layer_vnops.c revision 1.29 1 /* $NetBSD: layer_vnops.c,v 1.29 2006/12/09 16:11:52 chs Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * $Id: layer_vnops.c,v 1.29 2006/12/09 16:11:52 chs Exp $
71 * $Id: layer_vnops.c,v 1.29 2006/12/09 16:11:52 chs Exp $
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Null Layer vnode routines.
78 *
79 * (See mount_null(8) for more information.)
80 *
81 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
82 * the core implementation of the null file system and most other stacked
83 * fs's. The description below refers to the null file system, but the
84 * services provided by the layer* files are useful for all layered fs's.
85 *
86 * The null layer duplicates a portion of the file system
87 * name space under a new name. In this respect, it is
88 * similar to the loopback file system. It differs from
89 * the loopback fs in two respects: it is implemented using
90 * a stackable layers techniques, and it's "null-node"s stack above
91 * all lower-layer vnodes, not just over directory vnodes.
92 *
93 * The null layer has two purposes. First, it serves as a demonstration
94 * of layering by proving a layer which does nothing. (It actually
95 * does everything the loopback file system does, which is slightly
96 * more than nothing.) Second, the null layer can serve as a prototype
97 * layer. Since it provides all necessary layer framework,
98 * new file system layers can be created very easily be starting
99 * with a null layer.
100 *
101 * The remainder of the man page examines the null layer as a basis
102 * for constructing new layers.
103 *
104 *
105 * INSTANTIATING NEW NULL LAYERS
106 *
107 * New null layers are created with mount_null(8).
108 * Mount_null(8) takes two arguments, the pathname
109 * of the lower vfs (target-pn) and the pathname where the null
110 * layer will appear in the namespace (alias-pn). After
111 * the null layer is put into place, the contents
112 * of target-pn subtree will be aliased under alias-pn.
113 *
114 * It is conceivable that other overlay filesystems will take different
115 * parameters. For instance, data migration or access controll layers might
116 * only take one pathname which will serve both as the target-pn and
117 * alias-pn described above.
118 *
119 *
120 * OPERATION OF A NULL LAYER
121 *
122 * The null layer is the minimum file system layer,
123 * simply bypassing all possible operations to the lower layer
124 * for processing there. The majority of its activity centers
125 * on the bypass routine, through which nearly all vnode operations
126 * pass.
127 *
128 * The bypass routine accepts arbitrary vnode operations for
129 * handling by the lower layer. It begins by examing vnode
130 * operation arguments and replacing any layered nodes by their
131 * lower-layer equivalents. It then invokes the operation
132 * on the lower layer. Finally, it replaces the layered nodes
133 * in the arguments and, if a vnode is return by the operation,
134 * stacks a layered node on top of the returned vnode.
135 *
136 * The bypass routine in this file, layer_bypass(), is suitable for use
137 * by many different layered filesystems. It can be used by multiple
138 * filesystems simultaneously. Alternatively, a layered fs may provide
139 * its own bypass routine, in which case layer_bypass() should be used as
140 * a model. For instance, the main functionality provided by umapfs, the user
141 * identity mapping file system, is handled by a custom bypass routine.
142 *
143 * Typically a layered fs registers its selected bypass routine as the
144 * default vnode operation in its vnodeopv_entry_desc table. Additionally
145 * the filesystem must store the bypass entry point in the layerm_bypass
146 * field of struct layer_mount. All other layer routines in this file will
147 * use the layerm_bypass routine.
148 *
149 * Although the bypass routine handles most operations outright, a number
150 * of operations are special cased, and handled by the layered fs. One
151 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
152 * layer_fsync, perform layer-specific manipulation in addition to calling
153 * the bypass routine. The other group
154
155 * Although bypass handles most operations, vop_getattr, vop_lock,
156 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
157 * bypassed. Vop_getattr must change the fsid being returned.
158 * Vop_lock and vop_unlock must handle any locking for the
159 * current vnode as well as pass the lock request down.
160 * Vop_inactive and vop_reclaim are not bypassed so that
161 * they can handle freeing null-layer specific data. Vop_print
162 * is not bypassed to avoid excessive debugging information.
