break; /* bail out at end of list */
367 if (old_vps[i]) {
368 *(vps_p[i]) = old_vps[i];
369 if (reles & VDESC_VP0_WILLUNLOCK)
370 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
371 if (reles & VDESC_VP0_WILLRELE)
372 vrele(*(vps_p[i]));
373 }
374 }
375
376 /*
377 * Map the possible out-going vpp
378 * (Assumes that the lower layer always returns
379 * a VREF'ed vpp unless it gets an error.)
380 */
381 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
382 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
383 !error) {
384 /*
385 * XXX - even though some ops have vpp returned vp's,
386 * several ops actually vrele this before returning.
387 * We must avoid these ops.
388 * (This should go away when these ops are regularized.)
389 */
390 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
391 goto out;
392 vppp = VOPARG_OFFSETTO(struct vnode***,
393 descp->vdesc_vpp_offset, ap);
394 /*
395 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
396 * vop_mknod, and vop_symlink return vpp's. vop_bmap
397 * doesn't call bypass as the lower vpp is fine (we're just
398 * going to do i/o on it). vop_lookup doesn't call bypass
399 * as a lookup on "." would generate a locking error.
400 * So all the calls which get us here have a locked vpp. :-)
401 */
402 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
403 if (error) {
404 vput(**vppp);
405 **vppp = NULL;
406 }
407 }
408
409 out:
410 return (error);
411 }
412
413 /*
414 * We have to carry on the locking protocol on the layer vnodes
415 * as we progress through the tree. We also have to enforce read-only
416 * if this layer is mounted read-only.
417 */
418 int
419 layer_lookup(v)
420 void *v;
421 {
422 struct vop_lookup_args /* {
423 struct vnodeop_desc *a_desc;
424 struct vnode * a_dvp;
425 struct vnode ** a_vpp;
426 struct componentname * a_cnp;
427 } */ *ap = v;
428 struct componentname *cnp = ap->a_cnp;
429 int flags = cnp->cn_flags;
430 struct vnode *dvp, *vp, *ldvp;
431 int error, r;
432
433 dvp = ap->a_dvp;
434
435 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
436 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
437 return (EROFS);
438
439 ldvp = LAYERVPTOLOWERVP(dvp);
440 ap->a_dvp = ldvp;
441 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
442 vp = *ap->a_vpp;
443 *ap->a_vpp = NULL;
444
445 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
446 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
447 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
448 error = EROFS;
449 /*
450 * We must do the same locking and unlocking at this layer as
451 * is done in the layers below us. It used to be we would try
452 * to guess based on what was set with the flags and error codes.
453 *
454 * But that doesn't work. So now we have the underlying VOP_LOOKUP
455 * tell us if it released the parent vnode, and we adjust the
456 * upper node accordingly. We can't just look at the lock states
457 * of the lower nodes as someone else might have come along and
458 * locked the parent node after our call to VOP_LOOKUP locked it.
459 */
460 if ((cnp->cn_flags & PDIRUNLOCK)) {
461 LAYERFS_UPPERUNLOCK(dvp, 0, r);
462 }
463 if (ldvp == vp) {
464 /*
465 * Did lookup on "." or ".." in the root node of a mount point.
466 * So we return dvp after a VREF.
467 */
468 *ap->a_vpp = dvp;
469 VREF(dvp);
470 vrele(vp);
471 } else if (vp != NULL) {
472 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
473 if (error) {
474 vput(vp);
475 if (cnp->cn_flags & PDIRUNLOCK) {
476 if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
477 cnp->cn_flags &= ~PDIRUNLOCK;
478 }
479 }
480 }
481 return (error);
482 }
483
484 /*
485 * Setattr call. Disallow write attempts if the layer is mounted read-only.
486 */
487 int
488 layer_setattr(v)
489 void *v;
490 {
491 struct vop_setattr_args /* {
492 struct vnodeop_desc *a_desc;
493 struct vnode *a_vp;
494 struct vattr *a_vap;
495 struct ucred *a_cred;
496 struct proc *a_p;
497 } */ *ap = v;
498 struct vnode *vp = ap->a_vp;
499 struct vattr *vap = ap->a_vap;
500
501 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
502 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
503 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
504 (vp->v_mount->mnt_flag & MNT_RDONLY))
505 return (EROFS);
506 if (vap->va_size != VNOVAL) {
507 switch (vp->v_type) {
508 case VDIR:
509 return (EISDIR);
510 case VCHR:
511 case VBLK:
512 case VSOCK:
513 case VFIFO:
514 return (0);
515 case VREG:
516 case VLNK:
517 default:
518 /*
519 * Disallow write attempts if the filesystem is
520 * mounted read-only.
