Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.25
      1 /*	$NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*
     36  * Copyright (c) 1992, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * This code is derived from software contributed to Berkeley by
     40  * John Heidemann of the UCLA Ficus project.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67  *
     68  * Ancestors:
     69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  *	$Id: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $
     71  *	...and...
     72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     73  */
     74 
     75 /*
     76  * Null Layer vnode routines.
     77  *
     78  * (See mount_null(8) for more information.)
     79  *
     80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     81  * the core implementation of the null file system and most other stacked
     82  * fs's. The description below refers to the null file system, but the
     83  * services provided by the layer* files are useful for all layered fs's.
     84  *
     85  * The null layer duplicates a portion of the file system
     86  * name space under a new name.  In this respect, it is
     87  * similar to the loopback file system.  It differs from
     88  * the loopback fs in two respects:  it is implemented using
     89  * a stackable layers techniques, and it's "null-node"s stack above
     90  * all lower-layer vnodes, not just over directory vnodes.
     91  *
     92  * The null layer has two purposes.  First, it serves as a demonstration
     93  * of layering by proving a layer which does nothing.  (It actually
     94  * does everything the loopback file system does, which is slightly
     95  * more than nothing.)  Second, the null layer can serve as a prototype
     96  * layer.  Since it provides all necessary layer framework,
     97  * new file system layers can be created very easily be starting
     98  * with a null layer.
     99  *
    100  * The remainder of the man page examines the null layer as a basis
    101  * for constructing new layers.
    102  *
    103  *
    104  * INSTANTIATING NEW NULL LAYERS
    105  *
    106  * New null layers are created with mount_null(8).
    107  * Mount_null(8) takes two arguments, the pathname
    108  * of the lower vfs (target-pn) and the pathname where the null
    109  * layer will appear in the namespace (alias-pn).  After
    110  * the null layer is put into place, the contents
    111  * of target-pn subtree will be aliased under alias-pn.
    112  *
    113  * It is conceivable that other overlay filesystems will take different
    114  * parameters. For instance, data migration or access controll layers might
    115  * only take one pathname which will serve both as the target-pn and
    116  * alias-pn described above.
    117  *
    118  *
    119  * OPERATION OF A NULL LAYER
    120  *
    121  * The null layer is the minimum file system layer,
    122  * simply bypassing all possible operations to the lower layer
    123  * for processing there.  The majority of its activity centers
    124  * on the bypass routine, through which nearly all vnode operations
    125  * pass.
    126  *
    127  * The bypass routine accepts arbitrary vnode operations for
    128  * handling by the lower layer.  It begins by examing vnode
    129  * operation arguments and replacing any layered nodes by their
    130  * lower-layer equivalents.  It then invokes the operation
    131  * on the lower layer.  Finally, it replaces the layered nodes
    132  * in the arguments and, if a vnode is return by the operation,
    133  * stacks a layered node on top of the returned vnode.
    134  *
    135  * The bypass routine in this file, layer_bypass(), is suitable for use
    136  * by many different layered filesystems. It can be used by multiple
    137  * filesystems simultaneously. Alternatively, a layered fs may provide
    138  * its own bypass routine, in which case layer_bypass() should be used as
    139  * a model. For instance, the main functionality provided by umapfs, the user
    140  * identity mapping file system, is handled by a custom bypass routine.
    141  *
    142  * Typically a layered fs registers its selected bypass routine as the
    143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    144  * the filesystem must store the bypass entry point in the layerm_bypass
    145  * field of struct layer_mount. All other layer routines in this file will
    146  * use the layerm_bypass routine.
    147  *
    148  * Although the bypass routine handles most operations outright, a number
    149  * of operations are special cased, and handled by the layered fs. One
    150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    151  * layer_fsync, perform layer-specific manipulation in addition to calling
    152  * the bypass routine. The other group
    153 
    154  * Although bypass handles most operations, vop_getattr, vop_lock,
    155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    156  * bypassed. Vop_getattr must change the fsid being returned.
