layer_vnops.c revision 1.33 1 /* $NetBSD: layer_vnops.c,v 1.33 2007/12/22 00:48:46 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.33 2007/12/22 00:48:46 dyoung Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251
252
253 /*
254 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255 * routine by John Heidemann.
256 * The new element for this version is that the whole nullfs
257 * system gained the concept of locks on the lower node, and locks on
258 * our nodes. When returning from a call to the lower layer, we may
259 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
260 * macros provide this functionality.
261 * The 10-Apr-92 version was optimized for speed, throwing away some
262 * safety checks. It should still always work, but it's not as
263 * robust to programmer errors.
264 * Define SAFETY to include some error checking code.
265 *
266 * In general, we map all vnodes going down and unmap them on the way back.
267 *
268 * Also, some BSD vnode operations have the side effect of vrele'ing
269 * their arguments. With stacking, the reference counts are held
270 * by the upper node, not the lower one, so we must handle these
271 * side-effects here. This is not of concern in Sun-derived systems
272 * since there are no such side-effects.
273 *
274 * New for the 08-June-99 version: we also handle operations which unlock
275 * the passed-in node (typically they vput the node).
276 *
277 * This makes the following assumptions:
278 * - only one returned vpp
279 * - no INOUT vpp's (Sun's vop_open has one of these)
280 * - the vnode operation vector of the first vnode should be used
281 * to determine what implementation of the op should be invoked
282 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
283 * problems on rmdir'ing mount points and renaming?)
284 */
285 int
286 layer_bypass(v)
287 void *v;
288 {
289 struct vop_generic_args /* {
290 struct vnodeop_desc *a_desc;
291 <other random data follows, presumably>
292 } */ *ap = v;
293 int (**our_vnodeop_p)(void *);
294 struct vnode **this_vp_p;
295 int error, error1;
296 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
297 struct vnode **vps_p[VDESC_MAX_VPS];
298 struct vnode ***vppp;
299 struct mount *mp;
300 struct vnodeop_desc *descp = ap->a_desc;
301 int reles, i, flags;
302
303 #ifdef SAFETY
304 /*
305 * We require at least one vp.
306 */
307 if (descp->vdesc_vp_offsets == NULL ||
308 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 panic("%s: no vp's in map.\n", __func__);
310 #endif
311
312 vps_p[0] =
313 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 vp0 = *vps_p[0];
315 mp = vp0->v_mount;
316 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
317 our_vnodeop_p = vp0->v_op;
318
319 if (flags & LAYERFS_MBYPASSDEBUG)
320 printf("%s: %s\n", __func__, descp->vdesc_name);
321
322 /*
323 * Map the vnodes going in.
324 * Later, we'll invoke the operation based on
325 * the first mapped vnode's operation vector.
326 */
327 reles = descp->vdesc_flags;
328 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
329 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
330 break; /* bail out at end of list */
331 vps_p[i] = this_vp_p =
332 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
333 ap);
334 /*
335 * We're not guaranteed that any but the first vnode
336 * are of our type. Check for and don't map any
337 * that aren't. (We must always map first vp or vclean fails.)
338 */
339 if (i && (*this_vp_p == NULL ||
340 (*this_vp_p)->v_op != our_vnodeop_p)) {
341 old_vps[i] = NULL;
342 } else {
343 old_vps[i] = *this_vp_p;
344 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
345 /*
346 * XXX - Several operations have the side effect
347 * of vrele'ing their vp's. We must account for
348 * that. (This should go away in the future.)
349 */
350 if (reles & VDESC_VP0_WILLRELE)
351 VREF(*this_vp_p);
352 }
353
354 }
355
356 /*
357 * Call the operation on the lower layer
358 * with the modified argument structure.
359 */
360 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
361
362 /*
363 * Maintain the illusion of call-by-value
364 * by restoring vnodes in the argument structure
365 * to their original value.
366 */
367 reles = descp->vdesc_flags;
368 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
369 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
370 break; /* bail out at end of list */
371 if (old_vps[i]) {
372 *(vps_p[i]) = old_vps[i];
373 if (reles & VDESC_VP0_WILLUNLOCK)
374 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
375 if (reles & VDESC_VP0_WILLRELE)
376 vrele(*(vps_p[i]));
377 }
378 }
379
380 /*
381 * Map the possible out-going vpp
382 * (Assumes that the lower layer always returns
383 * a VREF'ed vpp unless it gets an error.)