163 * Also, certain vnode operations change the locking state within
164 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
165 * and symlink). Ideally these operations should not change the
166 * lock state, but should be changed to let the caller of the
167 * function unlock them. Otherwise all intermediate vnode layers
168 * (such as union, umapfs, etc) must catch these functions to do
169 * the necessary locking at their layer.
170 *
171 *
172 * INSTANTIATING VNODE STACKS
173 *
174 * Mounting associates the null layer with a lower layer,
175 * effect stacking two VFSes. Vnode stacks are instead
176 * created on demand as files are accessed.
177 *
178 * The initial mount creates a single vnode stack for the
179 * root of the new null layer. All other vnode stacks
180 * are created as a result of vnode operations on
181 * this or other null vnode stacks.
182 *
183 * New vnode stacks come into existence as a result of
184 * an operation which returns a vnode.
185 * The bypass routine stacks a null-node above the new
186 * vnode before returning it to the caller.
187 *
188 * For example, imagine mounting a null layer with
189 * "mount_null /usr/include /dev/layer/null".
190 * Changing directory to /dev/layer/null will assign
191 * the root null-node (which was created when the null layer was mounted).
192 * Now consider opening "sys". A vop_lookup would be
193 * done on the root null-node. This operation would bypass through
194 * to the lower layer which would return a vnode representing
195 * the UFS "sys". layer_bypass then builds a null-node
196 * aliasing the UFS "sys" and returns this to the caller.
197 * Later operations on the null-node "sys" will repeat this
198 * process when constructing other vnode stacks.
199 *
200 *
201 * CREATING OTHER FILE SYSTEM LAYERS
202 *
203 * One of the easiest ways to construct new file system layers is to make
204 * a copy of the null layer, rename all files and variables, and
205 * then begin modifing the copy. Sed can be used to easily rename
206 * all variables.
207 *
208 * The umap layer is an example of a layer descended from the
209 * null layer.
210 *
211 *
212 * INVOKING OPERATIONS ON LOWER LAYERS
213 *
214 * There are two techniques to invoke operations on a lower layer
215 * when the operation cannot be completely bypassed. Each method
216 * is appropriate in different situations. In both cases,
217 * it is the responsibility of the aliasing layer to make
218 * the operation arguments "correct" for the lower layer
219 * by mapping an vnode arguments to the lower layer.
220 *
221 * The first approach is to call the aliasing layer's bypass routine.
222 * This method is most suitable when you wish to invoke the operation
223 * currently being handled on the lower layer. It has the advantage
224 * that the bypass routine already must do argument mapping.
225 * An example of this is null_getattrs in the null layer.
226 *
227 * A second approach is to directly invoke vnode operations on
228 * the lower layer with the VOP_OPERATIONNAME interface.
229 * The advantage of this method is that it is easy to invoke
230 * arbitrary operations on the lower layer. The disadvantage
231 * is that vnodes' arguments must be manually mapped.
232 *
233 */
234
235 #include <sys/cdefs.h>
236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.29 2006/12/09 16:11:52 chs Exp $");
237
238 #include <sys/param.h>
239 #include <sys/systm.h>
240 #include <sys/proc.h>
241 #include <sys/time.h>
242 #include <sys/vnode.h>
243 #include <sys/mount.h>
244 #include <sys/namei.h>
245 #include <sys/malloc.h>
246 #include <sys/buf.h>
247 #include <sys/kauth.h>
248
249 #include <miscfs/genfs/layer.h>
250 #include <miscfs/genfs/layer_extern.h>
251 #include <miscfs/genfs/genfs.h>
252
253
254 /*
255 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
256 * routine by John Heidemann.
257 * The new element for this version is that the whole nullfs
258 * system gained the concept of locks on the lower node, and locks on
259 * our nodes. When returning from a call to the lower layer, we may
260 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
261 * macros provide this functionality.
262 * The 10-Apr-92 version was optimized for speed, throwing away some
263 * safety checks. It should still always work, but it's not as
264 * robust to programmer errors.
265 * Define SAFETY to include some error checking code.
