Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.39
      1 /*	$NetBSD: layer_vnops.c,v 1.39 2010/01/08 11:35:10 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*
     36  * Copyright (c) 1992, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * This code is derived from software contributed to Berkeley by
     40  * John Heidemann of the UCLA Ficus project.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     67  *
     68  * Ancestors:
     69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     70  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     71  *	...and...
     72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     73  */
     74 
     75 /*
     76  * Null Layer vnode routines.
     77  *
     78  * (See mount_null(8) for more information.)
     79  *
     80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     81  * the core implementation of the null file system and most other stacked
     82  * fs's. The description below refers to the null file system, but the
     83  * services provided by the layer* files are useful for all layered fs's.
     84  *
     85  * The null layer duplicates a portion of the file system
     86  * name space under a new name.  In this respect, it is
     87  * similar to the loopback file system.  It differs from
     88  * the loopback fs in two respects:  it is implemented using
     89  * a stackable layers techniques, and it's "null-node"s stack above
     90  * all lower-layer vnodes, not just over directory vnodes.
     91  *
     92  * The null layer has two purposes.  First, it serves as a demonstration
     93  * of layering by proving a layer which does nothing.  (It actually
     94  * does everything the loopback file system does, which is slightly
     95  * more than nothing.)  Second, the null layer can serve as a prototype
     96  * layer.  Since it provides all necessary layer framework,
     97  * new file system layers can be created very easily be starting
     98  * with a null layer.
     99  *
    100  * The remainder of the man page examines the null layer as a basis
    101  * for constructing new layers.
    102  *
    103  *
    104  * INSTANTIATING NEW NULL LAYERS
    105  *
    106  * New null layers are created with mount_null(8).
    107  * Mount_null(8) takes two arguments, the pathname
    108  * of the lower vfs (target-pn) and the pathname where the null
    109  * layer will appear in the namespace (alias-pn).  After
    110  * the null layer is put into place, the contents
    111  * of target-pn subtree will be aliased under alias-pn.
    112  *
    113  * It is conceivable that other overlay filesystems will take different
    114  * parameters. For instance, data migration or access controll layers might
    115  * only take one pathname which will serve both as the target-pn and
    116  * alias-pn described above.
    117  *
    118  *
    119  * OPERATION OF A NULL LAYER
    120  *
    121  * The null layer is the minimum file system layer,
    122  * simply bypassing all possible operations to the lower layer
    123  * for processing there.  The majority of its activity centers
    124  * on the bypass routine, through which nearly all vnode operations
    125  * pass.
    126  *
    127  * The bypass routine accepts arbitrary vnode operations for
    128  * handling by the lower layer.  It begins by examing vnode
    129  * operation arguments and replacing any layered nodes by their
    130  * lower-layer equivalents.  It then invokes the operation
    131  * on the lower layer.  Finally, it replaces the layered nodes
    132  * in the arguments and, if a vnode is return by the operation,
    133  * stacks a layered node on top of the returned vnode.
    134  *
    135  * The bypass routine in this file, layer_bypass(), is suitable for use
    136  * by many different layered filesystems. It can be used by multiple
    137  * filesystems simultaneously. Alternatively, a layered fs may provide
    138  * its own bypass routine, in which case layer_bypass() should be used as
    139  * a model. For instance, the main functionality provided by umapfs, the user
    140  * identity mapping file system, is handled by a custom bypass routine.
    141  *
    142  * Typically a layered fs registers its selected bypass routine as the
    143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    144  * the filesystem must store the bypass entry point in the layerm_bypass
    145  * field of struct layer_mount. All other layer routines in this file will
    146  * use the layerm_bypass routine.
    147  *
    148  * Although the bypass routine handles most operations outright, a number
    149  * of operations are special cased, and handled by the layered fs. One
    150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    151  * layer_fsync, perform layer-specific manipulation in addition to calling
    152  * the bypass routine. The other group
    153 
    154  * Although bypass handles most operations, vop_getattr, vop_lock,
    155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    156  * bypassed. Vop_getattr must change the fsid being returned.
