layer_vnops.c revision 1.41 1 /* $NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
67 *
68 * Ancestors:
69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
70 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71 * ...and...
72 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73 */
74
75 /*
76 * Null Layer vnode routines.
77 *
78 * (See mount_null(8) for more information.)
79 *
80 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81 * the core implementation of the null file system and most other stacked
82 * fs's. The description below refers to the null file system, but the
83 * services provided by the layer* files are useful for all layered fs's.
84 *
85 * The null layer duplicates a portion of the file system
86 * name space under a new name. In this respect, it is
87 * similar to the loopback file system. It differs from
88 * the loopback fs in two respects: it is implemented using
89 * a stackable layers techniques, and it's "null-node"s stack above
90 * all lower-layer vnodes, not just over directory vnodes.
91 *
92 * The null layer has two purposes. First, it serves as a demonstration
93 * of layering by proving a layer which does nothing. (It actually
94 * does everything the loopback file system does, which is slightly
95 * more than nothing.) Second, the null layer can serve as a prototype
96 * layer. Since it provides all necessary layer framework,
97 * new file system layers can be created very easily be starting
98 * with a null layer.
99 *
100 * The remainder of the man page examines the null layer as a basis
101 * for constructing new layers.
102 *
103 *
104 * INSTANTIATING NEW NULL LAYERS
105 *
106 * New null layers are created with mount_null(8).
107 * Mount_null(8) takes two arguments, the pathname
108 * of the lower vfs (target-pn) and the pathname where the null
109 * layer will appear in the namespace (alias-pn). After
110 * the null layer is put into place, the contents
111 * of target-pn subtree will be aliased under alias-pn.
112 *
113 * It is conceivable that other overlay filesystems will take different
114 * parameters. For instance, data migration or access controll layers might
115 * only take one pathname which will serve both as the target-pn and
116 * alias-pn described above.
117 *
118 *
119 * OPERATION OF A NULL LAYER
120 *
121 * The null layer is the minimum file system layer,
122 * simply bypassing all possible operations to the lower layer
123 * for processing there. The majority of its activity centers
124 * on the bypass routine, through which nearly all vnode operations
125 * pass.
126 *
127 * The bypass routine accepts arbitrary vnode operations for
128 * handling by the lower layer. It begins by examing vnode
129 * operation arguments and replacing any layered nodes by their
130 * lower-layer equivalents. It then invokes the operation
131 * on the lower layer. Finally, it replaces the layered nodes
132 * in the arguments and, if a vnode is return by the operation,
133 * stacks a layered node on top of the returned vnode.
134 *
135 * The bypass routine in this file, layer_bypass(), is suitable for use
136 * by many different layered filesystems. It can be used by multiple
137 * filesystems simultaneously. Alternatively, a layered fs may provide
138 * its own bypass routine, in which case layer_bypass() should be used as
139 * a model. For instance, the main functionality provided by umapfs, the user
140 * identity mapping file system, is handled by a custom bypass routine.
141 *
142 * Typically a layered fs registers its selected bypass routine as the
143 * default vnode operation in its vnodeopv_entry_desc table. Additionally
144 * the filesystem must store the bypass entry point in the layerm_bypass
145 * field of struct layer_mount. All other layer routines in this file will
146 * use the layerm_bypass routine.
147 *
148 * Although the bypass routine handles most operations outright, a number
149 * of operations are special cased, and handled by the layered fs. One
150 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151 * layer_fsync, perform layer-specific manipulation in addition to calling
152 * the bypass routine. The other group
153
154 * Although bypass handles most operations, vop_getattr, vop_lock,
155 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156 * bypassed. Vop_getattr must change the fsid being returned.
157 * Vop_lock and vop_unlock must handle any locking for the
158 * current vnode as well as pass the lock request down.
159 * Vop_inactive and vop_reclaim are not bypassed so that
160 * they can handle freeing null-layer specific data. Vop_print
161 * is not bypassed to avoid excessive debugging information.
162 * Also, certain vnode operations change the locking state within
163 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164 * and symlink). Ideally these operations should not change the
165 * lock state, but should be changed to let the caller of the
166 * function unlock them. Otherwise all intermediate vnode layers
167 * (such as union, umapfs, etc) must catch these functions to do
168 * the necessary locking at their layer.