    157  * Vop_lock and vop_unlock must handle any locking for the
    158  * current vnode as well as pass the lock request down.
    159  * Vop_inactive and vop_reclaim are not bypassed so that
    160  * they can handle freeing null-layer specific data. Vop_print
    161  * is not bypassed to avoid excessive debugging information.
    162  * Also, certain vnode operations change the locking state within
    163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    164  * and symlink). Ideally these operations should not change the
    165  * lock state, but should be changed to let the caller of the
    166  * function unlock them. Otherwise all intermediate vnode layers
    167  * (such as union, umapfs, etc) must catch these functions to do
    168  * the necessary locking at their layer.
    169  *
    170  *
    171  * INSTANTIATING VNODE STACKS
    172  *
    173  * Mounting associates the null layer with a lower layer,
    174  * effect stacking two VFSes.  Vnode stacks are instead
    175  * created on demand as files are accessed.
    176  *
    177  * The initial mount creates a single vnode stack for the
    178  * root of the new null layer.  All other vnode stacks
    179  * are created as a result of vnode operations on
    180  * this or other null vnode stacks.
    181  *
    182  * New vnode stacks come into existence as a result of
    183  * an operation which returns a vnode.
    184  * The bypass routine stacks a null-node above the new
    185  * vnode before returning it to the caller.
    186  *
    187  * For example, imagine mounting a null layer with
    188  * "mount_null /usr/include /dev/layer/null".
    189  * Changing directory to /dev/layer/null will assign
    190  * the root null-node (which was created when the null layer was mounted).
    191  * Now consider opening "sys".  A vop_lookup would be
    192  * done on the root null-node.  This operation would bypass through
    193  * to the lower layer which would return a vnode representing
    194  * the UFS "sys".  layer_bypass then builds a null-node
    195  * aliasing the UFS "sys" and returns this to the caller.
    196  * Later operations on the null-node "sys" will repeat this
    197  * process when constructing other vnode stacks.
    198  *
    199  *
    200  * CREATING OTHER FILE SYSTEM LAYERS
    201  *
    202  * One of the easiest ways to construct new file system layers is to make
    203  * a copy of the null layer, rename all files and variables, and
    204  * then begin modifing the copy.  Sed can be used to easily rename
    205  * all variables.
    206  *
    207  * The umap layer is an example of a layer descended from the
    208  * null layer.
    209  *
    210  *
    211  * INVOKING OPERATIONS ON LOWER LAYERS
    212  *
    213  * There are two techniques to invoke operations on a lower layer
    214  * when the operation cannot be completely bypassed.  Each method
    215  * is appropriate in different situations.  In both cases,
    216  * it is the responsibility of the aliasing layer to make
    217  * the operation arguments "correct" for the lower layer
    218  * by mapping an vnode arguments to the lower layer.
    219  *
    220  * The first approach is to call the aliasing layer's bypass routine.
    221  * This method is most suitable when you wish to invoke the operation
    222  * currently being handled on the lower layer.  It has the advantage
    223  * that the bypass routine already must do argument mapping.
    224  * An example of this is null_getattrs in the null layer.
    225  *
    226  * A second approach is to directly invoke vnode operations on
    227  * the lower layer with the VOP_OPERATIONNAME interface.
    228  * The advantage of this method is that it is easy to invoke
    229  * arbitrary operations on the lower layer.  The disadvantage
    230  * is that vnodes' arguments must be manually mapped.
    231  *
    232  */
    233 
    234 #include <sys/cdefs.h>
    235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.25 2005/08/30 20:08:01 xtraeme Exp $");
    236 
    237 #include <sys/param.h>
    238 #include <sys/systm.h>
    239 #include <sys/proc.h>
    240 #include <sys/time.h>
    241 #include <sys/vnode.h>
    242 #include <sys/mount.h>
    243 #include <sys/namei.h>
    244 #include <sys/malloc.h>
    245 #include <sys/buf.h>
    246 #include <miscfs/genfs/layer.h>
    247 #include <miscfs/genfs/layer_extern.h>
    248 #include <miscfs/genfs/genfs.h>
    249 
    250 
    251 /*
    252  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    253  *		routine by John Heidemann.