    157  * Vop_lock and vop_unlock must handle any locking for the
    158  * current vnode as well as pass the lock request down.
    159  * Vop_inactive and vop_reclaim are not bypassed so that
    160  * they can handle freeing null-layer specific data. Vop_print
    161  * is not bypassed to avoid excessive debugging information.
    162  * Also, certain vnode operations change the locking state within
    163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    164  * and symlink). Ideally these operations should not change the
    165  * lock state, but should be changed to let the caller of the
    166  * function unlock them. Otherwise all intermediate vnode layers
    167  * (such as union, umapfs, etc) must catch these functions to do
    168  * the necessary locking at their layer.
    169  *
    170  *
    171  * INSTANTIATING VNODE STACKS
    172  *
    173  * Mounting associates the null layer with a lower layer,
    174  * effect stacking two VFSes.  Vnode stacks are instead
    175  * created on demand as files are accessed.
    176  *
    177  * The initial mount creates a single vnode stack for the
    178  * root of the new null layer.  All other vnode stacks
    179  * are created as a result of vnode operations on
    180  * this or other null vnode stacks.
    181  *
    182  * New vnode stacks come into existence as a result of
    183  * an operation which returns a vnode.
    184  * The bypass routine stacks a null-node above the new
    185  * vnode before returning it to the caller.
    186  *
    187  * For example, imagine mounting a null layer with
    188  * "mount_null /usr/include /dev/layer/null".
    189  * Changing directory to /dev/layer/null will assign
    190  * the root null-node (which was created when the null layer was mounted).
    191  * Now consider opening "sys".  A vop_lookup would be
    192  * done on the root null-node.  This operation would bypass through
    193  * to the lower layer which would return a vnode representing
    194  * the UFS "sys".  layer_bypass then builds a null-node
    195  * aliasing the UFS "sys" and returns this to the caller.
    196  * Later operations on the null-node "sys" will repeat this
    197  * process when constructing other vnode stacks.
    198  *
    199  *
    200  * CREATING OTHER FILE SYSTEM LAYERS
    201  *
    202  * One of the easiest ways to construct new file system layers is to make
    203  * a copy of the null layer, rename all files and variables, and
    204  * then begin modifing the copy.  Sed can be used to easily rename
    205  * all variables.
    206  *
    207  * The umap layer is an example of a layer descended from the
    208  * null layer.
    209  *
    210  *
    211  * INVOKING OPERATIONS ON LOWER LAYERS
    212  *
    213  * There are two techniques to invoke operations on a lower layer
    214  * when the operation cannot be completely bypassed.  Each method
    215  * is appropriate in different situations.  In both cases,
    216  * it is the responsibility of the aliasing layer to make
    217  * the operation arguments "correct" for the lower layer
    218  * by mapping an vnode arguments to the lower layer.
    219  *
    220  * The first approach is to call the aliasing layer's bypass routine.
    221  * This method is most suitable when you wish to invoke the operation
    222  * currently being handled on the lower layer.  It has the advantage
    223  * that the bypass routine already must do argument mapping.
    224  * An example of this is null_getattrs in the null layer.
    225  *
    226  * A second approach is to directly invoke vnode operations on
    227  * the lower layer with the VOP_OPERATIONNAME interface.
    228  * The advantage of this method is that it is easy to invoke
    229  * arbitrary operations on the lower layer.  The disadvantage
    230  * is that vnodes' arguments must be manually mapped.