266 *
267 * In general, we map all vnodes going down and unmap them on the way back.
268 *
269 * Also, some BSD vnode operations have the side effect of vrele'ing
270 * their arguments. With stacking, the reference counts are held
271 * by the upper node, not the lower one, so we must handle these
272 * side-effects here. This is not of concern in Sun-derived systems
273 * since there are no such side-effects.
274 *
275 * New for the 08-June-99 version: we also handle operations which unlock
276 * the passed-in node (typically they vput the node).
277 *
278 * This makes the following assumptions:
279 * - only one returned vpp
280 * - no INOUT vpp's (Sun's vop_open has one of these)
281 * - the vnode operation vector of the first vnode should be used
282 * to determine what implementation of the op should be invoked
283 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
284 * problems on rmdir'ing mount points and renaming?)
285 */
286 int
287 layer_bypass(v)
288 void *v;
289 {
290 struct vop_generic_args /* {
291 struct vnodeop_desc *a_desc;
292 <other random data follows, presumably>
293 } */ *ap = v;
294 int (**our_vnodeop_p)(void *);
295 struct vnode **this_vp_p;
296 int error, error1;
297 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
298 struct vnode **vps_p[VDESC_MAX_VPS];
299 struct vnode ***vppp;
300 struct vnodeop_desc *descp = ap->a_desc;
301 int reles, i, flags;
302
303 #ifdef SAFETY
304 /*
305 * We require at least one vp.
306 */
307 if (descp->vdesc_vp_offsets == NULL ||
308 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 panic("%s: no vp's in map.\n", __func__);
310 #endif
311
312 vps_p[0] =
313 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 vp0 = *vps_p[0];
315 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
316 our_vnodeop_p = vp0->v_op;
317
318 if (flags & LAYERFS_MBYPASSDEBUG)
319 printf("%s: %s\n", __func__, descp->vdesc_name);
320
321 /*
322 * Map the vnodes going in.
323 * Later, we'll invoke the operation based on
324 * the first mapped vnode's operation vector.
325 */
326 reles = descp->vdesc_flags;
327 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
328 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
329 break; /* bail out at end of list */
330 vps_p[i] = this_vp_p =
331 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
332 ap);
333 /*
334 * We're not guaranteed that any but the first vnode
335 * are of our type. Check for and don't map any
336 * that aren't. (We must always map first vp or vclean fails.)
337 */
338 if (i && (*this_vp_p == NULL ||
339 (*this_vp_p)->v_op != our_vnodeop_p)) {
340 old_vps[i] = NULL;
341 } else {
342 old_vps[i] = *this_vp_p;
343 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
344 /*
345 * XXX - Several operations have the side effect
346 * of vrele'ing their vp's. We must account for
347 * that. (This should go away in the future.)
348 */
349 if (reles & VDESC_VP0_WILLRELE)
350 VREF(*this_vp_p);
351 }
352
353 }
354
355 /*
356 * Call the operation on the lower layer
357 * with the modified argument structure.
358 */
359 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
360
361 /*
362 * Maintain the illusion of call-by-value
363 * by restoring vnodes in the argument structure
364 * to their original value.
365 */
366 reles = descp->vdesc_flags;
367 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
368 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
369 break; /* bail out at end of list */
370 if (old_vps[i]) {
371 *(vps_p[i]) = old_vps[i];
372 if (reles & VDESC_VP0_WILLUNLOCK)
373 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
374 if (reles & VDESC_VP0_WILLRELE)
375 vrele(*(vps_p[i]));
376 }
377 }
378
379 /*
380 * Map the possible out-going vpp
381 * (Assumes that the lower layer always returns
382 * a VREF'ed vpp unless it gets an error.)
383 */
384 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
385 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
386 !error) {
387 /*
388 * XXX - even though some ops have vpp returned vp's,
389 * several ops actually vrele this before returning.
390 * We must avoid these ops.
391 * (This should go away when these ops are regularized.)