    254  *	The new element for this version is that the whole nullfs
    255  * system gained the concept of locks on the lower node, and locks on
    256  * our nodes. When returning from a call to the lower layer, we may
    257  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    258  * macros provide this functionality.
    259  *    The 10-Apr-92 version was optimized for speed, throwing away some
    260  * safety checks.  It should still always work, but it's not as
    261  * robust to programmer errors.
    262  *    Define SAFETY to include some error checking code.
    263  *
    264  * In general, we map all vnodes going down and unmap them on the way back.
    265  *
    266  * Also, some BSD vnode operations have the side effect of vrele'ing
    267  * their arguments.  With stacking, the reference counts are held
    268  * by the upper node, not the lower one, so we must handle these
    269  * side-effects here.  This is not of concern in Sun-derived systems
    270  * since there are no such side-effects.
    271  *
    272  * New for the 08-June-99 version: we also handle operations which unlock
    273  * the passed-in node (typically they vput the node).
    274  *
    275  * This makes the following assumptions:
    276  * - only one returned vpp
    277  * - no INOUT vpp's (Sun's vop_open has one of these)
    278  * - the vnode operation vector of the first vnode should be used
    279  *   to determine what implementation of the op should be invoked
    280  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    281  *   problems on rmdir'ing mount points and renaming?)
    282  */
    283 int
    284 layer_bypass(v)
    285 	void *v;
    286 {
    287 	struct vop_generic_args /* {
    288 		struct vnodeop_desc *a_desc;
    289 		<other random data follows, presumably>
    290 	} */ *ap = v;
    291 	int (**our_vnodeop_p)(void *);
    292 	struct vnode **this_vp_p;
    293 	int error, error1;
    294 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    295 	struct vnode **vps_p[VDESC_MAX_VPS];
    296 	struct vnode ***vppp;
    297 	struct vnodeop_desc *descp = ap->a_desc;
    298 	int reles, i, flags;
    299 
    300 #ifdef SAFETY
    301 	/*
    302 	 * We require at least one vp.
    303 	 */
    304 	if (descp->vdesc_vp_offsets == NULL ||
    305 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    306 		panic("%s: no vp's in map.\n", __func__);
    307 #endif
    308 
    309 	vps_p[0] =
    310 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    311 	vp0 = *vps_p[0];
    312 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    313 	our_vnodeop_p = vp0->v_op;
    314 
    315 	if (flags & LAYERFS_MBYPASSDEBUG)
    316 		printf("%s: %s\n", __func__, descp->vdesc_name);
    317 
    318 	/*
    319 	 * Map the vnodes going in.
    320 	 * Later, we'll invoke the operation based on
    321 	 * the first mapped vnode's operation vector.
    322 	 */
    323 	reles = descp->vdesc_flags;
    324 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    325 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    326 			break;   /* bail out at end of list */
    327 		vps_p[i] = this_vp_p =
    328 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    329 		    ap);
    330 		/*
    331 		 * We're not guaranteed that any but the first vnode
    332 		 * are of our type.  Check for and don't map any
    333 		 * that aren't.  (We must always map first vp or vclean fails.)
    334 		 */
    335 		if (i && (*this_vp_p == NULL ||
    336 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    337 			old_vps[i] = NULL;
    338 		} else {
    339 			old_vps[i] = *this_vp_p;
    340 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    341 			/*
    342 			 * XXX - Several operations have the side effect
    343 			 * of vrele'ing their vp's.  We must account for
    344 			 * that.  (This should go away in the future.)
    345 			 */
    346 			if (reles & VDESC_VP0_WILLRELE)
    347 				VREF(*this_vp_p);
    348 		}
    349 
    350 	}
    351 
    352 	/*
    353 	 * Call the operation on the lower layer
    354 	 * with the modified argument structure.