    231  *
    232  */
    233 
    234 #include <sys/cdefs.h>
    235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.39 2010/01/08 11:35:10 pooka Exp $");
    236 
    237 #include <sys/param.h>
    238 #include <sys/systm.h>
    239 #include <sys/proc.h>
    240 #include <sys/time.h>
    241 #include <sys/vnode.h>
    242 #include <sys/mount.h>
    243 #include <sys/namei.h>
    244 #include <sys/kmem.h>
    245 #include <sys/buf.h>
    246 #include <sys/kauth.h>
    247 
    248 #include <miscfs/genfs/layer.h>
    249 #include <miscfs/genfs/layer_extern.h>
    250 #include <miscfs/genfs/genfs.h>
    251 
    252 
    253 /*
    254  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    255  *		routine by John Heidemann.
    256  *	The new element for this version is that the whole nullfs
    257  * system gained the concept of locks on the lower node, and locks on
    258  * our nodes. When returning from a call to the lower layer, we may
    259  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    260  * macros provide this functionality.
    261  *    The 10-Apr-92 version was optimized for speed, throwing away some
    262  * safety checks.  It should still always work, but it's not as
    263  * robust to programmer errors.
    264  *
    265  * In general, we map all vnodes going down and unmap them on the way back.
    266  *
    267  * Also, some BSD vnode operations have the side effect of vrele'ing
    268  * their arguments.  With stacking, the reference counts are held
    269  * by the upper node, not the lower one, so we must handle these
    270  * side-effects here.  This is not of concern in Sun-derived systems
    271  * since there are no such side-effects.
    272  *
    273  * New for the 08-June-99 version: we also handle operations which unlock
    274  * the passed-in node (typically they vput the node).
    275  *
    276  * This makes the following assumptions:
    277  * - only one returned vpp
    278  * - no INOUT vpp's (Sun's vop_open has one of these)
    279  * - the vnode operation vector of the first vnode should be used
    280  *   to determine what implementation of the op should be invoked
    281  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    282  *   problems on rmdir'ing mount points and renaming?)
    283  */
    284 int
    285 layer_bypass(void *v)
    286 {
    287 	struct vop_generic_args /* {
    288 		struct vnodeop_desc *a_desc;
    289 		<other random data follows, presumably>
    290 	} */ *ap = v;
    291 	int (**our_vnodeop_p)(void *);
    292 	struct vnode **this_vp_p;
    293 	int error, error1;
    294 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    295 	struct vnode **vps_p[VDESC_MAX_VPS];
    296 	struct vnode ***vppp;
    297 	struct mount *mp;
    298 	struct vnodeop_desc *descp = ap->a_desc;
    299 	int reles, i, flags;
    300 
    301 #ifdef DIAGNOSTIC
    302 	/*
    303 	 * We require at least one vp.
    304 	 */
    305 	if (descp->vdesc_vp_offsets == NULL ||
    306 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    307 		panic("%s: no vp's in map.\n", __func__);
    308 #endif
    309 
    310 	vps_p[0] =
    311 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    312 	vp0 = *vps_p[0];
    313 	mp = vp0->v_mount;
    314 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    315 	our_vnodeop_p = vp0->v_op;
    316 
    317 	if (flags & LAYERFS_MBYPASSDEBUG)
    318 		printf("%s: %s\n", __func__, descp->vdesc_name);
    319 
    320 	/*
    321 	 * Map the vnodes going in.
    322 	 * Later, we'll invoke the operation based on
    323 	 * the first mapped vnode's operation vector.
    324 	 */
    325 	reles = descp->vdesc_flags;
    326 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    327 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    328 			break;   /* bail out at end of list */
    329 		vps_p[i] = this_vp_p =
    330 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    331 		    ap);
    332 		/*
    333 		 * We're not guaranteed that any but the first vnode
    334 		 * are of our type.  Check for and don't map any
    335 		 * that aren't.  (We must always map first vp or vclean fails.)
    336 		 */
    337 		if (i && (*this_vp_p == NULL ||
    338 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    339 			old_vps[i] = NULL;
    340 		} else {
    341 			old_vps[i] = *this_vp_p;
    342 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    343 			/*
    344 			 * XXX - Several operations have the side effect
    345 			 * of vrele'ing their vp's.  We must account for
    346 			 * that.  (This should go away in the future.)