392 */
393 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
394 goto out;
395 vppp = VOPARG_OFFSETTO(struct vnode***,
396 descp->vdesc_vpp_offset, ap);
397 /*
398 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
399 * vop_mknod, and vop_symlink return vpp's. vop_bmap
400 * doesn't call bypass as the lower vpp is fine (we're just
401 * going to do i/o on it). vop_lookup doesn't call bypass
402 * as a lookup on "." would generate a locking error.
403 * So all the calls which get us here have a locked vpp. :-)
404 */
405 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
406 if (error) {
407 vput(**vppp);
408 **vppp = NULL;
409 }
410 }
411
412 out:
413 return (error);
414 }
415
416 /*
417 * We have to carry on the locking protocol on the layer vnodes
418 * as we progress through the tree. We also have to enforce read-only
419 * if this layer is mounted read-only.
420 */
421 int
422 layer_lookup(v)
423 void *v;
424 {
425 struct vop_lookup_args /* {
426 struct vnodeop_desc *a_desc;
427 struct vnode * a_dvp;
428 struct vnode ** a_vpp;
429 struct componentname * a_cnp;
430 } */ *ap = v;
431 struct componentname *cnp = ap->a_cnp;
432 int flags = cnp->cn_flags;
433 struct vnode *dvp, *lvp, *ldvp;
434 int error;
435
436 dvp = ap->a_dvp;
437
438 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
439 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
440 return (EROFS);
441
442 ldvp = LAYERVPTOLOWERVP(dvp);
443 ap->a_dvp = ldvp;
444 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
445 lvp = *ap->a_vpp;
446 *ap->a_vpp = NULL;
447
448 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
449 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
450 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
451 error = EROFS;
452
453 /*
454 * We must do the same locking and unlocking at this layer as
455 * is done in the layers below us.
456 */
457 if (ldvp == lvp) {
458
459 /*
460 * Did lookup on "." or ".." in the root node of a mount point.
461 * So we return dvp after a VREF.
462 */
463 VREF(dvp);
464 *ap->a_vpp = dvp;
465 vrele(lvp);
466 } else if (lvp != NULL) {
467 /* dvp, ldvp and vp are all locked */
468 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
469 if (error) {
470 vput(lvp);
471 }
472 }
473 return (error);
474 }
475
476 /*
477 * Setattr call. Disallow write attempts if the layer is mounted read-only.
478 */
479 int
480 layer_setattr(v)
481 void *v;
482 {
483 struct vop_setattr_args /* {
484 struct vnodeop_desc *a_desc;
485 struct vnode *a_vp;
486 struct vattr *a_vap;
487 kauth_cred_t a_cred;
488 struct lwp *a_l;
489 } */ *ap = v;
490 struct vnode *vp = ap->a_vp;
491 struct vattr *vap = ap->a_vap;
492
493 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
494 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
495 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
496 (vp->v_mount->mnt_flag & MNT_RDONLY))
497 return (EROFS);
498 if (vap->va_size != VNOVAL) {
499 switch (vp->v_type) {
500 case VDIR:
501 return (EISDIR);
502 case VCHR:
503 case VBLK:
504 case VSOCK:
505 case VFIFO:
506 return (0);
507 case VREG:
508 case VLNK:
509 default:
510 /*
511 * Disallow write attempts if the filesystem is
512 * mounted read-only.
513 */
514 if (vp->v_mount->mnt_flag & MNT_RDONLY)
515 return (EROFS);
516 }
517 }
518 return (LAYERFS_DO_BYPASS(vp, ap));
519 }
520
521 /*
522 * We handle getattr only to change the fsid.
523 */
524 int
525 layer_getattr(v)
526 void *v;
527 {
528 struct vop_getattr_args /* {
529 struct vnode *a_vp;
530 struct vattr *a_vap;
531 kauth_cred_t a_cred;
532 struct lwp *a_l;
533 } */ *ap = v;
534 struct vnode *vp = ap->a_vp;
535 int error;
536
537 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
538 return (error);
539 /* Requires that arguments be restored. */
540 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
541 return (0);
542 }
543
544 int
545 layer_access(v)
546 void *v;
547 {
548 struct vop_access_args /* {
549 struct vnode *a_vp;
550 int a_mode;
551 kauth_cred_t a_cred;
552 struct lwp *a_l;
553 } */ *ap = v;
554 struct vnode *vp = ap->a_vp;
555 mode_t mode = ap->a_mode;
556
557 /*
558 * Disallow write attempts on read-only layers;
559 * unless the file is a socket, fifo, or a block or
560 * character device resident on the file system.