384 */
385 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
386 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
387 !error) {
388 /*
389 * XXX - even though some ops have vpp returned vp's,
390 * several ops actually vrele this before returning.
391 * We must avoid these ops.
392 * (This should go away when these ops are regularized.)
393 */
394 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
395 goto out;
396 vppp = VOPARG_OFFSETTO(struct vnode***,
397 descp->vdesc_vpp_offset, ap);
398 /*
399 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
400 * vop_mknod, and vop_symlink return vpp's. vop_bmap
401 * doesn't call bypass as the lower vpp is fine (we're just
402 * going to do i/o on it). vop_lookup doesn't call bypass
403 * as a lookup on "." would generate a locking error.
404 * So all the calls which get us here have a locked vpp. :-)
405 */
406 error = layer_node_create(mp, **vppp, *vppp);
407 if (error) {
408 vput(**vppp);
409 **vppp = NULL;
410 }
411 }
412
413 out:
414 return (error);
415 }
416
417 /*
418 * We have to carry on the locking protocol on the layer vnodes
419 * as we progress through the tree. We also have to enforce read-only
420 * if this layer is mounted read-only.
421 */
422 int
423 layer_lookup(v)
424 void *v;
425 {
426 struct vop_lookup_args /* {
427 struct vnodeop_desc *a_desc;
428 struct vnode * a_dvp;
429 struct vnode ** a_vpp;
430 struct componentname * a_cnp;
431 } */ *ap = v;
432 struct componentname *cnp = ap->a_cnp;
433 int flags = cnp->cn_flags;
434 struct vnode *dvp, *lvp, *ldvp;
435 int error;
436
437 dvp = ap->a_dvp;
438
439 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
441 return (EROFS);
442
443 ldvp = LAYERVPTOLOWERVP(dvp);
444 ap->a_dvp = ldvp;
445 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
446 lvp = *ap->a_vpp;
447 *ap->a_vpp = NULL;
448
449 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
450 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
451 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
452 error = EROFS;
453
454 /*
455 * We must do the same locking and unlocking at this layer as
456 * is done in the layers below us.
457 */
458 if (ldvp == lvp) {
459
460 /*
461 * Did lookup on "." or ".." in the root node of a mount point.
462 * So we return dvp after a VREF.
463 */
464 VREF(dvp);
465 *ap->a_vpp = dvp;
466 vrele(lvp);
467 } else if (lvp != NULL) {
468 /* dvp, ldvp and vp are all locked */
469 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
470 if (error) {
471 vput(lvp);
472 }
473 }
474 return (error);
475 }
476
477 /*
478 * Setattr call. Disallow write attempts if the layer is mounted read-only.
479 */
480 int
481 layer_setattr(v)
482 void *v;
483 {
484 struct vop_setattr_args /* {
485 struct vnodeop_desc *a_desc;
486 struct vnode *a_vp;
487 struct vattr *a_vap;
488 kauth_cred_t a_cred;
489 struct lwp *a_l;
490 } */ *ap = v;
491 struct vnode *vp = ap->a_vp;
492 struct vattr *vap = ap->a_vap;
493
494 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
495 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
496 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
497 (vp->v_mount->mnt_flag & MNT_RDONLY))
498 return (EROFS);
499 if (vap->va_size != VNOVAL) {
500 switch (vp->v_type) {
501 case VDIR:
502 return (EISDIR);
503 case VCHR:
504 case VBLK:
505 case VSOCK:
506 case VFIFO:
507 return (0);
508 case VREG:
509 case VLNK:
510 default:
511 /*
512 * Disallow write attempts if the filesystem is
513 * mounted read-only.
514 */
515 if (vp->v_mount->mnt_flag & MNT_RDONLY)
516 return (EROFS);
517 }
518 }
519 return (LAYERFS_DO_BYPASS(vp, ap));
520 }
521
522 /*
523 * We handle getattr only to change the fsid.