    347 			 */
    348 			if (reles & VDESC_VP0_WILLRELE)
    349 				vref(*this_vp_p);
    350 		}
    351 
    352 	}
    353 
    354 	/*
    355 	 * Call the operation on the lower layer
    356 	 * with the modified argument structure.
    357 	 */
    358 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    359 
    360 	/*
    361 	 * Maintain the illusion of call-by-value
    362 	 * by restoring vnodes in the argument structure
    363 	 * to their original value.
    364 	 */
    365 	reles = descp->vdesc_flags;
    366 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    367 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    368 			break;   /* bail out at end of list */
    369 		if (old_vps[i]) {
    370 			*(vps_p[i]) = old_vps[i];
    371 			if (reles & VDESC_VP0_WILLUNLOCK)
    372 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    373 			if (reles & VDESC_VP0_WILLRELE)
    374 				vrele(*(vps_p[i]));
    375 		}
    376 	}
    377 
    378 	/*
    379 	 * Map the possible out-going vpp
    380 	 * (Assumes that the lower layer always returns
    381 	 * a VREF'ed vpp unless it gets an error.)
    382 	 */
    383 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    384 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    385 	    !error) {
    386 		/*
    387 		 * XXX - even though some ops have vpp returned vp's,
    388 		 * several ops actually vrele this before returning.
    389 		 * We must avoid these ops.
    390 		 * (This should go away when these ops are regularized.)
    391 		 */
    392 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    393 			goto out;
    394 		vppp = VOPARG_OFFSETTO(struct vnode***,
    395 				 descp->vdesc_vpp_offset, ap);
    396 		/*
    397 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    398 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    399 		 * doesn't call bypass as the lower vpp is fine (we're just
    400 		 * going to do i/o on it). vop_lookup doesn't call bypass
    401 		 * as a lookup on "." would generate a locking error.
    402 		 * So all the calls which get us here have a locked vpp. :-)
    403 		 */
    404 		error = layer_node_create(mp, **vppp, *vppp);
    405 		if (error) {
    406 			vput(**vppp);
    407 			**vppp = NULL;
    408 		}
    409 	}
    410 
    411  out:
    412 	return (error);
    413 }
    414 
    415 /*
    416  * We have to carry on the locking protocol on the layer vnodes
    417  * as we progress through the tree. We also have to enforce read-only
    418  * if this layer is mounted read-only.
    419  */
    420 int
    421 layer_lookup(void *v)
    422 {
    423 	struct vop_lookup_args /* {
    424 		struct vnodeop_desc *a_desc;
    425 		struct vnode * a_dvp;
    426 		struct vnode ** a_vpp;
    427 		struct componentname * a_cnp;
    428 	} */ *ap = v;
    429 	struct componentname *cnp = ap->a_cnp;
    430 	int flags = cnp->cn_flags;
    431 	struct vnode *dvp, *lvp, *ldvp;
    432 	int error;
    433 
    434 	dvp = ap->a_dvp;
    435 
    436 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    437 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    438 		return (EROFS);
    439 
    440 	ldvp = LAYERVPTOLOWERVP(dvp);
    441 	ap->a_dvp = ldvp;
    442 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    443 	lvp = *ap->a_vpp;
    444 	*ap->a_vpp = NULL;
    445 
    446 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    447 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    448 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    449 		error = EROFS;
    450 
    451 	/*
    452 	 * We must do the same locking and unlocking at this layer as
    453 	 * is done in the layers below us.
    454 	 */
    455 	if (ldvp == lvp) {
    456 
    457 		/*
    458 		 * Got the same object back, because we looked up ".",
    459 		 * or ".." in the root node of a mount point.
    460 		 * So we make another reference to dvp and return it.
