layer_vnops.c revision 1.35 1 /* $NetBSD: layer_vnops.c,v 1.35 2008/01/30 09:50:23 ad Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.35 2008/01/30 09:50:23 ad Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/kmem.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251
252
253 /*
254 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255 * routine by John Heidemann.
256 * The new element for this version is that the whole nullfs
257 * system gained the concept of locks on the lower node, and locks on
258 * our nodes. When returning from a call to the lower layer, we may
259 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
260 * macros provide this functionality.
261 * The 10-Apr-92 version was optimized for speed, throwing away some
262 * safety checks. It should still always work, but it's not as
263 * robust to programmer errors.
264 * Define SAFETY to include some error checking code.
265 *
266 * In general, we map all vnodes going down and unmap them on the way back.
267 *
268 * Also, some BSD vnode operations have the side effect of vrele'ing
269 * their arguments. With stacking, the reference counts are held
270 * by the upper node, not the lower one, so we must handle these
271 * side-effects here. This is not of concern in Sun-derived systems
272 * since there are no such side-effects.
273 *
274 * New for the 08-June-99 version: we also handle operations which unlock
275 * the passed-in node (typically they vput the node).
276 *
277 * This makes the following assumptions:
278 * - only one returned vpp
279 * - no INOUT vpp's (Sun's vop_open has one of these)
280 * - the vnode operation vector of the first vnode should be used
281 * to determine what implementation of the op should be invoked
282 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
283 * problems on rmdir'ing mount points and renaming?)
284 */
285 int
286 layer_bypass(v)
287 void *v;
288 {
289 struct vop_generic_args /* {
290 struct vnodeop_desc *a_desc;
291 <other random data follows, presumably>
292 } */ *ap = v;
293 int (**our_vnodeop_p)(void *);
294 struct vnode **this_vp_p;
295 int error, error1;
296 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
297 struct vnode **vps_p[VDESC_MAX_VPS];
298 struct vnode ***vppp;
299 struct mount *mp;
300 struct vnodeop_desc *descp = ap->a_desc;
301 int reles, i, flags;
302
303 #ifdef SAFETY
304 /*
305 * We require at least one vp.
306 */
307 if (descp->vdesc_vp_offsets == NULL ||
308 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 panic("%s: no vp's in map.\n", __func__);
310 #endif
311
312 vps_p[0] =
313 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 vp0 = *vps_p[0];
315 mp = vp0->v_mount;
316 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
317 our_vnodeop_p = vp0->v_op;
318
319 if (flags & LAYERFS_MBYPASSDEBUG)
320 printf("%s: %s\n", __func__, descp->vdesc_name);
321
322 /*
323 * Map the vnodes going in.
324 * Later, we'll invoke the operation based on
325 * the first mapped vnode's operation vector.
326 */
327 reles = descp->vdesc_flags;
328 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
329 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
330 break; /* bail out at end of list */
331 vps_p[i] = this_vp_p =
332 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
333 ap);
334 /*
335 * We're not guaranteed that any but the first vnode
336 * are of our type. Check for and don't map any
337 * that aren't. (We must always map first vp or vclean fails.)
338 */
339 if (i && (*this_vp_p == NULL ||
340 (*this_vp_p)->v_op != our_vnodeop_p)) {
341 old_vps[i] = NULL;
342 } else {
343 old_vps[i] = *this_vp_p;
344 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
345 /*
346 * XXX - Several operations have the side effect
347 * of vrele'ing their vp's. We must account for
348 * that. (This should go away in the future.)
349 */
350 if (reles & VDESC_VP0_WILLRELE)
351 VREF(*this_vp_p);
352 }
353
354 }
355
356 /*
357 * Call the operation on the lower layer
358 * with the modified argument structure.
359 */
360 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
361
362 /*
363 * Maintain the illusion of call-by-value
364 * by restoring vnodes in the argument structure
365 * to their original value.
366 */
367 reles = descp->vdesc_flags;
368 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
369 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
370 break; /* bail out at end of list */
371 if (old_vps[i]) {
372 *(vps_p[i]) = old_vps[i];
373 if (reles & VDESC_VP0_WILLUNLOCK)
374 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
375 if (reles & VDESC_VP0_WILLRELE)
376 vrele(*(vps_p[i]));
377 }
378 }
379
380 /*
381 * Map the possible out-going vpp
382 * (Assumes that the lower layer always returns
383 * a VREF'ed vpp unless it gets an error.)