524 */
525 int
526 layer_getattr(v)
527 void *v;
528 {
529 struct vop_getattr_args /* {
530 struct vnode *a_vp;
531 struct vattr *a_vap;
532 kauth_cred_t a_cred;
533 struct lwp *a_l;
534 } */ *ap = v;
535 struct vnode *vp = ap->a_vp;
536 int error;
537
538 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
539 return (error);
540 /* Requires that arguments be restored. */
541 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
542 return (0);
543 }
544
545 int
546 layer_access(v)
547 void *v;
548 {
549 struct vop_access_args /* {
550 struct vnode *a_vp;
551 int a_mode;
552 kauth_cred_t a_cred;
553 struct lwp *a_l;
554 } */ *ap = v;
555 struct vnode *vp = ap->a_vp;
556 mode_t mode = ap->a_mode;
557
558 /*
559 * Disallow write attempts on read-only layers;
560 * unless the file is a socket, fifo, or a block or
561 * character device resident on the file system.
562 */
563 if (mode & VWRITE) {
564 switch (vp->v_type) {
565 case VDIR:
566 case VLNK:
567 case VREG:
568 if (vp->v_mount->mnt_flag & MNT_RDONLY)
569 return (EROFS);
570 break;
571 default:
572 break;
573 }
574 }
575 return (LAYERFS_DO_BYPASS(vp, ap));
576 }
577
578 /*
579 * We must handle open to be able to catch MNT_NODEV and friends.
580 */
581 int
582 layer_open(v)
583 void *v;
584 {
585 struct vop_open_args *ap = v;
586 struct vnode *vp = ap->a_vp;
587 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
588
589 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
590 (vp->v_mount->mnt_flag & MNT_NODEV))
591 return ENXIO;
592
593 return LAYERFS_DO_BYPASS(vp, ap);
594 }
595
596 /*
597 * We need to process our own vnode lock and then clear the
598 * interlock flag as it applies only to our vnode, not the
599 * vnodes below us on the stack.
600 */
601 int
602 layer_lock(v)
603 void *v;
604 {
605 struct vop_lock_args /* {
606 struct vnode *a_vp;
607 int a_flags;
608 struct proc *a_p;
609 } */ *ap = v;
610 struct vnode *vp = ap->a_vp, *lowervp;
611 int flags = ap->a_flags, error;
612
613 if (vp->v_vnlock != NULL) {
614 /*
615 * The lower level has exported a struct lock to us. Use
616 * it so that all vnodes in the stack lock and unlock
617 * simultaneously. Note: we don't DRAIN the lock as DRAIN
618 * decommissions the lock - just because our vnode is
619 * going away doesn't mean the struct lock below us is.
620 * LK_EXCLUSIVE is fine.
621 */
622 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
623 return(lockmgr(vp->v_vnlock,
624 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
625 &vp->v_interlock));
626 } else
627 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
628 } else {
629 /*
630 * Ahh well. It would be nice if the fs we're over would
631 * export a struct lock for us to use, but it doesn't.
632 *
633 * To prevent race conditions involving doing a lookup
634 * on "..", we have to lock the lower node, then lock our
635 * node. Most of the time it won't matter that we lock our
636 * node (as any locking would need the lower one locked
637 * first). But we can LK_DRAIN the upper lock as a step
638 * towards decomissioning it.
639 */
640 lowervp = LAYERVPTOLOWERVP(vp);
641 if (flags & LK_INTERLOCK) {
642 simple_unlock(&vp->v_interlock);
643 flags &= ~LK_INTERLOCK;
644 }
645 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
646 error = VOP_LOCK(lowervp,
647 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
648 } else
649 error = VOP_LOCK(lowervp, flags);
650 if (error)
651 return (error);
652 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
653 VOP_UNLOCK(lowervp, 0);
654 }
655 return (error);
656 }
657 }
658
659 /*
660 */
661 int
662 layer_unlock(v)
663 void *v;
664 {
665 struct vop_unlock_args /* {
666 struct vnode *a_vp;
667 int a_flags;
668 struct proc *a_p;
669 } */ *ap = v;
670 struct vnode *vp = ap->a_vp;
671 int flags = ap->a_flags;
672
673 if (vp->v_vnlock != NULL) {
674 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
675 &vp->v_interlock));
676 } else {
677 if (flags & LK_INTERLOCK) {
678 simple_unlock(&vp->v_interlock);
679 flags &= ~LK_INTERLOCK;
680 }
681 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
682 return (lockmgr(&vp->v_lock, flags | LK_RELEASE,
683 &vp->v_interlock));
684 }
685 }
686
687 int
688 layer_islocked(v)
689 void *v;
690 {
691 struct vop_islocked_args /* {
692 struct vnode *a_vp;
693 } */ *ap = v;
694 struct vnode *vp = ap->a_vp;
695 int lkstatus;
696
697 if (vp->v_vnlock != NULL)
698 return lockstatus(vp->v_vnlock);
699
700 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
701 if (lkstatus)
702 return lkstatus;
703
704 return lockstatus(&vp->v_lock);
705 }
706
707 /*
708 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
709 * syncing the underlying vnodes, since they'll be fsync'ed when
710 * reclaimed; otherwise,
711 * pass it through to the underlying layer.