    461 		 */
    462 		vref(dvp);
    463 		*ap->a_vpp = dvp;
    464 		vrele(lvp);
    465 	} else if (lvp != NULL) {
    466 		/* dvp, ldvp and vp are all locked */
    467 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    468 		if (error) {
    469 			vput(lvp);
    470 		}
    471 	}
    472 	return (error);
    473 }
    474 
    475 /*
    476  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    477  */
    478 int
    479 layer_setattr(void *v)
    480 {
    481 	struct vop_setattr_args /* {
    482 		struct vnodeop_desc *a_desc;
    483 		struct vnode *a_vp;
    484 		struct vattr *a_vap;
    485 		kauth_cred_t a_cred;
    486 		struct lwp *a_l;
    487 	} */ *ap = v;
    488 	struct vnode *vp = ap->a_vp;
    489 	struct vattr *vap = ap->a_vap;
    490 
    491   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    492 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    493 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    494 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    495 		return (EROFS);
    496 	if (vap->va_size != VNOVAL) {
    497  		switch (vp->v_type) {
    498  		case VDIR:
    499  			return (EISDIR);
    500  		case VCHR:
    501  		case VBLK:
    502  		case VSOCK:
    503  		case VFIFO:
    504 			return (0);
    505 		case VREG:
    506 		case VLNK:
    507  		default:
    508 			/*
    509 			 * Disallow write attempts if the filesystem is
    510 			 * mounted read-only.
    511 			 */
    512 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    513 				return (EROFS);
    514 		}
    515 	}
    516 	return (LAYERFS_DO_BYPASS(vp, ap));
    517 }
    518 
    519 /*
    520  *  We handle getattr only to change the fsid.
    521  */
    522 int
    523 layer_getattr(void *v)
    524 {
    525 	struct vop_getattr_args /* {
    526 		struct vnode *a_vp;
    527 		struct vattr *a_vap;
    528 		kauth_cred_t a_cred;
    529 		struct lwp *a_l;
    530 	} */ *ap = v;
    531 	struct vnode *vp = ap->a_vp;
    532 	int error;
    533 
    534 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    535 		return (error);
    536 	/* Requires that arguments be restored. */
    537 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    538 	return (0);
    539 }
    540 
    541 int
    542 layer_access(void *v)
    543 {
    544 	struct vop_access_args /* {
    545 		struct vnode *a_vp;
    546 		int  a_mode;
    547 		kauth_cred_t a_cred;
    548 		struct lwp *a_l;
    549 	} */ *ap = v;
    550 	struct vnode *vp = ap->a_vp;
    551 	mode_t mode = ap->a_mode;
    552 
    553 	/*
    554 	 * Disallow write attempts on read-only layers;
    555 	 * unless the file is a socket, fifo, or a block or
    556 	 * character device resident on the file system.
    557 	 */
    558 	if (mode & VWRITE) {
    559 		switch (vp->v_type) {
    560 		case VDIR:
    561 		case VLNK:
    562 		case VREG:
    563 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    564 				return (EROFS);
    565 			break;
    566 		default:
    567 			break;
    568 		}
    569 	}
    570 	return (LAYERFS_DO_BYPASS(vp, ap));
    571 }
    572 
    573 /*
    574  * We must handle open to be able to catch MNT_NODEV and friends.
    575  */
    576 int
    577 layer_open(void *v)
    578 {
    579 	struct vop_open_args *ap = v;
    580 	struct vnode *vp = ap->a_vp;
    581 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    582 
    583 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    584 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    585 		return ENXIO;
    586 
    587 	return LAYERFS_DO_BYPASS(vp, ap);
    588 }
    589 
    590 /*
    591  * We need to process our own vnode lock and then clear the
    592  * interlock flag as it applies only to our vnode, not the
    593  * vnodes below us on the stack.