169 *
170 *
171 * INSTANTIATING VNODE STACKS
172 *
173 * Mounting associates the null layer with a lower layer,
174 * effect stacking two VFSes. Vnode stacks are instead
175 * created on demand as files are accessed.
176 *
177 * The initial mount creates a single vnode stack for the
178 * root of the new null layer. All other vnode stacks
179 * are created as a result of vnode operations on
180 * this or other null vnode stacks.
181 *
182 * New vnode stacks come into existence as a result of
183 * an operation which returns a vnode.
184 * The bypass routine stacks a null-node above the new
185 * vnode before returning it to the caller.
186 *
187 * For example, imagine mounting a null layer with
188 * "mount_null /usr/include /dev/layer/null".
189 * Changing directory to /dev/layer/null will assign
190 * the root null-node (which was created when the null layer was mounted).
191 * Now consider opening "sys". A vop_lookup would be
192 * done on the root null-node. This operation would bypass through
193 * to the lower layer which would return a vnode representing
194 * the UFS "sys". layer_bypass then builds a null-node
195 * aliasing the UFS "sys" and returns this to the caller.
196 * Later operations on the null-node "sys" will repeat this
197 * process when constructing other vnode stacks.
198 *
199 *
200 * CREATING OTHER FILE SYSTEM LAYERS
201 *
202 * One of the easiest ways to construct new file system layers is to make
203 * a copy of the null layer, rename all files and variables, and
204 * then begin modifing the copy. Sed can be used to easily rename
205 * all variables.
206 *
207 * The umap layer is an example of a layer descended from the
208 * null layer.
209 *
210 *
211 * INVOKING OPERATIONS ON LOWER LAYERS
212 *
213 * There are two techniques to invoke operations on a lower layer
214 * when the operation cannot be completely bypassed. Each method
215 * is appropriate in different situations. In both cases,
216 * it is the responsibility of the aliasing layer to make
217 * the operation arguments "correct" for the lower layer
218 * by mapping an vnode arguments to the lower layer.
219 *
220 * The first approach is to call the aliasing layer's bypass routine.
221 * This method is most suitable when you wish to invoke the operation
222 * currently being handled on the lower layer. It has the advantage
223 * that the bypass routine already must do argument mapping.
224 * An example of this is null_getattrs in the null layer.
225 *
226 * A second approach is to directly invoke vnode operations on
227 * the lower layer with the VOP_OPERATIONNAME interface.
228 * The advantage of this method is that it is easy to invoke
229 * arbitrary operations on the lower layer. The disadvantage
230 * is that vnodes' arguments must be manually mapped.
231 *
232 */
233
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.41 2010/06/24 13:03:16 hannken Exp $");
236
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/kmem.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251
252
253 /*
254 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255 * routine by John Heidemann.
256 * The new element for this version is that the whole nullfs
257 * system gained the concept of locks on the lower node.
258 * The 10-Apr-92 version was optimized for speed, throwing away some
259 * safety checks. It should still always work, but it's not as
260 * robust to programmer errors.
261 *
262 * In general, we map all vnodes going down and unmap them on the way back.
263 *
264 * Also, some BSD vnode operations have the side effect of vrele'ing
265 * their arguments. With stacking, the reference counts are held
266 * by the upper node, not the lower one, so we must handle these
267 * side-effects here. This is not of concern in Sun-derived systems
268 * since there are no such side-effects.
269 *
270 * New for the 08-June-99 version: we also handle operations which unlock
271 * the passed-in node (typically they vput the node).
272 *
273 * This makes the following assumptions:
274 * - only one returned vpp
275 * - no INOUT vpp's (Sun's vop_open has one of these)
276 * - the vnode operation vector of the first vnode should be used
277 * to determine what implementation of the op should be invoked
278 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
279 * problems on rmdir'ing mount points and renaming?)
280 */
281 int
282 layer_bypass(void *v)
283 {
284 struct vop_generic_args /* {
285 struct vnodeop_desc *a_desc;
286 <other random data follows, presumably>
287 } */ *ap = v;
288 int (**our_vnodeop_p)(void *);
289 struct vnode **this_vp_p;
290 int error;
291 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
292 struct vnode **vps_p[VDESC_MAX_VPS];
293 struct vnode ***vppp;
294 struct mount *mp;
295 struct vnodeop_desc *descp = ap->a_desc;
296 int reles, i, flags;
297
298 #ifdef DIAGNOSTIC
299 /*
300 * We require at least one vp.
