layer_vnops.c revision 1.27 1 /* $NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $
71 * $Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Null Layer vnode routines.
78 *
79 * (See mount_null(8) for more information.)
80 *
81 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
82 * the core implementation of the null file system and most other stacked
83 * fs's. The description below refers to the null file system, but the
84 * services provided by the layer* files are useful for all layered fs's.
85 *
86 * The null layer duplicates a portion of the file system
87 * name space under a new name. In this respect, it is
88 * similar to the loopback file system. It differs from
89 * the loopback fs in two respects: it is implemented using
90 * a stackable layers techniques, and it's "null-node"s stack above
91 * all lower-layer vnodes, not just over directory vnodes.
92 *
93 * The null layer has two purposes. First, it serves as a demonstration
94 * of layering by proving a layer which does nothing. (It actually
95 * does everything the loopback file system does, which is slightly
96 * more than nothing.) Second, the null layer can serve as a prototype
97 * layer. Since it provides all necessary layer framework,
98 * new file system layers can be created very easily be starting
99 * with a null layer.
100 *
101 * The remainder of the man page examines the null layer as a basis
102 * for constructing new layers.
103 *
104 *
105 * INSTANTIATING NEW NULL LAYERS
106 *
107 * New null layers are created with mount_null(8).
108 * Mount_null(8) takes two arguments, the pathname
109 * of the lower vfs (target-pn) and the pathname where the null
110 * layer will appear in the namespace (alias-pn). After
111 * the null layer is put into place, the contents
112 * of target-pn subtree will be aliased under alias-pn.
113 *
114 * It is conceivable that other overlay filesystems will take different
115 * parameters. For instance, data migration or access controll layers might
116 * only take one pathname which will serve both as the target-pn and
117 * alias-pn described above.
118 *
119 *
120 * OPERATION OF A NULL LAYER
121 *
122 * The null layer is the minimum file system layer,
123 * simply bypassing all possible operations to the lower layer
124 * for processing there. The majority of its activity centers
125 * on the bypass routine, through which nearly all vnode operations
126 * pass.
127 *
128 * The bypass routine accepts arbitrary vnode operations for
129 * handling by the lower layer. It begins by examing vnode
130 * operation arguments and replacing any layered nodes by their
131 * lower-layer equivalents. It then invokes the operation
132 * on the lower layer. Finally, it replaces the layered nodes
133 * in the arguments and, if a vnode is return by the operation,
134 * stacks a layered node on top of the returned vnode.
135 *
136 * The bypass routine in this file, layer_bypass(), is suitable for use
137 * by many different layered filesystems. It can be used by multiple
138 * filesystems simultaneously. Alternatively, a layered fs may provide
139 * its own bypass routine, in which case layer_bypass() should be used as
140 * a model. For instance, the main functionality provided by umapfs, the user
141 * identity mapping file system, is handled by a custom bypass routine.
142 *
143 * Typically a layered fs registers its selected bypass routine as the
144 * default vnode operation in its vnodeopv_entry_desc table. Additionally
145 * the filesystem must store the bypass entry point in the layerm_bypass
146 * field of struct layer_mount. All other layer routines in this file will
147 * use the layerm_bypass routine.
148 *
149 * Although the bypass routine handles most operations outright, a number
150 * of operations are special cased, and handled by the layered fs. One
151 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
152 * layer_fsync, perform layer-specific manipulation in addition to calling
153 * the bypass routine. The other group
154
155 * Although bypass handles most operations, vop_getattr, vop_lock,
156 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
157 * bypassed. Vop_getattr must change the fsid being returned.
158 * Vop_lock and vop_unlock must handle any locking for the
159 * current vnode as well as pass the lock request down.
160 * Vop_inactive and vop_reclaim are not bypassed so that
161 * they can handle freeing null-layer specific data. Vop_print
162 * is not bypassed to avoid excessive debugging information.
163 * Also, certain vnode operations change the locking state within
164 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
165 * and symlink). Ideally these operations should not change the
166 * lock state, but should be changed to let the caller of the
167 * function unlock them. Otherwise all intermediate vnode layers
168 * (such as union, umapfs, etc) must catch these functions to do
169 * the necessary locking at their layer.