521 */
522 if (vp->v_mount->mnt_flag & MNT_RDONLY)
523 return (EROFS);
524 }
525 }
526 return (LAYERFS_DO_BYPASS(vp, ap));
527 }
528
529 /*
530 * We handle getattr only to change the fsid.
531 */
532 int
533 layer_getattr(v)
534 void *v;
535 {
536 struct vop_getattr_args /* {
537 struct vnode *a_vp;
538 struct vattr *a_vap;
539 struct ucred *a_cred;
540 struct proc *a_p;
541 } */ *ap = v;
542 struct vnode *vp = ap->a_vp;
543 int error;
544
545 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
546 return (error);
547 /* Requires that arguments be restored. */
548 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
549 return (0);
550 }
551
552 int
553 layer_access(v)
554 void *v;
555 {
556 struct vop_access_args /* {
557 struct vnode *a_vp;
558 int a_mode;
559 struct ucred *a_cred;
560 struct proc *a_p;
561 } */ *ap = v;
562 struct vnode *vp = ap->a_vp;
563 mode_t mode = ap->a_mode;
564
565 /*
566 * Disallow write attempts on read-only layers;
567 * unless the file is a socket, fifo, or a block or
568 * character device resident on the file system.
569 */
570 if (mode & VWRITE) {
571 switch (vp->v_type) {
572 case VDIR:
573 case VLNK:
574 case VREG:
575 if (vp->v_mount->mnt_flag & MNT_RDONLY)
576 return (EROFS);
577 break;
578 default:
579 break;
580 }
581 }
582 return (LAYERFS_DO_BYPASS(vp, ap));
583 }
584
585 /*
586 * We must handle open to be able to catch MNT_NODEV and friends.
587 */
588 int
589 layer_open(v)
590 void *v;
591 {
592 struct vop_open_args *ap = v;
593 struct vnode *vp = ap->a_vp;
594 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
595
596 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
597 (vp->v_mount->mnt_flag & MNT_NODEV))
598 return ENXIO;
599
600 return LAYERFS_DO_BYPASS(vp, ap);
601 }
602
603 /*
604 * We need to process our own vnode lock and then clear the
605 * interlock flag as it applies only to our vnode, not the
606 * vnodes below us on the stack.
607 */
608 int
609 layer_lock(v)
610 void *v;
611 {
612 struct vop_lock_args /* {
613 struct vnode *a_vp;
614 int a_flags;
615 struct proc *a_p;
616 } */ *ap = v;
617 struct vnode *vp = ap->a_vp, *lowervp;
618 int flags = ap->a_flags, error;
619
620 if (vp->v_vnlock != NULL) {
621 /*
622 * The lower level has exported a struct lock to us. Use
623 * it so that all vnodes in the stack lock and unlock
624 * simultaneously. Note: we don't DRAIN the lock as DRAIN
625 * decommissions the lock - just because our vnode is
626 * going away doesn't mean the struct lock below us is.
627 * LK_EXCLUSIVE is fine.
628 */
629 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
630 return(lockmgr(vp->v_vnlock,
631 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
632 &vp->v_interlock));
633 } else
634 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
635 } else {
636 /*
637 * Ahh well. It would be nice if the fs we're over would
638 * export a struct lock for us to use, but it doesn't.
639 *
640 * To prevent race conditions involving doing a lookup
641 * on "..", we have to lock the lower node, then lock our
642 * node. Most of the time it won't matter that we lock our
643 * node (as any locking would need the lower one locked
644 * first). But we can LK_DRAIN the upper lock as a step
645 * towards decomissioning it.