712 *
713 * XXX Do we still need to worry about shallow fsync?
714 */
715
716 int
717 layer_fsync(v)
718 void *v;
719 {
720 struct vop_fsync_args /* {
721 struct vnode *a_vp;
722 kauth_cred_t a_cred;
723 int a_flags;
724 off_t offlo;
725 off_t offhi;
726 struct lwp *a_l;
727 } */ *ap = v;
728
729 if (ap->a_flags & FSYNC_RECLAIM) {
730 return 0;
731 }
732
733 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
734 }
735
736
737 int
738 layer_inactive(v)
739 void *v;
740 {
741 struct vop_inactive_args /* {
742 struct vnode *a_vp;
743 struct lwp *a_l;
744 } */ *ap = v;
745 struct vnode *vp = ap->a_vp;
746
747 /*
748 * Do nothing (and _don't_ bypass).
749 * Wait to vrele lowervp until reclaim,
750 * so that until then our layer_node is in the
751 * cache and reusable.
752 *
753 * NEEDSWORK: Someday, consider inactive'ing
754 * the lowervp and then trying to reactivate it
755 * with capabilities (v_id)
756 * like they do in the name lookup cache code.
757 * That's too much work for now.
758 */
759 VOP_UNLOCK(vp, 0);
760
761 /*
762 * ..., but don't cache the device node. Also, if we did a
763 * remove, don't cache the node.
764 */
765 if (vp->v_type == VBLK || vp->v_type == VCHR
766 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
767 vgone(vp);
768 return (0);
769 }
770
771 int
772 layer_remove(v)
773 void *v;
774 {
775 struct vop_remove_args /* {
776 struct vonde *a_dvp;
777 struct vnode *a_vp;
778 struct componentname *a_cnp;
779 } */ *ap = v;
780
781 int error;
782 struct vnode *vp = ap->a_vp;
783
784 vref(vp);
785 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
786 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
787
788 vrele(vp);
789
790 return (error);
791 }
792
793 int
794 layer_rename(v)
795 void *v;
796 {
797 struct vop_rename_args /* {
798 struct vnode *a_fdvp;
799 struct vnode *a_fvp;
800 struct componentname *a_fcnp;
801 struct vnode *a_tdvp;
802 struct vnode *a_tvp;
803 struct componentname *a_tcnp;
804 } */ *ap = v;
805
806 int error;
807 struct vnode *fdvp = ap->a_fdvp;
808 struct vnode *tvp;
809
810 tvp = ap->a_tvp;
811 if (tvp) {
812 if (tvp->v_mount != fdvp->v_mount)
813 tvp = NULL;
814 else
815 vref(tvp);
816 }
817 error = LAYERFS_DO_BYPASS(fdvp, ap);
818 if (tvp) {
819 if (error == 0)
820 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
821 vrele(tvp);
822 }
823
824 return (error);
825 }
826
827 int
828 layer_rmdir(v)
829 void *v;
830 {
831 struct vop_rmdir_args /* {
832 struct vnode *a_dvp;
833 struct vnode *a_vp;
834 struct componentname *a_cnp;
835 } */ *ap = v;
836 int error;
837 struct vnode *vp = ap->a_vp;
838
839 vref(vp);
840 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
841 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
842
843 vrele(vp);
844
845 return (error);
846 }
847
848 int
849 layer_reclaim(v)
850 void *v;
851 {
852 struct vop_reclaim_args /* {
853 struct vnode *a_vp;
854 struct lwp *a_l;
855 } */ *ap = v;
856 struct vnode *vp = ap->a_vp;
857 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
858 struct layer_node *xp = VTOLAYER(vp);
859 struct vnode *lowervp = xp->layer_lowervp;
860
861 /*
862 * Note: in vop_reclaim, the node's struct lock has been
863 * decomissioned, so we have to be careful about calling
864 * VOP's on ourself. Even if we turned a LK_DRAIN into an
865 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
866 * set.