170 *
171 *
172 * INSTANTIATING VNODE STACKS
173 *
174 * Mounting associates the null layer with a lower layer,
175 * effect stacking two VFSes. Vnode stacks are instead
176 * created on demand as files are accessed.
177 *
178 * The initial mount creates a single vnode stack for the
179 * root of the new null layer. All other vnode stacks
180 * are created as a result of vnode operations on
181 * this or other null vnode stacks.
182 *
183 * New vnode stacks come into existence as a result of
184 * an operation which returns a vnode.
185 * The bypass routine stacks a null-node above the new
186 * vnode before returning it to the caller.
187 *
188 * For example, imagine mounting a null layer with
189 * "mount_null /usr/include /dev/layer/null".
190 * Changing directory to /dev/layer/null will assign
191 * the root null-node (which was created when the null layer was mounted).
192 * Now consider opening "sys". A vop_lookup would be
193 * done on the root null-node. This operation would bypass through
194 * to the lower layer which would return a vnode representing
195 * the UFS "sys". layer_bypass then builds a null-node
196 * aliasing the UFS "sys" and returns this to the caller.
197 * Later operations on the null-node "sys" will repeat this
198 * process when constructing other vnode stacks.
199 *
200 *
201 * CREATING OTHER FILE SYSTEM LAYERS
202 *
203 * One of the easiest ways to construct new file system layers is to make
204 * a copy of the null layer, rename all files and variables, and
205 * then begin modifing the copy. Sed can be used to easily rename
206 * all variables.
207 *
208 * The umap layer is an example of a layer descended from the
209 * null layer.
210 *
211 *
212 * INVOKING OPERATIONS ON LOWER LAYERS
213 *
214 * There are two techniques to invoke operations on a lower layer
215 * when the operation cannot be completely bypassed. Each method
216 * is appropriate in different situations. In both cases,
217 * it is the responsibility of the aliasing layer to make
218 * the operation arguments "correct" for the lower layer
219 * by mapping an vnode arguments to the lower layer.
220 *
221 * The first approach is to call the aliasing layer's bypass routine.
222 * This method is most suitable when you wish to invoke the operation
223 * currently being handled on the lower layer. It has the advantage
224 * that the bypass routine already must do argument mapping.
225 * An example of this is null_getattrs in the null layer.
226 *
227 * A second approach is to directly invoke vnode operations on
228 * the lower layer with the VOP_OPERATIONNAME interface.
229 * The advantage of this method is that it is easy to invoke
230 * arbitrary operations on the lower layer. The disadvantage
231 * is that vnodes' arguments must be manually mapped.
232 *
233 */
234
235 #include <sys/cdefs.h>
236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $");
237
238 #include <sys/param.h>
239 #include <sys/systm.h>
240 #include <sys/proc.h>
241 #include <sys/time.h>
242 #include <sys/vnode.h>
243 #include <sys/mount.h>
244 #include <sys/namei.h>
245 #include <sys/malloc.h>
246 #include <sys/buf.h>
247 #include <sys/kauth.h>
248
249 #include <miscfs/genfs/layer.h>
250 #include <miscfs/genfs/layer_extern.h>
251 #include <miscfs/genfs/genfs.h>
252
253
254 /*
255 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
256 * routine by John Heidemann.
257 * The new element for this version is that the whole nullfs
258 * system gained the concept of locks on the lower node, and locks on
259 * our nodes. When returning from a call to the lower layer, we may
260 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
261 * macros provide this functionality.
262 * The 10-Apr-92 version was optimized for speed, throwing away some
263 * safety checks. It should still always work, but it's not as
264 * robust to programmer errors.
265 * Define SAFETY to include some error checking code.
266 *
267 * In general, we map all vnodes going down and unmap them on the way back.
268 *
269 * Also, some BSD vnode operations have the side effect of vrele'ing
270 * their arguments. With stacking, the reference counts are held
271 * by the upper node, not the lower one, so we must handle these
272 * side-effects here. This is not of concern in Sun-derived systems
273 * since there are no such side-effects.