301 */
302 if (descp->vdesc_vp_offsets == NULL ||
303 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
304 panic("%s: no vp's in map.\n", __func__);
305 #endif
306
307 vps_p[0] =
308 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
309 vp0 = *vps_p[0];
310 mp = vp0->v_mount;
311 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
312 our_vnodeop_p = vp0->v_op;
313
314 if (flags & LAYERFS_MBYPASSDEBUG)
315 printf("%s: %s\n", __func__, descp->vdesc_name);
316
317 /*
318 * Map the vnodes going in.
319 * Later, we'll invoke the operation based on
320 * the first mapped vnode's operation vector.
321 */
322 reles = descp->vdesc_flags;
323 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 break; /* bail out at end of list */
326 vps_p[i] = this_vp_p =
327 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
328 ap);
329 /*
330 * We're not guaranteed that any but the first vnode
331 * are of our type. Check for and don't map any
332 * that aren't. (We must always map first vp or vclean fails.)
333 */
334 if (i && (*this_vp_p == NULL ||
335 (*this_vp_p)->v_op != our_vnodeop_p)) {
336 old_vps[i] = NULL;
337 } else {
338 old_vps[i] = *this_vp_p;
339 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
340 /*
341 * XXX - Several operations have the side effect
342 * of vrele'ing their vp's. We must account for
343 * that. (This should go away in the future.)
344 */
345 if (reles & VDESC_VP0_WILLRELE)
346 vref(*this_vp_p);
347 }
348
349 }
350
351 /*
352 * Call the operation on the lower layer
353 * with the modified argument structure.
354 */
355 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
356
357 /*
358 * Maintain the illusion of call-by-value
359 * by restoring vnodes in the argument structure
360 * to their original value.
361 */
362 reles = descp->vdesc_flags;
363 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
364 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
365 break; /* bail out at end of list */
366 if (old_vps[i]) {
367 *(vps_p[i]) = old_vps[i];
368 if (reles & VDESC_VP0_WILLRELE)
369 vrele(*(vps_p[i]));
370 }
371 }
372
373 /*
374 * Map the possible out-going vpp
375 * (Assumes that the lower layer always returns
376 * a VREF'ed vpp unless it gets an error.)
377 */
378 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
379 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
380 !error) {
381 /*
382 * XXX - even though some ops have vpp returned vp's,
383 * several ops actually vrele this before returning.
384 * We must avoid these ops.
385 * (This should go away when these ops are regularized.)
386 */
387 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
388 goto out;
389 vppp = VOPARG_OFFSETTO(struct vnode***,
390 descp->vdesc_vpp_offset, ap);
391 /*
392 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
393 * vop_mknod, and vop_symlink return vpp's. vop_bmap
394 * doesn't call bypass as the lower vpp is fine (we're just
395 * going to do i/o on it). vop_lookup doesn't call bypass
396 * as a lookup on "." would generate a locking error.
397 * So all the calls which get us here have a locked vpp. :-)
398 */
399 error = layer_node_create(mp, **vppp, *vppp);
400 if (error) {
401 vput(**vppp);
402 **vppp = NULL;
403 }
404 }
405
406 out:
407 return (error);
408 }
409
410 /*
411 * We have to carry on the locking protocol on the layer vnodes
412 * as we progress through the tree. We also have to enforce read-only
413 * if this layer is mounted read-only.
414 */
415 int
416 layer_lookup(void *v)
417 {
418 struct vop_lookup_args /* {
419 struct vnodeop_desc *a_desc;
420 struct vnode * a_dvp;
421 struct vnode ** a_vpp;
422 struct componentname * a_cnp;
423 } */ *ap = v;
424 struct componentname *cnp = ap->a_cnp;
425 int flags = cnp->cn_flags;
426 struct vnode *dvp, *lvp, *ldvp;
427 int error;
428
429 dvp = ap->a_dvp;
430
431 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
432 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
433 return (EROFS);
434
435 ldvp = LAYERVPTOLOWERVP(dvp);
436 ap->a_dvp = ldvp;
437 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
438 lvp = *ap->a_vpp;
439 *ap->a_vpp = NULL;
440
441 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
442 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
443 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
444 error = EROFS;
445
446 /*
447 * We must do the same locking and unlocking at this layer as
448 * is done in the layers below us.