    355 	 */
    356 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    357 
    358 	/*
    359 	 * Maintain the illusion of call-by-value
    360 	 * by restoring vnodes in the argument structure
    361 	 * to their original value.
    362 	 */
    363 	reles = descp->vdesc_flags;
    364 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    365 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    366 			break;   /* bail out at end of list */
    367 		if (old_vps[i]) {
    368 			*(vps_p[i]) = old_vps[i];
    369 			if (reles & VDESC_VP0_WILLUNLOCK)
    370 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    371 			if (reles & VDESC_VP0_WILLRELE)
    372 				vrele(*(vps_p[i]));
    373 		}
    374 	}
    375 
    376 	/*
    377 	 * Map the possible out-going vpp
    378 	 * (Assumes that the lower layer always returns
    379 	 * a VREF'ed vpp unless it gets an error.)
    380 	 */
    381 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    382 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    383 	    !error) {
    384 		/*
    385 		 * XXX - even though some ops have vpp returned vp's,
    386 		 * several ops actually vrele this before returning.
    387 		 * We must avoid these ops.
    388 		 * (This should go away when these ops are regularized.)
    389 		 */
    390 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    391 			goto out;
    392 		vppp = VOPARG_OFFSETTO(struct vnode***,
    393 				 descp->vdesc_vpp_offset, ap);
    394 		/*
    395 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    396 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    397 		 * doesn't call bypass as the lower vpp is fine (we're just
    398 		 * going to do i/o on it). vop_lookup doesn't call bypass
    399 		 * as a lookup on "." would generate a locking error.
    400 		 * So all the calls which get us here have a locked vpp. :-)
    401 		 */
    402 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    403 		if (error) {
    404 			vput(**vppp);
    405 			**vppp = NULL;
    406 		}
    407 	}
    408 
    409  out:
    410 	return (error);
    411 }
    412 
    413 /*
    414  * We have to carry on the locking protocol on the layer vnodes
    415  * as we progress through the tree. We also have to enforce read-only
    416  * if this layer is mounted read-only.
    417  */
    418 int
    419 layer_lookup(v)
    420 	void *v;
    421 {
    422 	struct vop_lookup_args /* {
    423 		struct vnodeop_desc *a_desc;
    424 		struct vnode * a_dvp;
    425 		struct vnode ** a_vpp;
    426 		struct componentname * a_cnp;
    427 	} */ *ap = v;
    428 	struct componentname *cnp = ap->a_cnp;
    429 	int flags = cnp->cn_flags;
    430 	struct vnode *dvp, *vp, *ldvp;
    431 	int error, r;
    432 
    433 	dvp = ap->a_dvp;
    434 
    435 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    436 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    437 		return (EROFS);
    438 
    439 	ldvp = LAYERVPTOLOWERVP(dvp);
    440 	ap->a_dvp = ldvp;
    441 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    442 	vp = *ap->a_vpp;
    443 	*ap->a_vpp = NULL;
    444 
    445 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    446 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    447 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    448 		error = EROFS;
    449 	/*
    450 	 * We must do the same locking and unlocking at this layer as
    451 	 * is done in the layers below us. It used to be we would try
    452 	 * to guess based on what was set with the flags and error codes.
    453 	 *
    454 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    455 	 * tell us if it released the parent vnode, and we adjust the
    456 	 * upper node accordingly. We can't just look at the lock states
    457 	 * of the lower nodes as someone else might have come along and
    458 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    459 	 */
    460 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    461 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    462 	}
    463 	if (ldvp == vp) {
    464 		/*
    465 		 * Did lookup on "." or ".." in the root node of a mount point.
    466 		 * So we return dvp after a VREF.