274 *
275 * New for the 08-June-99 version: we also handle operations which unlock
276 * the passed-in node (typically they vput the node).
277 *
278 * This makes the following assumptions:
279 * - only one returned vpp
280 * - no INOUT vpp's (Sun's vop_open has one of these)
281 * - the vnode operation vector of the first vnode should be used
282 * to determine what implementation of the op should be invoked
283 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
284 * problems on rmdir'ing mount points and renaming?)
285 */
286 int
287 layer_bypass(v)
288 void *v;
289 {
290 struct vop_generic_args /* {
291 struct vnodeop_desc *a_desc;
292 <other random data follows, presumably>
293 } */ *ap = v;
294 int (**our_vnodeop_p)(void *);
295 struct vnode **this_vp_p;
296 int error, error1;
297 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
298 struct vnode **vps_p[VDESC_MAX_VPS];
299 struct vnode ***vppp;
300 struct vnodeop_desc *descp = ap->a_desc;
301 int reles, i, flags;
302
303 #ifdef SAFETY
304 /*
305 * We require at least one vp.
306 */
307 if (descp->vdesc_vp_offsets == NULL ||
308 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 panic("%s: no vp's in map.\n", __func__);
310 #endif
311
312 vps_p[0] =
313 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 vp0 = *vps_p[0];
315 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
316 our_vnodeop_p = vp0->v_op;
317
318 if (flags & LAYERFS_MBYPASSDEBUG)
319 printf("%s: %s\n", __func__, descp->vdesc_name);
320
321 /*
322 * Map the vnodes going in.
323 * Later, we'll invoke the operation based on
324 * the first mapped vnode's operation vector.
325 */
326 reles = descp->vdesc_flags;
327 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
328 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
329 break; /* bail out at end of list */
330 vps_p[i] = this_vp_p =
331 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
332 ap);
333 /*
334 * We're not guaranteed that any but the first vnode
335 * are of our type. Check for and don't map any
336 * that aren't. (We must always map first vp or vclean fails.)
337 */
338 if (i && (*this_vp_p == NULL ||
339 (*this_vp_p)->v_op != our_vnodeop_p)) {
340 old_vps[i] = NULL;
341 } else {
342 old_vps[i] = *this_vp_p;
343 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
344 /*
345 * XXX - Several operations have the side effect
346 * of vrele'ing their vp's. We must account for
347 * that. (This should go away in the future.)
348 */
349 if (reles & VDESC_VP0_WILLRELE)
350 VREF(*this_vp_p);
351 }
352
353 }
354
355 /*
356 * Call the operation on the lower layer
357 * with the modified argument structure.
358 */
359 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
360
361 /*
362 * Maintain the illusion of call-by-value
363 * by restoring vnodes in the argument structure
364 * to their original value.
365 */
366 reles = descp->vdesc_flags;
367 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
368 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
369 break; /* bail out at end of list */
370 if (old_vps[i]) {
371 *(vps_p[i]) = old_vps[i];
372 if (reles & VDESC_VP0_WILLUNLOCK)
373 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
374 if (reles & VDESC_VP0_WILLRELE)
375 vrele(*(vps_p[i]));
376 }
377 }
378
379 /*
380 * Map the possible out-going vpp
381 * (Assumes that the lower layer always returns
382 * a VREF'ed vpp unless it gets an error.)
383 */
384 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
385 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
386 !error) {
387 /*
388 * XXX - even though some ops have vpp returned vp's,
389 * several ops actually vrele this before returning.
390 * We must avoid these ops.
391 * (This should go away when these ops are regularized.)
392 */
393 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
394 goto out;
395 vppp = VOPARG_OFFSETTO(struct vnode***,
396 descp->vdesc_vpp_offset, ap);
397 /*
398 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
399 * vop_mknod, and vop_symlink return vpp's. vop_bmap
400 * doesn't call bypass as the lower vpp is fine (we're just
401 * going to do i/o on it). vop_lookup doesn't call bypass
402 * as a lookup on "." would generate a locking error.