384 */
385 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
386 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
387 !error) {
388 /*
389 * XXX - even though some ops have vpp returned vp's,
390 * several ops actually vrele this before returning.
391 * We must avoid these ops.
392 * (This should go away when these ops are regularized.)
393 */
394 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
395 goto out;
396 vppp = VOPARG_OFFSETTO(struct vnode***,
397 descp->vdesc_vpp_offset, ap);
398 /*
399 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
400 * vop_mknod, and vop_symlink return vpp's. vop_bmap
401 * doesn't call bypass as the lower vpp is fine (we're just
402 * going to do i/o on it). vop_lookup doesn't call bypass
403 * as a lookup on "." would generate a locking error.
404 * So all the calls which get us here have a locked vpp. :-)
405 */
406 error = layer_node_create(mp, **vppp, *vppp);
407 if (error) {
408 vput(**vppp);
409 **vppp = NULL;
410 }
411 }
412
413 out:
414 return (error);
415 }
416
417 /*
418 * We have to carry on the locking protocol on the layer vnodes
419 * as we progress through the tree. We also have to enforce read-only
420 * if this layer is mounted read-only.
421 */
422 int
423 layer_lookup(v)
424 void *v;
425 {
426 struct vop_lookup_args /* {
427 struct vnodeop_desc *a_desc;
428 struct vnode * a_dvp;
429 struct vnode ** a_vpp;
430 struct componentname * a_cnp;
431 } */ *ap = v;
432 struct componentname *cnp = ap->a_cnp;
433 int flags = cnp->cn_flags;
434 struct vnode *dvp, *lvp, *ldvp;
435 int error;
436
437 dvp = ap->a_dvp;
438
439 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
441 return (EROFS);
442
443 ldvp = LAYERVPTOLOWERVP(dvp);
444 ap->a_dvp = ldvp;
445 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
446 lvp = *ap->a_vpp;
447 *ap->a_vpp = NULL;
448
449 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
450 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
451 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
452 error = EROFS;
453
454 /*
455 * We must do the same locking and unlocking at this layer as
456 * is done in the layers below us.
457 */
458 if (ldvp == lvp) {
459
460 /*
461 * Did lookup on "." or ".." in the root node of a mount point.
462 * So we return dvp after a VREF.
463 */
464 VREF(dvp);
465 *ap->a_vpp = dvp;
466 vrele(lvp);
467 } else if (lvp != NULL) {
468 /* dvp, ldvp and vp are all locked */
469 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
470 if (error) {
471 vput(lvp);
472 }
473 }
474 return (error);
475 }
476
477 /*
478 * Setattr call. Disallow write attempts if the layer is mounted read-only.
479 */
480 int
481 layer_setattr(v)
482 void *v;
483 {
484 struct vop_setattr_args /* {
485 struct vnodeop_desc *a_desc;
486 struct vnode *a_vp;
487 struct vattr *a_vap;
488 kauth_cred_t a_cred;
489 struct lwp *a_l;
490 } */ *ap = v;
491 struct vnode *vp = ap->a_vp;
492 struct vattr *vap = ap->a_vap;
493
494 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
495 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
496 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
497 (vp->v_mount->mnt_flag & MNT_RDONLY))
498 return (EROFS);
499 if (vap->va_size != VNOVAL) {
500 switch (vp->v_type) {
501 case VDIR:
502 return (EISDIR);
503 case VCHR:
504 case VBLK:
505 case VSOCK:
506 case VFIFO:
507 return (0);
508 case VREG:
509 case VLNK:
510 default:
511 /*
512 * Disallow write attempts if the filesystem is
513 * mounted read-only.
514 */
515 if (vp->v_mount->mnt_flag & MNT_RDONLY)
516 return (EROFS);
517 }
518 }
519 return (LAYERFS_DO_BYPASS(vp, ap));
520 }
521
522 /*
523 * We handle getattr only to change the fsid.