646 */
647 lowervp = LAYERVPTOLOWERVP(vp);
648 if (flags & LK_INTERLOCK) {
649 simple_unlock(&vp->v_interlock);
650 flags &= ~LK_INTERLOCK;
651 }
652 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
653 error = VOP_LOCK(lowervp,
654 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
655 } else
656 error = VOP_LOCK(lowervp, flags);
657 if (error)
658 return (error);
659 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
660 VOP_UNLOCK(lowervp, 0);
661 }
662 return (error);
663 }
664 }
665
666 /*
667 */
668 int
669 layer_unlock(v)
670 void *v;
671 {
672 struct vop_unlock_args /* {
673 struct vnode *a_vp;
674 int a_flags;
675 struct proc *a_p;
676 } */ *ap = v;
677 struct vnode *vp = ap->a_vp;
678 int flags = ap->a_flags;
679
680 if (vp->v_vnlock != NULL) {
681 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
682 &vp->v_interlock));
683 } else {
684 if (flags & LK_INTERLOCK) {
685 simple_unlock(&vp->v_interlock);
686 flags &= ~LK_INTERLOCK;
687 }
688 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
689 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
690 &vp->v_interlock));
691 }
692 }
693
694 int
695 layer_islocked(v)
696 void *v;
697 {
698 struct vop_islocked_args /* {
699 struct vnode *a_vp;
700 } */ *ap = v;
701 struct vnode *vp = ap->a_vp;
702 int lkstatus;
703
704 if (vp->v_vnlock != NULL)
705 return lockstatus(vp->v_vnlock);
706
707 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
708 if (lkstatus)
709 return lkstatus;
710
711 return lockstatus(&vp->v_lock);
712 }
713
714 /*
715 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
716 * syncing the underlying vnodes, since they'll be fsync'ed when
717 * reclaimed; otherwise,
718 * pass it through to the underlying layer.
719 *
720 * XXX Do we still need to worry about shallow fsync?
721 */
722
723 int
724 layer_fsync(v)
725 void *v;
726 {
727 struct vop_fsync_args /* {
728 struct vnode *a_vp;
729 struct ucred *a_cred;
730 int a_flags;
731 off_t offlo;
732 off_t offhi;
733 struct proc *a_p;
734 } */ *ap = v;
735
736 if (ap->a_flags & FSYNC_RECLAIM) {
737 return 0;
738 }
739
740 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
741 }
742
743
744 int
745 layer_inactive(v)
746 void *v;
747 {
748 struct vop_inactive_args /* {
749 struct vnode *a_vp;
750 struct proc *a_p;
751 } */ *ap = v;
752 struct vnode *vp = ap->a_vp;
753
754 /*
755 * Do nothing (and _don't_ bypass).
756 * Wait to vrele lowervp until reclaim,
757 * so that until then our layer_node is in the
758 * cache and reusable.
759 *
760 * NEEDSWORK: Someday, consider inactive'ing
761 * the lowervp and then trying to reactivate it
762 * with capabilities (v_id)
763 * like they do in the name lookup cache code.
764 * That's too much work for now.
765 */
766 VOP_UNLOCK(vp, 0);
767
768 /*
769 * ..., but don't cache the device node. Also, if we did a
770 * remove, don't cache the node.
771 */
772 if (vp->v_type == VBLK || vp->v_type == VCHR
773 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
774 vgone(vp);
775 return (0);
776 }
777
778 int
779 layer_remove(v)
780 void *v;
781 {
782 struct vop_remove_args /* {
783 struct vonde *a_dvp;
784 struct vnode *a_vp;
785 struct componentname *a_cnp;
786 } */ *ap = v;
787
788 int error;
789 struct vnode *vp = ap->a_vp;
790
791 vref(vp);
792 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
793 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
794
795 vrele(vp);
796
797 return (error);
798 }
799
800 int
801 layer_rename(v)
802 void *v;
803 {
804 struct vop_rename_args /* {
805 struct vnode *a_fdvp;
806 struct vnode *a_fvp;
807 struct componentname *a_fcnp;
808 struct vnode *a_tdvp;
809 struct vnode *a_tvp;
810 struct componentname *a_tcnp;
811 } */ *ap = v;
812
813 int error;
814 struct vnode *fdvp = ap->a_fdvp;
815 struct vnode *tvp;
816
817 tvp = ap->a_tvp;
818 if (tvp) {
819 if (tvp->v_mount != fdvp->v_mount)
820 tvp = NULL;
821 else
822 vref(tvp);
823 }
824 error = LAYERFS_DO_BYPASS(fdvp, ap);
825 if (tvp) {
826 if (error == 0)
827 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
828 vrele(tvp);
829 }
830
831 return (error);
832 }
833
834 int
835 layer_rmdir(v)
836 void *v;
837 {
838 struct vop_rmdir_args /* {
839 struct vnode *a_dvp;
840 struct vnode *a_vp;
841 struct componentname *a_cnp;
842 } */ *ap = v;
843 int error;
844 struct vnode *vp = ap->a_vp;
845
846 vref(vp);
847 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
848 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
849
850 vrele(vp);
851
852 return (error);
853 }
854
855 int
856 layer_reclaim(v)
857 void *v;
858 {
859 struct vop_reclaim_args /* {
860 struct vnode *a_vp;
861 struct proc *a_p;
862 } */ *ap = v;
863 struct vnode *vp = ap->a_vp;
864 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
865 struct layer_node *xp = VTOLAYER(vp);
866 struct vnode *lowervp = xp->layer_lowervp;
867
868 /*
869 * Note: in vop_reclaim, the node's struct lock has been
870 * decomissioned, so we have to be careful about calling
871 * VOP's on ourself. Even if we turned a LK_DRAIN into an
872 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
873 * set.