403 * So all the calls which get us here have a locked vpp. :-)
404 */
405 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
406 if (error) {
407 vput(**vppp);
408 **vppp = NULL;
409 }
410 }
411
412 out:
413 return (error);
414 }
415
416 /*
417 * We have to carry on the locking protocol on the layer vnodes
418 * as we progress through the tree. We also have to enforce read-only
419 * if this layer is mounted read-only.
420 */
421 int
422 layer_lookup(v)
423 void *v;
424 {
425 struct vop_lookup_args /* {
426 struct vnodeop_desc *a_desc;
427 struct vnode * a_dvp;
428 struct vnode ** a_vpp;
429 struct componentname * a_cnp;
430 } */ *ap = v;
431 struct componentname *cnp = ap->a_cnp;
432 int flags = cnp->cn_flags;
433 struct vnode *dvp, *vp, *ldvp;
434 int error, r;
435
436 dvp = ap->a_dvp;
437
438 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
439 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
440 return (EROFS);
441
442 ldvp = LAYERVPTOLOWERVP(dvp);
443 ap->a_dvp = ldvp;
444 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
445 vp = *ap->a_vpp;
446 *ap->a_vpp = NULL;
447
448 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
449 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
450 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
451 error = EROFS;
452 /*
453 * We must do the same locking and unlocking at this layer as
454 * is done in the layers below us. It used to be we would try
455 * to guess based on what was set with the flags and error codes.
456 *
457 * But that doesn't work. So now we have the underlying VOP_LOOKUP
458 * tell us if it released the parent vnode, and we adjust the
459 * upper node accordingly. We can't just look at the lock states
460 * of the lower nodes as someone else might have come along and
461 * locked the parent node after our call to VOP_LOOKUP locked it.
462 */
463 if ((cnp->cn_flags & PDIRUNLOCK)) {
464 LAYERFS_UPPERUNLOCK(dvp, 0, r);
465 }
466 if (ldvp == vp) {
467 /*
468 * Did lookup on "." or ".." in the root node of a mount point.
469 * So we return dvp after a VREF.
470 */
471 *ap->a_vpp = dvp;
472 VREF(dvp);
473 vrele(vp);
474 } else if (vp != NULL) {
475 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
476 if (error) {
477 vput(vp);
478 if (cnp->cn_flags & PDIRUNLOCK) {
479 if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
480 cnp->cn_flags &= ~PDIRUNLOCK;
481 }
482 }
483 }
484 return (error);
485 }
486
487 /*
488 * Setattr call. Disallow write attempts if the layer is mounted read-only.
489 */
490 int
491 layer_setattr(v)
492 void *v;
493 {
494 struct vop_setattr_args /* {
495 struct vnodeop_desc *a_desc;
496 struct vnode *a_vp;
497 struct vattr *a_vap;
498 kauth_cred_t a_cred;
499 struct lwp *a_l;
500 } */ *ap = v;
501 struct vnode *vp = ap->a_vp;
502 struct vattr *vap = ap->a_vap;
503
504 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
505 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
506 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
507 (vp->v_mount->mnt_flag & MNT_RDONLY))
508 return (EROFS);
509 if (vap->va_size != VNOVAL) {
510 switch (vp->v_type) {
511 case VDIR:
512 return (EISDIR);
513 case VCHR:
514 case VBLK:
515 case VSOCK:
516 case VFIFO:
517 return (0);
518 case VREG:
519 case VLNK:
520 default:
521 /*
522 * Disallow write attempts if the filesystem is
523 * mounted read-only.
524 */
525 if (vp->v_mount->mnt_flag & MNT_RDONLY)
526 return (EROFS);
527 }
528 }
529 return (LAYERFS_DO_BYPASS(vp, ap));
530 }
531
532 /*
533 * We handle getattr only to change the fsid.