    467 		 */
    468 		*ap->a_vpp = dvp;
    469 		VREF(dvp);
    470 		vrele(vp);
    471 	} else if (vp != NULL) {
    472 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    473 		if (error) {
    474 			vput(vp);
    475 			if (cnp->cn_flags & PDIRUNLOCK) {
    476 				if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
    477 					cnp->cn_flags &= ~PDIRUNLOCK;
    478 			}
    479 		}
    480 	}
    481 	return (error);
    482 }
    483 
    484 /*
    485  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    486  */
    487 int
    488 layer_setattr(v)
    489 	void *v;
    490 {
    491 	struct vop_setattr_args /* {
    492 		struct vnodeop_desc *a_desc;
    493 		struct vnode *a_vp;
    494 		struct vattr *a_vap;
    495 		struct ucred *a_cred;
    496 		struct proc *a_p;
    497 	} */ *ap = v;
    498 	struct vnode *vp = ap->a_vp;
    499 	struct vattr *vap = ap->a_vap;
    500 
    501   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    502 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    503 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    504 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    505 		return (EROFS);
    506 	if (vap->va_size != VNOVAL) {
    507  		switch (vp->v_type) {
    508  		case VDIR:
    509  			return (EISDIR);
    510  		case VCHR:
    511  		case VBLK:
    512  		case VSOCK:
    513  		case VFIFO:
    514 			return (0);
    515 		case VREG:
    516 		case VLNK:
    517  		default:
    518 			/*
    519 			 * Disallow write attempts if the filesystem is
    520 			 * mounted read-only.
    521 			 */
    522 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    523 				return (EROFS);
    524 		}
    525 	}
    526 	return (LAYERFS_DO_BYPASS(vp, ap));
    527 }
    528 
    529 /*
    530  *  We handle getattr only to change the fsid.
    531  */
    532 int
    533 layer_getattr(v)
    534 	void *v;
    535 {
    536 	struct vop_getattr_args /* {
    537 		struct vnode *a_vp;
    538 		struct vattr *a_vap;
    539 		struct ucred *a_cred;
    540 		struct proc *a_p;
    541 	} */ *ap = v;
    542 	struct vnode *vp = ap->a_vp;
    543 	int error;
    544 
    545 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    546 		return (error);
    547 	/* Requires that arguments be restored. */
    548 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    549 	return (0);
    550 }
    551 
    552 int
    553 layer_access(v)
    554 	void *v;
    555 {
    556 	struct vop_access_args /* {
    557 		struct vnode *a_vp;
    558 		int  a_mode;
    559 		struct ucred *a_cred;
    560 		struct proc *a_p;
    561 	} */ *ap = v;
    562 	struct vnode *vp = ap->a_vp;
    563 	mode_t mode = ap->a_mode;
    564 
    565 	/*
    566 	 * Disallow write attempts on read-only layers;
    567 	 * unless the file is a socket, fifo, or a block or
    568 	 * character device resident on the file system.
    569 	 */
    570 	if (mode & VWRITE) {
    571 		switch (vp->v_type) {
    572 		case VDIR:
    573 		case VLNK:
    574 		case VREG:
    575 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    576 				return (EROFS);
    577 			break;
    578 		default:
    579 			break;
    580 		}
    581 	}
    582 	return (LAYERFS_DO_BYPASS(vp, ap));
    583 }
    584 
    585 /*
    586  * We must handle open to be able to catch MNT_NODEV and friends.
    587  */
    588 int
    589 layer_open(v)
    590 	void *v;
    591 {
    592 	struct vop_open_args *ap = v;
    593 	struct vnode *vp = ap->a_vp;
    594 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    595 
    596 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    597 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    598 		return ENXIO;
    599 
    600 	return LAYERFS_DO_BYPASS(vp, ap);
    601 }
    602 
    603 /*
    604  * We need to process our own vnode lock and then clear the
    605  * interlock flag as it applies only to our vnode, not the
    606  * vnodes below us on the stack.
    607  */
    608 int
    609 layer_lock(v)
    610 	void *v;
    611 {
    612 	struct vop_lock_args /* {
    613 		struct vnode *a_vp;
    614 		int a_flags;
    615 		struct proc *a_p;
    616 	} */ *ap = v;
    617 	struct vnode *vp = ap->a_vp, *lowervp;
    618 	int	flags = ap->a_flags, error;
    619 
    620 	if (vp->v_vnlock != NULL) {
    621 		/*
    622 		 * The lower level has exported a struct lock to us. Use
    623 		 * it so that all vnodes in the stack lock and unlock
    624 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    625 		 * decommissions the lock - just because our vnode is
    626 		 * going away doesn't mean the struct lock below us is.