874 */
875 /* After this assignment, this node will not be re-used. */
876 if ((vp == lmp->layerm_rootvp)) {
877 /*
878 * Oops! We no longer have a root node. Most likely reason is
879 * that someone forcably unmunted the underlying fs.
880 *
881 * Now getting the root vnode will fail. We're dead. :-(
882 */
883 lmp->layerm_rootvp = NULL;
884 }
885 xp->layer_lowervp = NULL;
886 simple_lock(&lmp->layerm_hashlock);
887 LIST_REMOVE(xp, layer_hash);
888 simple_unlock(&lmp->layerm_hashlock);
889 FREE(vp->v_data, M_TEMP);
890 vp->v_data = NULL;
891 vrele (lowervp);
892 return (0);
893 }
894
895 /*
896 * We just feed the returned vnode up to the caller - there's no need
897 * to build a layer node on top of the node on which we're going to do
898 * i/o. :-)
899 */
900 int
901 layer_bmap(v)
902 void *v;
903 {
904 struct vop_bmap_args /* {
905 struct vnode *a_vp;
906 daddr_t a_bn;
907 struct vnode **a_vpp;
908 daddr_t *a_bnp;
909 int *a_runp;
910 } */ *ap = v;
911 struct vnode *vp;
912
913 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
914
915 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
916 }
917
918 int
919 layer_print(v)
920 void *v;
921 {
922 struct vop_print_args /* {
923 struct vnode *a_vp;
924 } */ *ap = v;
925 struct vnode *vp = ap->a_vp;
926 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
927 return (0);
928 }
929
930 /*
931 * XXX - vop_bwrite must be hand coded because it has no
932 * vnode in its arguments.
933 * This goes away with a merged VM/buffer cache.
934 */
935 int
936 layer_bwrite(v)
937 void *v;
938 {
939 struct vop_bwrite_args /* {
940 struct buf *a_bp;
941 } */ *ap = v;
942 struct buf *bp = ap->a_bp;
943 int error;
944 struct vnode *savedvp;
945
946 savedvp = bp->b_vp;
947 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
948
949 error = VOP_BWRITE(bp);
950
951 bp->b_vp = savedvp;
952
953 return (error);
954 }
955
956 int
957 layer_getpages(v)
958 void *v;
959 {
960 struct vop_getpages_args /* {
961 struct vnode *a_vp;
962 voff_t a_offset;
963 struct vm_page **a_m;
964 int *a_count;
965 int a_centeridx;
966 vm_prot_t a_access_type;
967 int a_advice;
968 int a_flags;
969 } */ *ap = v;
970 struct vnode *vp = ap->a_vp;
971 int error;
972
973 /*
974 * just pass the request on to the underlying layer.
975 */
976
977 if (ap->a_flags & PGO_LOCKED) {
978 return EBUSY;
979 }
980 ap->a_vp = LAYERVPTOLOWERVP(vp);
981 simple_unlock(&vp->v_interlock);
982 simple_lock(&ap->a_vp->v_interlock);
983 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
984 return error;
985 }
986
987 int
988 layer_putpages(v)
989 void *v;
990 {
991 struct vop_putpages_args /* {
992 struct vnode *a_vp;
993 voff_t a_offlo;
994 voff_t a_offhi;
995 int a_flags;
996 } */ *ap = v;
997 struct vnode *vp = ap->a_vp;
998 int error;
999
1000 /*
1001 * just pass the request on to the underlying layer.
1002 */
1003
1004 ap->a_vp = LAYERVPTOLOWERVP(vp);
1005 simple_unlock(&vp->v_interlock);
1006 simple_lock(&ap->a_vp->v_interlock);
1007 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1008 return error;
1009 }
1010