534 */
535 int
536 layer_getattr(v)
537 void *v;
538 {
539 struct vop_getattr_args /* {
540 struct vnode *a_vp;
541 struct vattr *a_vap;
542 kauth_cred_t a_cred;
543 struct lwp *a_l;
544 } */ *ap = v;
545 struct vnode *vp = ap->a_vp;
546 int error;
547
548 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
549 return (error);
550 /* Requires that arguments be restored. */
551 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
552 return (0);
553 }
554
555 int
556 layer_access(v)
557 void *v;
558 {
559 struct vop_access_args /* {
560 struct vnode *a_vp;
561 int a_mode;
562 kauth_cred_t a_cred;
563 struct lwp *a_l;
564 } */ *ap = v;
565 struct vnode *vp = ap->a_vp;
566 mode_t mode = ap->a_mode;
567
568 /*
569 * Disallow write attempts on read-only layers;
570 * unless the file is a socket, fifo, or a block or
571 * character device resident on the file system.
572 */
573 if (mode & VWRITE) {
574 switch (vp->v_type) {
575 case VDIR:
576 case VLNK:
577 case VREG:
578 if (vp->v_mount->mnt_flag & MNT_RDONLY)
579 return (EROFS);
580 break;
581 default:
582 break;
583 }
584 }
585 return (LAYERFS_DO_BYPASS(vp, ap));
586 }
587
588 /*
589 * We must handle open to be able to catch MNT_NODEV and friends.
590 */
591 int
592 layer_open(v)
593 void *v;
594 {
595 struct vop_open_args *ap = v;
596 struct vnode *vp = ap->a_vp;
597 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
598
599 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
600 (vp->v_mount->mnt_flag & MNT_NODEV))
601 return ENXIO;
602
603 return LAYERFS_DO_BYPASS(vp, ap);
604 }
605
606 /*
607 * We need to process our own vnode lock and then clear the
608 * interlock flag as it applies only to our vnode, not the
609 * vnodes below us on the stack.
610 */
611 int
612 layer_lock(v)
613 void *v;
614 {
615 struct vop_lock_args /* {
616 struct vnode *a_vp;
617 int a_flags;
618 struct proc *a_p;
619 } */ *ap = v;
620 struct vnode *vp = ap->a_vp, *lowervp;
621 int flags = ap->a_flags, error;
622
623 if (vp->v_vnlock != NULL) {
624 /*
625 * The lower level has exported a struct lock to us. Use
626 * it so that all vnodes in the stack lock and unlock
627 * simultaneously. Note: we don't DRAIN the lock as DRAIN
628 * decommissions the lock - just because our vnode is
629 * going away doesn't mean the struct lock below us is.
630 * LK_EXCLUSIVE is fine.
631 */
632 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
633 return(lockmgr(vp->v_vnlock,
634 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
635 &vp->v_interlock));
636 } else
637 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
638 } else {
639 /*
640 * Ahh well. It would be nice if the fs we're over would
641 * export a struct lock for us to use, but it doesn't.
642 *
643 * To prevent race conditions involving doing a lookup
644 * on "..", we have to lock the lower node, then lock our
645 * node. Most of the time it won't matter that we lock our
646 * node (as any locking would need the lower one locked
647 * first). But we can LK_DRAIN the upper lock as a step
648 * towards decomissioning it.
649 */
650 lowervp = LAYERVPTOLOWERVP(vp);
651 if (flags & LK_INTERLOCK) {
652 simple_unlock(&vp->v_interlock);
653 flags &= ~LK_INTERLOCK;
654 }
655 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
656 error = VOP_LOCK(lowervp,
657 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
658 } else
659 error = VOP_LOCK(lowervp, flags);
660 if (error)
661 return (error);
662 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
663 VOP_UNLOCK(lowervp, 0);
664 }
665 return (error);
666 }
667 }
668
669 /*
670 */
671 int
672 layer_unlock(v)
673 void *v;
674 {
675 struct vop_unlock_args /* {
676 struct vnode *a_vp;
677 int a_flags;
678 struct proc *a_p;
679 } */ *ap = v;
680 struct vnode *vp = ap->a_vp;
681 int flags = ap->a_flags;
682
683 if (vp->v_vnlock != NULL) {
684 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
685 &vp->v_interlock));
686 } else {
687 if (flags & LK_INTERLOCK) {
688 simple_unlock(&vp->v_interlock);
689 flags &= ~LK_INTERLOCK;
690 }
691 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
692 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
693 &vp->v_interlock));
694 }
695 }
696
697 int
698 layer_islocked(v)
699 void *v;
700 {
701 struct vop_islocked_args /* {
702 struct vnode *a_vp;
703 } */ *ap = v;
704 struct vnode *vp = ap->a_vp;
705 int lkstatus;
706
707 if (vp->v_vnlock != NULL)
708 return lockstatus(vp->v_vnlock);
709
710 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
711 if (lkstatus)
712 return lkstatus;
713
714 return lockstatus(&vp->v_lock);
715 }
716
717 /*
718 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
719 * syncing the underlying vnodes, since they'll be fsync'ed when
720 * reclaimed; otherwise,
721 * pass it through to the underlying layer.