    627 		 * LK_EXCLUSIVE is fine.
    628 		 */
    629 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    630 			return(lockmgr(vp->v_vnlock,
    631 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    632 				&vp->v_interlock));
    633 		} else
    634 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    635 	} else {
    636 		/*
    637 		 * Ahh well. It would be nice if the fs we're over would
    638 		 * export a struct lock for us to use, but it doesn't.
    639 		 *
    640 		 * To prevent race conditions involving doing a lookup
    641 		 * on "..", we have to lock the lower node, then lock our
    642 		 * node. Most of the time it won't matter that we lock our
    643 		 * node (as any locking would need the lower one locked
    644 		 * first). But we can LK_DRAIN the upper lock as a step
    645 		 * towards decomissioning it.
    646 		 */
    647 		lowervp = LAYERVPTOLOWERVP(vp);
    648 		if (flags & LK_INTERLOCK) {
    649 			simple_unlock(&vp->v_interlock);
    650 			flags &= ~LK_INTERLOCK;
    651 		}
    652 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    653 			error = VOP_LOCK(lowervp,
    654 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    655 		} else
    656 			error = VOP_LOCK(lowervp, flags);
    657 		if (error)
    658 			return (error);
    659 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    660 			VOP_UNLOCK(lowervp, 0);
    661 		}
    662 		return (error);
    663 	}
    664 }
    665 
    666 /*
    667  */
    668 int
    669 layer_unlock(v)
    670 	void *v;
    671 {
    672 	struct vop_unlock_args /* {
    673 		struct vnode *a_vp;
    674 		int a_flags;
    675 		struct proc *a_p;
    676 	} */ *ap = v;
    677 	struct vnode *vp = ap->a_vp;
    678 	int	flags = ap->a_flags;
    679 
    680 	if (vp->v_vnlock != NULL) {
    681 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    682 			&vp->v_interlock));
    683 	} else {
    684 		if (flags & LK_INTERLOCK) {
    685 			simple_unlock(&vp->v_interlock);
    686 			flags &= ~LK_INTERLOCK;
    687 		}
    688 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    689 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    690 			&vp->v_interlock));
    691 	}
    692 }
    693 
    694 int
    695 layer_islocked(v)
    696 	void *v;
    697 {
    698 	struct vop_islocked_args /* {
    699 		struct vnode *a_vp;
    700 	} */ *ap = v;
    701 	struct vnode *vp = ap->a_vp;
    702 	int lkstatus;
    703 
    704 	if (vp->v_vnlock != NULL)
    705 		return lockstatus(vp->v_vnlock);
    706 
    707 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
    708 	if (lkstatus)
    709 		return lkstatus;
    710 
    711 	return lockstatus(&vp->v_lock);
    712 }
    713 
    714 /*
    715  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    716  * syncing the underlying vnodes, since they'll be fsync'ed when
    717  * reclaimed; otherwise,
    718  * pass it through to the underlying layer.
    719  *
    720  * XXX Do we still need to worry about shallow fsync?
    721  */
    722 
    723 int
    724 layer_fsync(v)
    725 	void *v;
    726 {
    727 	struct vop_fsync_args /* {
    728 		struct vnode *a_vp;
    729 		struct ucred *a_cred;
    730 		int  a_flags;
    731 		off_t offlo;
    732 		off_t offhi;
    733 		struct proc *a_p;
    734 	} */ *ap = v;
    735 
    736 	if (ap->a_flags & FSYNC_RECLAIM) {
    737 		return 0;
    738 	}
    739 
    740 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    741 }
    742 
    743 
    744 int
    745 layer_inactive(v)
    746 	void *v;
    747 {
    748 	struct vop_inactive_args /* {
    749 		struct vnode *a_vp;
    750 		struct proc *a_p;
    751 	} */ *ap = v;
    752 	struct vnode *vp = ap->a_vp;
    753 
    754 	/*
    755 	 * Do nothing (and _don't_ bypass).