449 */
450 if (ldvp == lvp) {
451
452 /*
453 * Got the same object back, because we looked up ".",
454 * or ".." in the root node of a mount point.
455 * So we make another reference to dvp and return it.
456 */
457 vref(dvp);
458 *ap->a_vpp = dvp;
459 vrele(lvp);
460 } else if (lvp != NULL) {
461 /* dvp, ldvp and vp are all locked */
462 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
463 if (error) {
464 vput(lvp);
465 }
466 }
467 return (error);
468 }
469
470 /*
471 * Setattr call. Disallow write attempts if the layer is mounted read-only.
472 */
473 int
474 layer_setattr(void *v)
475 {
476 struct vop_setattr_args /* {
477 struct vnodeop_desc *a_desc;
478 struct vnode *a_vp;
479 struct vattr *a_vap;
480 kauth_cred_t a_cred;
481 struct lwp *a_l;
482 } */ *ap = v;
483 struct vnode *vp = ap->a_vp;
484 struct vattr *vap = ap->a_vap;
485
486 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
487 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
488 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
489 (vp->v_mount->mnt_flag & MNT_RDONLY))
490 return (EROFS);
491 if (vap->va_size != VNOVAL) {
492 switch (vp->v_type) {
493 case VDIR:
494 return (EISDIR);
495 case VCHR:
496 case VBLK:
497 case VSOCK:
498 case VFIFO:
499 return (0);
500 case VREG:
501 case VLNK:
502 default:
503 /*
504 * Disallow write attempts if the filesystem is
505 * mounted read-only.
506 */
507 if (vp->v_mount->mnt_flag & MNT_RDONLY)
508 return (EROFS);
509 }
510 }
511 return (LAYERFS_DO_BYPASS(vp, ap));
512 }
513
514 /*
515 * We handle getattr only to change the fsid.
516 */
517 int
518 layer_getattr(void *v)
519 {
520 struct vop_getattr_args /* {
521 struct vnode *a_vp;
522 struct vattr *a_vap;
523 kauth_cred_t a_cred;
524 struct lwp *a_l;
525 } */ *ap = v;
526 struct vnode *vp = ap->a_vp;
527 int error;
528
529 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
530 return (error);
531 /* Requires that arguments be restored. */
532 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
533 return (0);
534 }
535
536 int
537 layer_access(void *v)
538 {
539 struct vop_access_args /* {
540 struct vnode *a_vp;
541 int a_mode;
542 kauth_cred_t a_cred;
543 struct lwp *a_l;
544 } */ *ap = v;
545 struct vnode *vp = ap->a_vp;
546 mode_t mode = ap->a_mode;
547
548 /*
549 * Disallow write attempts on read-only layers;
550 * unless the file is a socket, fifo, or a block or
551 * character device resident on the file system.
552 */
553 if (mode & VWRITE) {
554 switch (vp->v_type) {
555 case VDIR:
556 case VLNK:
557 case VREG:
558 if (vp->v_mount->mnt_flag & MNT_RDONLY)
559 return (EROFS);
560 break;
561 default:
562 break;
563 }
564 }
565 return (LAYERFS_DO_BYPASS(vp, ap));
566 }
567
568 /*
569 * We must handle open to be able to catch MNT_NODEV and friends.
570 */
571 int
572 layer_open(void *v)
573 {
574 struct vop_open_args *ap = v;
575 struct vnode *vp = ap->a_vp;
576 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
577
578 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
579 (vp->v_mount->mnt_flag & MNT_NODEV))
580 return ENXIO;
581
582 return LAYERFS_DO_BYPASS(vp, ap);
583 }
584
585 /*
586 * We need to clear the interlock flag as it applies only to our vnode,
587 * not the vnodes below us on the stack.