524 */
525 int
526 layer_getattr(v)
527 void *v;
528 {
529 struct vop_getattr_args /* {
530 struct vnode *a_vp;
531 struct vattr *a_vap;
532 kauth_cred_t a_cred;
533 struct lwp *a_l;
534 } */ *ap = v;
535 struct vnode *vp = ap->a_vp;
536 int error;
537
538 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
539 return (error);
540 /* Requires that arguments be restored. */
541 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
542 return (0);
543 }
544
545 int
546 layer_access(v)
547 void *v;
548 {
549 struct vop_access_args /* {
550 struct vnode *a_vp;
551 int a_mode;
552 kauth_cred_t a_cred;
553 struct lwp *a_l;
554 } */ *ap = v;
555 struct vnode *vp = ap->a_vp;
556 mode_t mode = ap->a_mode;
557
558 /*
559 * Disallow write attempts on read-only layers;
560 * unless the file is a socket, fifo, or a block or
561 * character device resident on the file system.
562 */
563 if (mode & VWRITE) {
564 switch (vp->v_type) {
565 case VDIR:
566 case VLNK:
567 case VREG:
568 if (vp->v_mount->mnt_flag & MNT_RDONLY)
569 return (EROFS);
570 break;
571 default:
572 break;
573 }
574 }
575 return (LAYERFS_DO_BYPASS(vp, ap));
576 }
577
578 /*
579 * We must handle open to be able to catch MNT_NODEV and friends.
580 */
581 int
582 layer_open(v)
583 void *v;
584 {
585 struct vop_open_args *ap = v;
586 struct vnode *vp = ap->a_vp;
587 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
588
589 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
590 (vp->v_mount->mnt_flag & MNT_NODEV))
591 return ENXIO;
592
593 return LAYERFS_DO_BYPASS(vp, ap);
594 }
595
596 /*
597 * We need to process our own vnode lock and then clear the
598 * interlock flag as it applies only to our vnode, not the
599 * vnodes below us on the stack.
600 */
601 int
602 layer_lock(v)
603 void *v;
604 {
605 struct vop_lock_args /* {
606 struct vnode *a_vp;
607 int a_flags;
608 struct proc *a_p;
609 } */ *ap = v;
610 struct vnode *vp = ap->a_vp, *lowervp;
611 int flags = ap->a_flags, error;
612
613 if (flags & LK_INTERLOCK) {
614 mutex_exit(&vp->v_interlock);
615 flags &= ~LK_INTERLOCK;
616 }
617
618 if (vp->v_vnlock != NULL) {
619 /*
620 * The lower level has exported a struct lock to us. Use
621 * it so that all vnodes in the stack lock and unlock
622 * simultaneously. Note: we don't DRAIN the lock as DRAIN
623 * decommissions the lock - just because our vnode is
624 * going away doesn't mean the struct lock below us is.
625 * LK_EXCLUSIVE is fine.
626 */
627 return (vlockmgr(vp->v_vnlock, flags));
628 } else {
629 /*
630 * Ahh well. It would be nice if the fs we're over would
631 * export a struct lock for us to use, but it doesn't.
632 *
633 * To prevent race conditions involving doing a lookup
634 * on "..", we have to lock the lower node, then lock our
635 * node. Most of the time it won't matter that we lock our
636 * node (as any locking would need the lower one locked
637 * first).
638 */
639 lowervp = LAYERVPTOLOWERVP(vp);
640 error = VOP_LOCK(lowervp, flags);
641 if (error)
642 return (error);
643 if ((error = vlockmgr(&vp->v_lock, flags))) {
644 VOP_UNLOCK(lowervp, 0);
645 }
646 return (error);
647 }
648 }
649
650 /*
651 */
652 int
653 layer_unlock(v)
654 void *v;
655 {
656 struct vop_unlock_args /* {
657 struct vnode *a_vp;
658 int a_flags;
659 struct proc *a_p;
660 } */ *ap = v;
661 struct vnode *vp = ap->a_vp;
662 int flags = ap->a_flags;
663
664 if (flags & LK_INTERLOCK) {
665 mutex_exit(&vp->v_interlock);
666 flags &= ~LK_INTERLOCK;
667 }
668
669 if (vp->v_vnlock != NULL) {
670 return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
671 } else {
672 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
673 return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
674 }
675 }
676
677 int
678 layer_islocked(v)
679 void *v;
680 {
681 struct vop_islocked_args /* {
682 struct vnode *a_vp;
683 } */ *ap = v;
684 struct vnode *vp = ap->a_vp;
685 int lkstatus;
686
687 if (vp->v_vnlock != NULL)
688 return vlockstatus(vp->v_vnlock);
689
690 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
691 if (lkstatus)
692 return lkstatus;
693
694 return vlockstatus(&vp->v_lock);
695 }
696
697 /*
698 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
699 * syncing the underlying vnodes, since they'll be fsync'ed when
700 * reclaimed; otherwise,
701 * pass it through to the underlying layer.