    756 	 * Wait to vrele lowervp until reclaim,
    757 	 * so that until then our layer_node is in the
    758 	 * cache and reusable.
    759 	 *
    760 	 * NEEDSWORK: Someday, consider inactive'ing
    761 	 * the lowervp and then trying to reactivate it
    762 	 * with capabilities (v_id)
    763 	 * like they do in the name lookup cache code.
    764 	 * That's too much work for now.
    765 	 */
    766 	VOP_UNLOCK(vp, 0);
    767 
    768 	/*
    769 	 * ..., but don't cache the device node. Also, if we did a
    770 	 * remove, don't cache the node.
    771 	 */
    772 	if (vp->v_type == VBLK || vp->v_type == VCHR
    773 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
    774 		vgone(vp);
    775 	return (0);
    776 }
    777 
    778 int
    779 layer_remove(v)
    780 	void *v;
    781 {
    782 	struct vop_remove_args /* {
    783 		struct vonde		*a_dvp;
    784 		struct vnode		*a_vp;
    785 		struct componentname	*a_cnp;
    786 	} */ *ap = v;
    787 
    788 	int		error;
    789 	struct vnode	*vp = ap->a_vp;
    790 
    791 	vref(vp);
    792 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    793 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    794 
    795 	vrele(vp);
    796 
    797 	return (error);
    798 }
    799 
    800 int
    801 layer_rename(v)
    802 	void *v;
    803 {
    804 	struct vop_rename_args  /* {
    805 		struct vnode		*a_fdvp;
    806 		struct vnode		*a_fvp;
    807 		struct componentname	*a_fcnp;
    808 		struct vnode		*a_tdvp;
    809 		struct vnode		*a_tvp;
    810 		struct componentname	*a_tcnp;
    811 	} */ *ap = v;
    812 
    813 	int error;
    814 	struct vnode *fdvp = ap->a_fdvp;
    815 	struct vnode *tvp;
    816 
    817 	tvp = ap->a_tvp;
    818 	if (tvp) {
    819 		if (tvp->v_mount != fdvp->v_mount)
    820 			tvp = NULL;
    821 		else
    822 			vref(tvp);
    823 	}
    824 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    825 	if (tvp) {
    826 		if (error == 0)
    827 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    828 		vrele(tvp);
    829 	}
    830 
    831 	return (error);
    832 }
    833 
    834 int
    835 layer_rmdir(v)
    836 	void *v;
    837 {
    838 	struct vop_rmdir_args /* {
    839 		struct vnode		*a_dvp;
    840 		struct vnode		*a_vp;
    841 		struct componentname	*a_cnp;
    842 	} */ *ap = v;
    843 	int		error;
    844 	struct vnode	*vp = ap->a_vp;
    845 
    846 	vref(vp);
    847 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    848 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    849 
    850 	vrele(vp);
    851 
    852 	return (error);
    853 }
    854 
    855 int
    856 layer_reclaim(v)
    857 	void *v;
    858 {
    859 	struct vop_reclaim_args /* {
    860 		struct vnode *a_vp;
    861 		struct proc *a_p;
    862 	} */ *ap = v;
    863 	struct vnode *vp = ap->a_vp;
    864 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    865 	struct layer_node *xp = VTOLAYER(vp);
    866 	struct vnode *lowervp = xp->layer_lowervp;
    867 
    868 	/*
    869 	 * Note: in vop_reclaim, the node's struct lock has been
    870 	 * decomissioned, so we have to be careful about calling
    871 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    872 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    873 	 * set.
    874 	 */
    875 	/* After this assignment, this node will not be re-used. */
    876 	if ((vp == lmp->layerm_rootvp)) {
    877 		/*
    878 		 * Oops! We no longer have a root node. Most likely reason is
    879 		 * that someone forcably unmunted the underlying fs.