    594  */
    595 int
    596 layer_lock(void *v)
    597 {
    598 	struct vop_lock_args /* {
    599 		struct vnode *a_vp;
    600 		int a_flags;
    601 		struct proc *a_p;
    602 	} */ *ap = v;
    603 	struct vnode *vp = ap->a_vp, *lowervp;
    604 	int	flags = ap->a_flags, error;
    605 
    606 	if (flags & LK_INTERLOCK) {
    607 		mutex_exit(&vp->v_interlock);
    608 		flags &= ~LK_INTERLOCK;
    609 	}
    610 
    611 	if (vp->v_vnlock != NULL) {
    612 		/*
    613 		 * The lower level has exported a struct lock to us. Use
    614 		 * it so that all vnodes in the stack lock and unlock
    615 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    616 		 * decommissions the lock - just because our vnode is
    617 		 * going away doesn't mean the struct lock below us is.
    618 		 * LK_EXCLUSIVE is fine.
    619 		 */
    620 		return (vlockmgr(vp->v_vnlock, flags));
    621 	} else {
    622 		/*
    623 		 * Ahh well. It would be nice if the fs we're over would
    624 		 * export a struct lock for us to use, but it doesn't.
    625 		 *
    626 		 * To prevent race conditions involving doing a lookup
    627 		 * on "..", we have to lock the lower node, then lock our
    628 		 * node. Most of the time it won't matter that we lock our
    629 		 * node (as any locking would need the lower one locked
    630 		 * first).
    631 		 */
    632 		lowervp = LAYERVPTOLOWERVP(vp);
    633 		error = VOP_LOCK(lowervp, flags);
    634 		if (error)
    635 			return (error);
    636 		if ((error = vlockmgr(&vp->v_lock, flags))) {
    637 			VOP_UNLOCK(lowervp, 0);
    638 		}
    639 		return (error);
    640 	}
    641 }
    642 
    643 /*
    644  */
    645 int
    646 layer_unlock(void *v)
    647 {
    648 	struct vop_unlock_args /* {
    649 		struct vnode *a_vp;
    650 		int a_flags;
    651 		struct proc *a_p;
    652 	} */ *ap = v;
    653 	struct vnode *vp = ap->a_vp;
    654 	int	flags = ap->a_flags;
    655 
    656 	if (flags & LK_INTERLOCK) {
    657 		mutex_exit(&vp->v_interlock);
    658 		flags &= ~LK_INTERLOCK;
    659 	}
    660 
    661 	if (vp->v_vnlock != NULL) {
    662 		return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
    663 	} else {
    664 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    665 		return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
    666 	}
    667 }
    668 
    669 int
    670 layer_islocked(void *v)
    671 {
    672 	struct vop_islocked_args /* {
    673 		struct vnode *a_vp;
    674 	} */ *ap = v;
    675 	struct vnode *vp = ap->a_vp;
    676 	int lkstatus;
    677 
    678 	if (vp->v_vnlock != NULL)
    679 		return vlockstatus(vp->v_vnlock);
    680 
    681 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
    682 	if (lkstatus)
    683 		return lkstatus;
    684 
    685 	return vlockstatus(&vp->v_lock);
    686 }
    687 
    688 /*
    689  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    690  * syncing the underlying vnodes, since they'll be fsync'ed when
    691  * reclaimed; otherwise,
    692  * pass it through to the underlying layer.
    693  *
    694  * XXX Do we still need to worry about shallow fsync?
    695  */
    696 
    697 int
    698 layer_fsync(void *v)
    699 {
    700 	struct vop_fsync_args /* {
    701 		struct vnode *a_vp;
    702 		kauth_cred_t a_cred;
    703 		int  a_flags;
    704 		off_t offlo;
    705 		off_t offhi;
    706 		struct lwp *a_l;
    707 	} */ *ap = v;
    708 
    709 	if (ap->a_flags & FSYNC_RECLAIM) {
    710 		return 0;
    711 	}
    712 
    713 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    714 }
    715 
    716 
    717 int
    718 layer_inactive(void *v)
    719 {
    720 	struct vop_inactive_args /* {
    721 		struct vnode *a_vp;
    722 		bool *a_recycle;
    723 	} */ *ap = v;
    724 	struct vnode *vp = ap->a_vp;
    725 
    726 	/*
    727 	 * ..., but don't cache the device node. Also, if we did a
    728 	 * remove, don't cache the node.