702 *
703 * XXX Do we still need to worry about shallow fsync?
704 */
705
706 int
707 layer_fsync(v)
708 void *v;
709 {
710 struct vop_fsync_args /* {
711 struct vnode *a_vp;
712 kauth_cred_t a_cred;
713 int a_flags;
714 off_t offlo;
715 off_t offhi;
716 struct lwp *a_l;
717 } */ *ap = v;
718
719 if (ap->a_flags & FSYNC_RECLAIM) {
720 return 0;
721 }
722
723 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
724 }
725
726
727 int
728 layer_inactive(v)
729 void *v;
730 {
731 struct vop_inactive_args /* {
732 struct vnode *a_vp;
733 bool *a_recycle;
734 } */ *ap = v;
735 struct vnode *vp = ap->a_vp;
736
737 /*
738 * ..., but don't cache the device node. Also, if we did a
739 * remove, don't cache the node.
740 */
741 *ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
742 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
743
744 /*
745 * Do nothing (and _don't_ bypass).
746 * Wait to vrele lowervp until reclaim,
747 * so that until then our layer_node is in the
748 * cache and reusable.
749 *
750 * NEEDSWORK: Someday, consider inactive'ing
751 * the lowervp and then trying to reactivate it
752 * with capabilities (v_id)
753 * like they do in the name lookup cache code.
754 * That's too much work for now.
755 */
756 VOP_UNLOCK(vp, 0);
757
758 return (0);
759 }
760
761 int
762 layer_remove(v)
763 void *v;
764 {
765 struct vop_remove_args /* {
766 struct vonde *a_dvp;
767 struct vnode *a_vp;
768 struct componentname *a_cnp;
769 } */ *ap = v;
770
771 int error;
772 struct vnode *vp = ap->a_vp;
773
774 vref(vp);
775 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
776 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
777
778 vrele(vp);
779
780 return (error);
781 }
782
783 int
784 layer_rename(v)
785 void *v;
786 {
787 struct vop_rename_args /* {
788 struct vnode *a_fdvp;
789 struct vnode *a_fvp;
790 struct componentname *a_fcnp;
791 struct vnode *a_tdvp;
792 struct vnode *a_tvp;
793 struct componentname *a_tcnp;
794 } */ *ap = v;
795
796 int error;
797 struct vnode *fdvp = ap->a_fdvp;
798 struct vnode *tvp;
799
800 tvp = ap->a_tvp;
801 if (tvp) {
802 if (tvp->v_mount != fdvp->v_mount)
803 tvp = NULL;
804 else
805 vref(tvp);
806 }
807 error = LAYERFS_DO_BYPASS(fdvp, ap);
808 if (tvp) {
809 if (error == 0)
810 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
811 vrele(tvp);
812 }
813
814 return (error);
815 }
816
817 int
818 layer_rmdir(v)
819 void *v;
820 {
821 struct vop_rmdir_args /* {
822 struct vnode *a_dvp;
823 struct vnode *a_vp;
824 struct componentname *a_cnp;
825 } */ *ap = v;
826 int error;
827 struct vnode *vp = ap->a_vp;
828
829 vref(vp);
830 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
831 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
832
833 vrele(vp);
834
835 return (error);
836 }
837
838 int
839 layer_reclaim(v)
840 void *v;
841 {
842 struct vop_reclaim_args /* {
843 struct vnode *a_vp;
844 struct lwp *a_l;
845 } */ *ap = v;
846 struct vnode *vp = ap->a_vp;
847 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
848 struct layer_node *xp = VTOLAYER(vp);
849 struct vnode *lowervp = xp->layer_lowervp;
850
851 /*
852 * Note: in vop_reclaim, the node's struct lock has been
853 * decomissioned, so we have to be careful about calling
854 * VOP's on ourself. We must be careful as VXLOCK is set.