561 */
562 if (mode & VWRITE) {
563 switch (vp->v_type) {
564 case VDIR:
565 case VLNK:
566 case VREG:
567 if (vp->v_mount->mnt_flag & MNT_RDONLY)
568 return (EROFS);
569 break;
570 default:
571 break;
572 }
573 }
574 return (LAYERFS_DO_BYPASS(vp, ap));
575 }
576
577 /*
578 * We must handle open to be able to catch MNT_NODEV and friends.
579 */
580 int
581 layer_open(v)
582 void *v;
583 {
584 struct vop_open_args *ap = v;
585 struct vnode *vp = ap->a_vp;
586 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
587
588 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
589 (vp->v_mount->mnt_flag & MNT_NODEV))
590 return ENXIO;
591
592 return LAYERFS_DO_BYPASS(vp, ap);
593 }
594
595 /*
596 * We need to process our own vnode lock and then clear the
597 * interlock flag as it applies only to our vnode, not the
598 * vnodes below us on the stack.
599 */
600 int
601 layer_lock(v)
602 void *v;
603 {
604 struct vop_lock_args /* {
605 struct vnode *a_vp;
606 int a_flags;
607 struct proc *a_p;
608 } */ *ap = v;
609 struct vnode *vp = ap->a_vp, *lowervp;
610 int flags = ap->a_flags, error;
611
612 if (vp->v_vnlock != NULL) {
613 /*
614 * The lower level has exported a struct lock to us. Use
615 * it so that all vnodes in the stack lock and unlock
616 * simultaneously. Note: we don't DRAIN the lock as DRAIN
617 * decommissions the lock - just because our vnode is
618 * going away doesn't mean the struct lock below us is.
619 * LK_EXCLUSIVE is fine.
620 */
621 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
622 return(lockmgr(vp->v_vnlock,
623 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
624 &vp->v_interlock));
625 } else
626 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
627 } else {
628 /*
629 * Ahh well. It would be nice if the fs we're over would
630 * export a struct lock for us to use, but it doesn't.
631 *
632 * To prevent race conditions involving doing a lookup
633 * on "..", we have to lock the lower node, then lock our
634 * node. Most of the time it won't matter that we lock our
635 * node (as any locking would need the lower one locked
636 * first). But we can LK_DRAIN the upper lock as a step
637 * towards decomissioning it.
638 */
639 lowervp = LAYERVPTOLOWERVP(vp);
640 if (flags & LK_INTERLOCK) {
641 simple_unlock(&vp->v_interlock);
642 flags &= ~LK_INTERLOCK;
643 }
644 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
645 error = VOP_LOCK(lowervp,
646 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
647 } else
648 error = VOP_LOCK(lowervp, flags);
649 if (error)
650 return (error);
651 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
652 VOP_UNLOCK(lowervp, 0);
653 }
654 return (error);
655 }
656 }
657
658 /*
659 */
660 int
661 layer_unlock(v)
662 void *v;
663 {
664 struct vop_unlock_args /* {
665 struct vnode *a_vp;
666 int a_flags;
667 struct proc *a_p;
668 } */ *ap = v;
669 struct vnode *vp = ap->a_vp;
670 int flags = ap->a_flags;
671
672 if (vp->v_vnlock != NULL) {
673 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
674 &vp->v_interlock));
675 } else {
676 if (flags & LK_INTERLOCK) {
677 simple_unlock(&vp->v_interlock);
678 flags &= ~LK_INTERLOCK;
679 }
680 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
681 return (lockmgr(&vp->v_lock, flags | LK_RELEASE,
682 &vp->v_interlock));
683 }
684 }
685
686 int
687 layer_islocked(v)
688 void *v;
689 {
690 struct vop_islocked_args /* {
691 struct vnode *a_vp;
692 } */ *ap = v;
693 struct vnode *vp = ap->a_vp;
694 int lkstatus;
695
696 if (vp->v_vnlock != NULL)
697 return lockstatus(vp->v_vnlock);
698
699 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
700 if (lkstatus)
701 return lkstatus;
702
703 return lockstatus(&vp->v_lock);
704 }
705
706 /*
707 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
708 * syncing the underlying vnodes, since they'll be fsync'ed when
709 * reclaimed; otherwise,
710 * pass it through to the underlying layer.