722 *
723 * XXX Do we still need to worry about shallow fsync?
724 */
725
726 int
727 layer_fsync(v)
728 void *v;
729 {
730 struct vop_fsync_args /* {
731 struct vnode *a_vp;
732 kauth_cred_t a_cred;
733 int a_flags;
734 off_t offlo;
735 off_t offhi;
736 struct lwp *a_l;
737 } */ *ap = v;
738
739 if (ap->a_flags & FSYNC_RECLAIM) {
740 return 0;
741 }
742
743 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
744 }
745
746
747 int
748 layer_inactive(v)
749 void *v;
750 {
751 struct vop_inactive_args /* {
752 struct vnode *a_vp;
753 struct lwp *a_l;
754 } */ *ap = v;
755 struct vnode *vp = ap->a_vp;
756
757 /*
758 * Do nothing (and _don't_ bypass).
759 * Wait to vrele lowervp until reclaim,
760 * so that until then our layer_node is in the
761 * cache and reusable.
762 *
763 * NEEDSWORK: Someday, consider inactive'ing
764 * the lowervp and then trying to reactivate it
765 * with capabilities (v_id)
766 * like they do in the name lookup cache code.
767 * That's too much work for now.
768 */
769 VOP_UNLOCK(vp, 0);
770
771 /*
772 * ..., but don't cache the device node. Also, if we did a
773 * remove, don't cache the node.
774 */
775 if (vp->v_type == VBLK || vp->v_type == VCHR
776 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
777 vgone(vp);
778 return (0);
779 }
780
781 int
782 layer_remove(v)
783 void *v;
784 {
785 struct vop_remove_args /* {
786 struct vonde *a_dvp;
787 struct vnode *a_vp;
788 struct componentname *a_cnp;
789 } */ *ap = v;
790
791 int error;
792 struct vnode *vp = ap->a_vp;
793
794 vref(vp);
795 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
796 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
797
798 vrele(vp);
799
800 return (error);
801 }
802
803 int
804 layer_rename(v)
805 void *v;
806 {
807 struct vop_rename_args /* {
808 struct vnode *a_fdvp;
809 struct vnode *a_fvp;
810 struct componentname *a_fcnp;
811 struct vnode *a_tdvp;
812 struct vnode *a_tvp;
813 struct componentname *a_tcnp;
814 } */ *ap = v;
815
816 int error;
817 struct vnode *fdvp = ap->a_fdvp;
818 struct vnode *tvp;
819
820 tvp = ap->a_tvp;
821 if (tvp) {
822 if (tvp->v_mount != fdvp->v_mount)
823 tvp = NULL;
824 else
825 vref(tvp);
826 }
827 error = LAYERFS_DO_BYPASS(fdvp, ap);
828 if (tvp) {
829 if (error == 0)
830 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
831 vrele(tvp);
832 }
833
834 return (error);
835 }
836
837 int
838 layer_rmdir(v)
839 void *v;
840 {
841 struct vop_rmdir_args /* {
842 struct vnode *a_dvp;
843 struct vnode *a_vp;
844 struct componentname *a_cnp;
845 } */ *ap = v;
846 int error;
847 struct vnode *vp = ap->a_vp;
848
849 vref(vp);
850 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
851 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
852
853 vrele(vp);
854
855 return (error);
856 }
857
858 int
859 layer_reclaim(v)
860 void *v;
861 {
862 struct vop_reclaim_args /* {
863 struct vnode *a_vp;
864 struct lwp *a_l;
865 } */ *ap = v;
866 struct vnode *vp = ap->a_vp;
867 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
868 struct layer_node *xp = VTOLAYER(vp);
869 struct vnode *lowervp = xp->layer_lowervp;
870
871 /*
872 * Note: in vop_reclaim, the node's struct lock has been
873 * decomissioned, so we have to be careful about calling
874 * VOP's on ourself. Even if we turned a LK_DRAIN into an
875 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
876 * set.