588 */
589 int
590 layer_lock(void *v)
591 {
592 struct vop_lock_args /* {
593 struct vnode *a_vp;
594 int a_flags;
595 struct proc *a_p;
596 } */ *ap = v;
597 struct vnode *vp = ap->a_vp;
598
599 if (ap->a_flags & LK_INTERLOCK) {
600 mutex_exit(&vp->v_interlock);
601 ap->a_flags &= ~LK_INTERLOCK;
602 }
603
604 return LAYERFS_DO_BYPASS(vp, ap);
605 }
606
607 int
608 layer_unlock(void *v)
609 {
610 struct vop_unlock_args /* {
611 struct vnode *a_vp;
612 int a_flags;
613 struct proc *a_p;
614 } */ *ap = v;
615 struct vnode *vp = ap->a_vp;
616
617 return LAYERFS_DO_BYPASS(vp, ap);
618 }
619
620 int
621 layer_islocked(void *v)
622 {
623 struct vop_islocked_args /* {
624 struct vnode *a_vp;
625 } */ *ap = v;
626 struct vnode *vp = ap->a_vp;
627
628 return LAYERFS_DO_BYPASS(vp, ap);
629 }
630
631 /*
632 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
633 * syncing the underlying vnodes, since they'll be fsync'ed when
634 * reclaimed; otherwise,
635 * pass it through to the underlying layer.
636 *
637 * XXX Do we still need to worry about shallow fsync?
638 */
639
640 int
641 layer_fsync(void *v)
642 {
643 struct vop_fsync_args /* {
644 struct vnode *a_vp;
645 kauth_cred_t a_cred;
646 int a_flags;
647 off_t offlo;
648 off_t offhi;
649 struct lwp *a_l;
650 } */ *ap = v;
651
652 if (ap->a_flags & FSYNC_RECLAIM) {
653 return 0;
654 }
655
656 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
657 }
658
659
660 int
661 layer_inactive(void *v)
662 {
663 struct vop_inactive_args /* {
664 struct vnode *a_vp;
665 bool *a_recycle;
666 } */ *ap = v;
667 struct vnode *vp = ap->a_vp;
668
669 /*
670 * ..., but don't cache the device node. Also, if we did a
671 * remove, don't cache the node.
672 */
673 *ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
674 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
675
676 /*
677 * Do nothing (and _don't_ bypass).
678 * Wait to vrele lowervp until reclaim,
679 * so that until then our layer_node is in the
680 * cache and reusable.
681 *
682 * NEEDSWORK: Someday, consider inactive'ing
683 * the lowervp and then trying to reactivate it
684 * with capabilities (v_id)
685 * like they do in the name lookup cache code.
686 * That's too much work for now.
687 */
688 VOP_UNLOCK(vp);
689
690 return (0);
691 }
692
693 int
694 layer_remove(void *v)
695 {
696 struct vop_remove_args /* {
697 struct vonde *a_dvp;
698 struct vnode *a_vp;
699 struct componentname *a_cnp;
700 } */ *ap = v;
701
702 int error;
703 struct vnode *vp = ap->a_vp;
704
705 vref(vp);
706 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
707 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
708
709 vrele(vp);
710
711 return (error);
712 }
713
714 int
715 layer_rename(void *v)
716 {
717 struct vop_rename_args /* {
718 struct vnode *a_fdvp;
719 struct vnode *a_fvp;
720 struct componentname *a_fcnp;
721 struct vnode *a_tdvp;
722 struct vnode *a_tvp;
723 struct componentname *a_tcnp;
724 } */ *ap = v;
725
726 int error;
727 struct vnode *fdvp = ap->a_fdvp;
728 struct vnode *tvp;
729
730 tvp = ap->a_tvp;
731 if (tvp) {
732 if (tvp->v_mount != fdvp->v_mount)
733 tvp = NULL;
734 else
735 vref(tvp);
736 }
737 error = LAYERFS_DO_BYPASS(fdvp, ap);
738 if (tvp) {
739 if (error == 0)
740 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
741 vrele(tvp);
742 }
743
744 return (error);
745 }
746
747 int
748 layer_rmdir(void *v)
749 {
750 struct vop_rmdir_args /* {
751 struct vnode *a_dvp;
752 struct vnode *a_vp;
753 struct componentname *a_cnp;
754 } */ *ap = v;
755 int error;
756 struct vnode *vp = ap->a_vp;
757
758 vref(vp);
759 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
760 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
761
762 vrele(vp);
763
764 return (error);
765 }
766
767 int
768 layer_reclaim(void *v)
769 {
770 struct vop_reclaim_args /* {
771 struct vnode *a_vp;
772 struct lwp *a_l;
773 } */ *ap = v;
774 struct vnode *vp = ap->a_vp;
775 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
776 struct layer_node *xp = VTOLAYER(vp);
777 struct vnode *lowervp = xp->layer_lowervp;
778
779 /*
780 * Note: in vop_reclaim, the node's struct lock has been
781 * decomissioned, so we have to be careful about calling
782 * VOP's on ourself. We must be careful as VXLOCK is set.