855 */
856 /* After this assignment, this node will not be re-used. */
857 if ((vp == lmp->layerm_rootvp)) {
858 /*
859 * Oops! We no longer have a root node. Most likely reason is
860 * that someone forcably unmunted the underlying fs.
861 *
862 * Now getting the root vnode will fail. We're dead. :-(
863 */
864 lmp->layerm_rootvp = NULL;
865 }
866 xp->layer_lowervp = NULL;
867 mutex_enter(&lmp->layerm_hashlock);
868 LIST_REMOVE(xp, layer_hash);
869 mutex_exit(&lmp->layerm_hashlock);
870 kmem_free(vp->v_data, lmp->layerm_size);
871 vp->v_data = NULL;
872 vrele(lowervp);
873
874 return (0);
875 }
876
877 /*
878 * We just feed the returned vnode up to the caller - there's no need
879 * to build a layer node on top of the node on which we're going to do
880 * i/o. :-)
881 */
882 int
883 layer_bmap(v)
884 void *v;
885 {
886 struct vop_bmap_args /* {
887 struct vnode *a_vp;
888 daddr_t a_bn;
889 struct vnode **a_vpp;
890 daddr_t *a_bnp;
891 int *a_runp;
892 } */ *ap = v;
893 struct vnode *vp;
894
895 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
896
897 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
898 }
899
900 int
901 layer_print(v)
902 void *v;
903 {
904 struct vop_print_args /* {
905 struct vnode *a_vp;
906 } */ *ap = v;
907 struct vnode *vp = ap->a_vp;
908 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
909 return (0);
910 }
911
912 /*
913 * XXX - vop_bwrite must be hand coded because it has no
914 * vnode in its arguments.
915 * This goes away with a merged VM/buffer cache.
916 */
917 int
918 layer_bwrite(v)
919 void *v;
920 {
921 struct vop_bwrite_args /* {
922 struct buf *a_bp;
923 } */ *ap = v;
924 struct buf *bp = ap->a_bp;
925 int error;
926 struct vnode *savedvp;
927
928 savedvp = bp->b_vp;
929 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
930
931 error = VOP_BWRITE(bp);
932
933 bp->b_vp = savedvp;
934
935 return (error);
936 }
937
938 int
939 layer_getpages(v)
940 void *v;
941 {
942 struct vop_getpages_args /* {
943 struct vnode *a_vp;
944 voff_t a_offset;
945 struct vm_page **a_m;
946 int *a_count;
947 int a_centeridx;
948 vm_prot_t a_access_type;
949 int a_advice;
950 int a_flags;
951 } */ *ap = v;
952 struct vnode *vp = ap->a_vp;
953 int error;
954
955 /*
956 * just pass the request on to the underlying layer.
957 */
958
959 if (ap->a_flags & PGO_LOCKED) {
960 return EBUSY;
961 }
962 ap->a_vp = LAYERVPTOLOWERVP(vp);
963 mutex_exit(&vp->v_interlock);
964 mutex_enter(&ap->a_vp->v_interlock);
965 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
966 return error;
967 }
968
969 int
970 layer_putpages(v)
971 void *v;
972 {
973 struct vop_putpages_args /* {
974 struct vnode *a_vp;
975 voff_t a_offlo;
976 voff_t a_offhi;
977 int a_flags;
978 } */ *ap = v;
979 struct vnode *vp = ap->a_vp;
980 int error;
981
982 /*
983 * just pass the request on to the underlying layer.
984 */
985
986 ap->a_vp = LAYERVPTOLOWERVP(vp);
987 mutex_exit(&vp->v_interlock);
988 if (ap->a_flags & PGO_RECLAIM) {
989 return 0;
990 }
991 mutex_enter(&ap->a_vp->v_interlock);
992 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
993 return error;
994 }
995