    880 		 *
    881 		 * Now getting the root vnode will fail. We're dead. :-(
    882 		 */
    883 		lmp->layerm_rootvp = NULL;
    884 	}
    885 	xp->layer_lowervp = NULL;
    886 	simple_lock(&lmp->layerm_hashlock);
    887 	LIST_REMOVE(xp, layer_hash);
    888 	simple_unlock(&lmp->layerm_hashlock);
    889 	FREE(vp->v_data, M_TEMP);
    890 	vp->v_data = NULL;
    891 	vrele (lowervp);
    892 	return (0);
    893 }
    894 
    895 /*
    896  * We just feed the returned vnode up to the caller - there's no need
    897  * to build a layer node on top of the node on which we're going to do
    898  * i/o. :-)
    899  */
    900 int
    901 layer_bmap(v)
    902 	void *v;
    903 {
    904 	struct vop_bmap_args /* {
    905 		struct vnode *a_vp;
    906 		daddr_t  a_bn;
    907 		struct vnode **a_vpp;
    908 		daddr_t *a_bnp;
    909 		int *a_runp;
    910 	} */ *ap = v;
    911 	struct vnode *vp;
    912 
    913 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    914 
    915 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    916 }
    917 
    918 int
    919 layer_print(v)
    920 	void *v;
    921 {
    922 	struct vop_print_args /* {
    923 		struct vnode *a_vp;
    924 	} */ *ap = v;
    925 	struct vnode *vp = ap->a_vp;
    926 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    927 	return (0);
    928 }
    929 
    930 /*
    931  * XXX - vop_bwrite must be hand coded because it has no
    932  * vnode in its arguments.
    933  * This goes away with a merged VM/buffer cache.
    934  */
    935 int
    936 layer_bwrite(v)
    937 	void *v;
    938 {
    939 	struct vop_bwrite_args /* {
    940 		struct buf *a_bp;
    941 	} */ *ap = v;
    942 	struct buf *bp = ap->a_bp;
    943 	int error;
    944 	struct vnode *savedvp;
    945 
    946 	savedvp = bp->b_vp;
    947 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    948 
    949 	error = VOP_BWRITE(bp);
    950 
    951 	bp->b_vp = savedvp;
    952 
    953 	return (error);
    954 }
    955 
    956 int
    957 layer_getpages(v)
    958 	void *v;
    959 {
    960 	struct vop_getpages_args /* {
    961 		struct vnode *a_vp;
    962 		voff_t a_offset;
    963 		struct vm_page **a_m;
    964 		int *a_count;
    965 		int a_centeridx;
    966 		vm_prot_t a_access_type;
    967 		int a_advice;
    968 		int a_flags;
    969 	} */ *ap = v;
    970 	struct vnode *vp = ap->a_vp;
    971 	int error;
    972 
    973 	/*
    974 	 * just pass the request on to the underlying layer.
    975 	 */
    976 
    977 	if (ap->a_flags & PGO_LOCKED) {
    978 		return EBUSY;
    979 	}
    980 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    981 	simple_unlock(&vp->v_interlock);
    982 	simple_lock(&ap->a_vp->v_interlock);
    983 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    984 	return error;
    985 }
    986 
    987 int
    988 layer_putpages(v)
    989 	void *v;
    990 {
    991 	struct vop_putpages_args /* {
    992 		struct vnode *a_vp;
    993 		voff_t a_offlo;
    994 		voff_t a_offhi;
    995 		int a_flags;
    996 	} */ *ap = v;
    997 	struct vnode *vp = ap->a_vp;
    998 	int error;
    999 
   1000 	/*
   1001 	 * just pass the request on to the underlying layer.
   1002 	 */
   1003 
   1004 	ap->a_vp = LAYERVPTOLOWERVP(vp);
   1005 	simple_unlock(&vp->v_interlock);
   1006 	simple_lock(&ap->a_vp->v_interlock);
   1007 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
   1008 	return error;
   1009 }
   1010