    729 	 */
    730 	*ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
    731 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
    732 
    733 	/*
    734 	 * Do nothing (and _don't_ bypass).
    735 	 * Wait to vrele lowervp until reclaim,
    736 	 * so that until then our layer_node is in the
    737 	 * cache and reusable.
    738 	 *
    739 	 * NEEDSWORK: Someday, consider inactive'ing
    740 	 * the lowervp and then trying to reactivate it
    741 	 * with capabilities (v_id)
    742 	 * like they do in the name lookup cache code.
    743 	 * That's too much work for now.
    744 	 */
    745 	VOP_UNLOCK(vp, 0);
    746 
    747 	return (0);
    748 }
    749 
    750 int
    751 layer_remove(void *v)
    752 {
    753 	struct vop_remove_args /* {
    754 		struct vonde		*a_dvp;
    755 		struct vnode		*a_vp;
    756 		struct componentname	*a_cnp;
    757 	} */ *ap = v;
    758 
    759 	int		error;
    760 	struct vnode	*vp = ap->a_vp;
    761 
    762 	vref(vp);
    763 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    764 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    765 
    766 	vrele(vp);
    767 
    768 	return (error);
    769 }
    770 
    771 int
    772 layer_rename(void *v)
    773 {
    774 	struct vop_rename_args  /* {
    775 		struct vnode		*a_fdvp;
    776 		struct vnode		*a_fvp;
    777 		struct componentname	*a_fcnp;
    778 		struct vnode		*a_tdvp;
    779 		struct vnode		*a_tvp;
    780 		struct componentname	*a_tcnp;
    781 	} */ *ap = v;
    782 
    783 	int error;
    784 	struct vnode *fdvp = ap->a_fdvp;
    785 	struct vnode *tvp;
    786 
    787 	tvp = ap->a_tvp;
    788 	if (tvp) {
    789 		if (tvp->v_mount != fdvp->v_mount)
    790 			tvp = NULL;
    791 		else
    792 			vref(tvp);
    793 	}
    794 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    795 	if (tvp) {
    796 		if (error == 0)
    797 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    798 		vrele(tvp);
    799 	}
    800 
    801 	return (error);
    802 }
    803 
    804 int
    805 layer_rmdir(void *v)
    806 {
    807 	struct vop_rmdir_args /* {
    808 		struct vnode		*a_dvp;
    809 		struct vnode		*a_vp;
    810 		struct componentname	*a_cnp;
    811 	} */ *ap = v;
    812 	int		error;
    813 	struct vnode	*vp = ap->a_vp;
    814 
    815 	vref(vp);
    816 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
    817 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    818 
    819 	vrele(vp);
    820 
    821 	return (error);
    822 }
    823 
    824 int
    825 layer_reclaim(void *v)
    826 {
    827 	struct vop_reclaim_args /* {
    828 		struct vnode *a_vp;
    829 		struct lwp *a_l;
    830 	} */ *ap = v;
    831 	struct vnode *vp = ap->a_vp;
    832 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    833 	struct layer_node *xp = VTOLAYER(vp);
    834 	struct vnode *lowervp = xp->layer_lowervp;
    835 
    836 	/*
    837 	 * Note: in vop_reclaim, the node's struct lock has been
    838 	 * decomissioned, so we have to be careful about calling
    839 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    840 	 */
    841 	/* After this assignment, this node will not be re-used. */
    842 	if ((vp == lmp->layerm_rootvp)) {
    843 		/*
    844 		 * Oops! We no longer have a root node. Most likely reason is
    845 		 * that someone forcably unmunted the underlying fs.