711 *
712 * XXX Do we still need to worry about shallow fsync?
713 */
714
715 int
716 layer_fsync(v)
717 void *v;
718 {
719 struct vop_fsync_args /* {
720 struct vnode *a_vp;
721 kauth_cred_t a_cred;
722 int a_flags;
723 off_t offlo;
724 off_t offhi;
725 struct lwp *a_l;
726 } */ *ap = v;
727
728 if (ap->a_flags & FSYNC_RECLAIM) {
729 return 0;
730 }
731
732 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
733 }
734
735
736 int
737 layer_inactive(v)
738 void *v;
739 {
740 struct vop_inactive_args /* {
741 struct vnode *a_vp;
742 struct lwp *a_l;
743 } */ *ap = v;
744 struct vnode *vp = ap->a_vp;
745
746 /*
747 * Do nothing (and _don't_ bypass).
748 * Wait to vrele lowervp until reclaim,
749 * so that until then our layer_node is in the
750 * cache and reusable.
751 *
752 * NEEDSWORK: Someday, consider inactive'ing
753 * the lowervp and then trying to reactivate it
754 * with capabilities (v_id)
755 * like they do in the name lookup cache code.
756 * That's too much work for now.
757 */
758 VOP_UNLOCK(vp, 0);
759
760 /*
761 * ..., but don't cache the device node. Also, if we did a
762 * remove, don't cache the node.
763 */
764 if (vp->v_type == VBLK || vp->v_type == VCHR
765 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
766 vgone(vp);
767 return (0);
768 }
769
770 int
771 layer_remove(v)
772 void *v;
773 {
774 struct vop_remove_args /* {
775 struct vonde *a_dvp;
776 struct vnode *a_vp;
777 struct componentname *a_cnp;
778 } */ *ap = v;
779
780 int error;
781 struct vnode *vp = ap->a_vp;
782
783 vref(vp);
784 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
785 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
786
787 vrele(vp);
788
789 return (error);
790 }
791
792 int
793 layer_rename(v)
794 void *v;
795 {
796 struct vop_rename_args /* {
797 struct vnode *a_fdvp;
798 struct vnode *a_fvp;
799 struct componentname *a_fcnp;
800 struct vnode *a_tdvp;
801 struct vnode *a_tvp;
802 struct componentname *a_tcnp;
803 } */ *ap = v;
804
805 int error;
806 struct vnode *fdvp = ap->a_fdvp;
807 struct vnode *tvp;
808
809 tvp = ap->a_tvp;
810 if (tvp) {
811 if (tvp->v_mount != fdvp->v_mount)
812 tvp = NULL;
813 else
814 vref(tvp);
815 }
816 error = LAYERFS_DO_BYPASS(fdvp, ap);
817 if (tvp) {
818 if (error == 0)
819 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
820 vrele(tvp);
821 }
822
823 return (error);
824 }
825
826 int
827 layer_rmdir(v)
828 void *v;
829 {
830 struct vop_rmdir_args /* {
831 struct vnode *a_dvp;
832 struct vnode *a_vp;
833 struct componentname *a_cnp;
834 } */ *ap = v;
835 int error;
836 struct vnode *vp = ap->a_vp;
837
838 vref(vp);
839 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
840 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
841
842 vrele(vp);
843
844 return (error);
845 }
846
847 int
848 layer_reclaim(v)
849 void *v;
850 {
851 struct vop_reclaim_args /* {
852 struct vnode *a_vp;
853 struct lwp *a_l;
854 } */ *ap = v;
855 struct vnode *vp = ap->a_vp;
856 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
857 struct layer_node *xp = VTOLAYER(vp);
858 struct vnode *lowervp = xp->layer_lowervp;
859
860 /*
861 * Note: in vop_reclaim, the node's struct lock has been
862 * decomissioned, so we have to be careful about calling
863 * VOP's on ourself. Even if we turned a LK_DRAIN into an
864 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
865 * set.