877 */
878 /* After this assignment, this node will not be re-used. */
879 if ((vp == lmp->layerm_rootvp)) {
880 /*
881 * Oops! We no longer have a root node. Most likely reason is
882 * that someone forcably unmunted the underlying fs.
883 *
884 * Now getting the root vnode will fail. We're dead. :-(
885 */
886 lmp->layerm_rootvp = NULL;
887 }
888 xp->layer_lowervp = NULL;
889 simple_lock(&lmp->layerm_hashlock);
890 LIST_REMOVE(xp, layer_hash);
891 simple_unlock(&lmp->layerm_hashlock);
892 FREE(vp->v_data, M_TEMP);
893 vp->v_data = NULL;
894 vrele (lowervp);
895 return (0);
896 }
897
898 /*
899 * We just feed the returned vnode up to the caller - there's no need
900 * to build a layer node on top of the node on which we're going to do
901 * i/o. :-)
902 */
903 int
904 layer_bmap(v)
905 void *v;
906 {
907 struct vop_bmap_args /* {
908 struct vnode *a_vp;
909 daddr_t a_bn;
910 struct vnode **a_vpp;
911 daddr_t *a_bnp;
912 int *a_runp;
913 } */ *ap = v;
914 struct vnode *vp;
915
916 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
917
918 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
919 }
920
921 int
922 layer_print(v)
923 void *v;
924 {
925 struct vop_print_args /* {
926 struct vnode *a_vp;
927 } */ *ap = v;
928 struct vnode *vp = ap->a_vp;
929 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
930 return (0);
931 }
932
933 /*
934 * XXX - vop_bwrite must be hand coded because it has no
935 * vnode in its arguments.
936 * This goes away with a merged VM/buffer cache.
937 */
938 int
939 layer_bwrite(v)
940 void *v;
941 {
942 struct vop_bwrite_args /* {
943 struct buf *a_bp;
944 } */ *ap = v;
945 struct buf *bp = ap->a_bp;
946 int error;
947 struct vnode *savedvp;
948
949 savedvp = bp->b_vp;
950 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
951
952 error = VOP_BWRITE(bp);
953
954 bp->b_vp = savedvp;
955
956 return (error);
957 }
958
959 int
960 layer_getpages(v)
961 void *v;
962 {
963 struct vop_getpages_args /* {
964 struct vnode *a_vp;
965 voff_t a_offset;
966 struct vm_page **a_m;
967 int *a_count;
968 int a_centeridx;
969 vm_prot_t a_access_type;
970 int a_advice;
971 int a_flags;
972 } */ *ap = v;
973 struct vnode *vp = ap->a_vp;
974 int error;
975
976 /*
977 * just pass the request on to the underlying layer.
978 */
979
980 if (ap->a_flags & PGO_LOCKED) {
981 return EBUSY;
982 }
983 ap->a_vp = LAYERVPTOLOWERVP(vp);
984 simple_unlock(&vp->v_interlock);
985 simple_lock(&ap->a_vp->v_interlock);
986 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
987 return error;
988 }
989
990 int
991 layer_putpages(v)
992 void *v;
993 {
994 struct vop_putpages_args /* {
995 struct vnode *a_vp;
996 voff_t a_offlo;
997 voff_t a_offhi;
998 int a_flags;
999 } */ *ap = v;
1000 struct vnode *vp = ap->a_vp;
1001 int error;
1002
1003 /*
1004 * just pass the request on to the underlying layer.
1005 */
1006
1007 ap->a_vp = LAYERVPTOLOWERVP(vp);
1008 simple_unlock(&vp->v_interlock);
1009 simple_lock(&ap->a_vp->v_interlock);
1010 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1011 return error;
1012 }
1013