    846 		 *
    847 		 * Now getting the root vnode will fail. We're dead. :-(
    848 		 */
    849 		lmp->layerm_rootvp = NULL;
    850 	}
    851 	xp->layer_lowervp = NULL;
    852 	mutex_enter(&lmp->layerm_hashlock);
    853 	LIST_REMOVE(xp, layer_hash);
    854 	mutex_exit(&lmp->layerm_hashlock);
    855 	kmem_free(vp->v_data, lmp->layerm_size);
    856 	vp->v_data = NULL;
    857 	vrele(lowervp);
    858 
    859 	return (0);
    860 }
    861 
    862 /*
    863  * We just feed the returned vnode up to the caller - there's no need
    864  * to build a layer node on top of the node on which we're going to do
    865  * i/o. :-)
    866  */
    867 int
    868 layer_bmap(void *v)
    869 {
    870 	struct vop_bmap_args /* {
    871 		struct vnode *a_vp;
    872 		daddr_t  a_bn;
    873 		struct vnode **a_vpp;
    874 		daddr_t *a_bnp;
    875 		int *a_runp;
    876 	} */ *ap = v;
    877 	struct vnode *vp;
    878 
    879 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    880 
    881 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    882 }
    883 
    884 int
    885 layer_print(void *v)
    886 {
    887 	struct vop_print_args /* {
    888 		struct vnode *a_vp;
    889 	} */ *ap = v;
    890 	struct vnode *vp = ap->a_vp;
    891 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    892 	return (0);
    893 }
    894 
    895 /*
    896  * XXX - vop_bwrite must be hand coded because it has no
    897  * vnode in its arguments.
    898  * This goes away with a merged VM/buffer cache.
    899  */
    900 int
    901 layer_bwrite(void *v)
    902 {
    903 	struct vop_bwrite_args /* {
    904 		struct buf *a_bp;
    905 	} */ *ap = v;
    906 	struct buf *bp = ap->a_bp;
    907 	int error;
    908 	struct vnode *savedvp;
    909 
    910 	savedvp = bp->b_vp;
    911 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    912 
    913 	error = VOP_BWRITE(bp);
    914 
    915 	bp->b_vp = savedvp;
    916 
    917 	return (error);
    918 }
    919 
    920 int
    921 layer_getpages(void *v)
    922 {
    923 	struct vop_getpages_args /* {
    924 		struct vnode *a_vp;
    925 		voff_t a_offset;
    926 		struct vm_page **a_m;
    927 		int *a_count;
    928 		int a_centeridx;
    929 		vm_prot_t a_access_type;
    930 		int a_advice;
    931 		int a_flags;
    932 	} */ *ap = v;
    933 	struct vnode *vp = ap->a_vp;
    934 	int error;
    935 
    936 	/*
    937 	 * just pass the request on to the underlying layer.
    938 	 */
    939 
    940 	if (ap->a_flags & PGO_LOCKED) {
    941 		return EBUSY;
    942 	}
    943 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    944 	mutex_exit(&vp->v_interlock);
    945 	mutex_enter(&ap->a_vp->v_interlock);
    946 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    947 	return error;
    948 }
    949 
    950 int
    951 layer_putpages(void *v)
    952 {
    953 	struct vop_putpages_args /* {
    954 		struct vnode *a_vp;
    955 		voff_t a_offlo;
    956 		voff_t a_offhi;
    957 		int a_flags;
    958 	} */ *ap = v;
    959 	struct vnode *vp = ap->a_vp;
    960 	int error;
    961 
    962 	/*
    963 	 * just pass the request on to the underlying layer.
    964 	 */
    965 
    966 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    967 	mutex_exit(&vp->v_interlock);
    968 	if (ap->a_flags & PGO_RECLAIM) {
    969 		return 0;
    970 	}
    971 	mutex_enter(&ap->a_vp->v_interlock);
    972 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    973 	return error;
    974 }
    975