867 */
868 /* After this assignment, this node will not be re-used. */
869 if ((vp == lmp->layerm_rootvp)) {
870 /*
871 * Oops! We no longer have a root node. Most likely reason is
872 * that someone forcably unmunted the underlying fs.
873 *
874 * Now getting the root vnode will fail. We're dead. :-(
875 */
876 lmp->layerm_rootvp = NULL;
877 }
878 xp->layer_lowervp = NULL;
879 mutex_enter(&lmp->layerm_hashlock);
880 LIST_REMOVE(xp, layer_hash);
881 mutex_exit(&lmp->layerm_hashlock);
882 FREE(vp->v_data, M_TEMP);
883 vp->v_data = NULL;
884 vrele(lowervp);
885 return (0);
886 }
887
888 /*
889 * We just feed the returned vnode up to the caller - there's no need
890 * to build a layer node on top of the node on which we're going to do
891 * i/o. :-)
892 */
893 int
894 layer_bmap(v)
895 void *v;
896 {
897 struct vop_bmap_args /* {
898 struct vnode *a_vp;
899 daddr_t a_bn;
900 struct vnode **a_vpp;
901 daddr_t *a_bnp;
902 int *a_runp;
903 } */ *ap = v;
904 struct vnode *vp;
905
906 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
907
908 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
909 }
910
911 int
912 layer_print(v)
913 void *v;
914 {
915 struct vop_print_args /* {
916 struct vnode *a_vp;
917 } */ *ap = v;
918 struct vnode *vp = ap->a_vp;
919 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
920 return (0);
921 }
922
923 /*
924 * XXX - vop_bwrite must be hand coded because it has no
925 * vnode in its arguments.
926 * This goes away with a merged VM/buffer cache.
927 */
928 int
929 layer_bwrite(v)
930 void *v;
931 {
932 struct vop_bwrite_args /* {
933 struct buf *a_bp;
934 } */ *ap = v;
935 struct buf *bp = ap->a_bp;
936 int error;
937 struct vnode *savedvp;
938
939 savedvp = bp->b_vp;
940 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
941
942 error = VOP_BWRITE(bp);
943
944 bp->b_vp = savedvp;
945
946 return (error);
947 }
948
949 int
950 layer_getpages(v)
951 void *v;
952 {
953 struct vop_getpages_args /* {
954 struct vnode *a_vp;
955 voff_t a_offset;
956 struct vm_page **a_m;
957 int *a_count;
958 int a_centeridx;
959 vm_prot_t a_access_type;
960 int a_advice;
961 int a_flags;
962 } */ *ap = v;
963 struct vnode *vp = ap->a_vp;
964 int error;
965
966 /*
967 * just pass the request on to the underlying layer.
968 */
969
970 if (ap->a_flags & PGO_LOCKED) {
971 return EBUSY;
972 }
973 ap->a_vp = LAYERVPTOLOWERVP(vp);
974 simple_unlock(&vp->v_interlock);
975 simple_lock(&ap->a_vp->v_interlock);
976 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
977 return error;
978 }
979
980 int
981 layer_putpages(v)
982 void *v;
983 {
984 struct vop_putpages_args /* {
985 struct vnode *a_vp;
986 voff_t a_offlo;
987 voff_t a_offhi;
988 int a_flags;
989 } */ *ap = v;
990 struct vnode *vp = ap->a_vp;
991 int error;
992
993 /*
994 * just pass the request on to the underlying layer.
995 */
996
997 ap->a_vp = LAYERVPTOLOWERVP(vp);
998 simple_unlock(&vp->v_interlock);
999 if (ap->a_flags & PGO_RECLAIM) {
1000 return 0;
1001 }
1002 simple_lock(&ap->a_vp->v_interlock);
1003 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1004 return error;
1005 }
1006