783 */
784 /* After this assignment, this node will not be re-used. */
785 if ((vp == lmp->layerm_rootvp)) {
786 /*
787 * Oops! We no longer have a root node. Most likely reason is
788 * that someone forcably unmunted the underlying fs.
789 *
790 * Now getting the root vnode will fail. We're dead. :-(
791 */
792 lmp->layerm_rootvp = NULL;
793 }
794 xp->layer_lowervp = NULL;
795 mutex_enter(&lmp->layerm_hashlock);
796 LIST_REMOVE(xp, layer_hash);
797 mutex_exit(&lmp->layerm_hashlock);
798 kmem_free(vp->v_data, lmp->layerm_size);
799 vp->v_data = NULL;
800 vrele(lowervp);
801
802 return (0);
803 }
804
805 /*
806 * We just feed the returned vnode up to the caller - there's no need
807 * to build a layer node on top of the node on which we're going to do
808 * i/o. :-)
809 */
810 int
811 layer_bmap(void *v)
812 {
813 struct vop_bmap_args /* {
814 struct vnode *a_vp;
815 daddr_t a_bn;
816 struct vnode **a_vpp;
817 daddr_t *a_bnp;
818 int *a_runp;
819 } */ *ap = v;
820 struct vnode *vp;
821
822 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
823
824 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
825 }
826
827 int
828 layer_print(void *v)
829 {
830 struct vop_print_args /* {
831 struct vnode *a_vp;
832 } */ *ap = v;
833 struct vnode *vp = ap->a_vp;
834 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
835 return (0);
836 }
837
838 /*
839 * XXX - vop_bwrite must be hand coded because it has no
840 * vnode in its arguments.
841 * This goes away with a merged VM/buffer cache.
842 */
843 int
844 layer_bwrite(void *v)
845 {
846 struct vop_bwrite_args /* {
847 struct buf *a_bp;
848 } */ *ap = v;
849 struct buf *bp = ap->a_bp;
850 int error;
851 struct vnode *savedvp;
852
853 savedvp = bp->b_vp;
854 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
855
856 error = VOP_BWRITE(bp);
857
858 bp->b_vp = savedvp;
859
860 return (error);
861 }
862
863 int
864 layer_getpages(void *v)
865 {
866 struct vop_getpages_args /* {
867 struct vnode *a_vp;
868 voff_t a_offset;
869 struct vm_page **a_m;
870 int *a_count;
871 int a_centeridx;
872 vm_prot_t a_access_type;
873 int a_advice;
874 int a_flags;
875 } */ *ap = v;
876 struct vnode *vp = ap->a_vp;
877 int error;
878
879 /*
880 * just pass the request on to the underlying layer.
881 */
882
883 if (ap->a_flags & PGO_LOCKED) {
884 return EBUSY;
885 }
886 ap->a_vp = LAYERVPTOLOWERVP(vp);
887 mutex_exit(&vp->v_interlock);
888 mutex_enter(&ap->a_vp->v_interlock);
889 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
890 return error;
891 }
892
893 int
894 layer_putpages(void *v)
895 {
896 struct vop_putpages_args /* {
897 struct vnode *a_vp;
898 voff_t a_offlo;
899 voff_t a_offhi;
900 int a_flags;
901 } */ *ap = v;
902 struct vnode *vp = ap->a_vp;
903 int error;
904
905 /*
906 * just pass the request on to the underlying layer.
907 */
908
909 ap->a_vp = LAYERVPTOLOWERVP(vp);
910 mutex_exit(&vp->v_interlock);
911 if (ap->a_flags & PGO_RECLAIM) {
912 return 0;
913 }
914 mutex_enter(&ap->a_vp->v_interlock);
915 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
916 return error;
917 }
918