866 */
867 /* After this assignment, this node will not be re-used. */
868 if ((vp == lmp->layerm_rootvp)) {
869 /*
870 * Oops! We no longer have a root node. Most likely reason is
871 * that someone forcably unmunted the underlying fs.
872 *
873 * Now getting the root vnode will fail. We're dead. :-(
874 */
875 lmp->layerm_rootvp = NULL;
876 }
877 xp->layer_lowervp = NULL;
878 simple_lock(&lmp->layerm_hashlock);
879 LIST_REMOVE(xp, layer_hash);
880 simple_unlock(&lmp->layerm_hashlock);
881 FREE(vp->v_data, M_TEMP);
882 vp->v_data = NULL;
883 vrele(lowervp);
884 return (0);
885 }
886
887 /*
888 * We just feed the returned vnode up to the caller - there's no need
889 * to build a layer node on top of the node on which we're going to do
890 * i/o. :-)
891 */
892 int
893 layer_bmap(v)
894 void *v;
895 {
896 struct vop_bmap_args /* {
897 struct vnode *a_vp;
898 daddr_t a_bn;
899 struct vnode **a_vpp;
900 daddr_t *a_bnp;
901 int *a_runp;
902 } */ *ap = v;
903 struct vnode *vp;
904
905 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
906
907 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
908 }
909
910 int
911 layer_print(v)
912 void *v;
913 {
914 struct vop_print_args /* {
915 struct vnode *a_vp;
916 } */ *ap = v;
917 struct vnode *vp = ap->a_vp;
918 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
919 return (0);
920 }
921
922 /*
923 * XXX - vop_bwrite must be hand coded because it has no
924 * vnode in its arguments.
925 * This goes away with a merged VM/buffer cache.
926 */
927 int
928 layer_bwrite(v)
929 void *v;
930 {
931 struct vop_bwrite_args /* {
932 struct buf *a_bp;
933 } */ *ap = v;
934 struct buf *bp = ap->a_bp;
935 int error;
936 struct vnode *savedvp;
937
938 savedvp = bp->b_vp;
939 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
940
941 error = VOP_BWRITE(bp);
942
943 bp->b_vp = savedvp;
944
945 return (error);
946 }
947
948 int
949 layer_getpages(v)
950 void *v;
951 {
952 struct vop_getpages_args /* {
953 struct vnode *a_vp;
954 voff_t a_offset;
955 struct vm_page **a_m;
956 int *a_count;
957 int a_centeridx;
958 vm_prot_t a_access_type;
959 int a_advice;
960 int a_flags;
961 } */ *ap = v;
962 struct vnode *vp = ap->a_vp;
963 int error;
964
965 /*
966 * just pass the request on to the underlying layer.
967 */
968
969 if (ap->a_flags & PGO_LOCKED) {
970 return EBUSY;
971 }
972 ap->a_vp = LAYERVPTOLOWERVP(vp);
973 simple_unlock(&vp->v_interlock);
974 simple_lock(&ap->a_vp->v_interlock);
975 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
976 return error;
977 }
978
979 int
980 layer_putpages(v)
981 void *v;
982 {
983 struct vop_putpages_args /* {
984 struct vnode *a_vp;
985 voff_t a_offlo;
986 voff_t a_offhi;
987 int a_flags;
988 } */ *ap = v;
989 struct vnode *vp = ap->a_vp;
990 int error;
991
992 /*
993 * just pass the request on to the underlying layer.
994 */
995
996 ap->a_vp = LAYERVPTOLOWERVP(vp);
997 simple_unlock(&vp->v_interlock);
998 simple_lock(&ap->a_vp->v_interlock);
999 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1000 return error;
1001 }
1002