layer_vnops.c revision 1.46 1 /* $NetBSD: layer_vnops.c,v 1.46 2011/01/13 10:28:38 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1992, 1993
38 * The Regents of the University of California. All rights reserved.
39 *
40 * This code is derived from software contributed to Berkeley by
41 * John Heidemann of the UCLA Ficus project.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 *
69 * Ancestors:
70 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Generic layer vnode operations.
78 *
79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 * the core implementation of stacked file-systems.
81 *
82 * The layerfs duplicates a portion of the file system name space under
83 * a new name. In this respect, it is similar to the loopback file system.
84 * It differs from the loopback fs in two respects: it is implemented using
85 * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 * lower-layer vnodes, not just over directory vnodes.
87 *
88 * OPERATION OF LAYERFS
89 *
90 * The layerfs is the minimum file system layer, bypassing all possible
91 * operations to the lower layer for processing there. The majority of its
92 * activity centers on the bypass routine, through which nearly all vnode
93 * operations pass.
94 *
95 * The bypass routine accepts arbitrary vnode operations for handling by
96 * the lower layer. It begins by examining vnode operation arguments and
97 * replacing any layered nodes by their lower-layer equivalents. It then
98 * invokes an operation on the lower layer. Finally, it replaces the
99 * layered nodes in the arguments and, if a vnode is returned by the
100 * operation, stacks a layered node on top of the returned vnode.
101 *
102 * The bypass routine in this file, layer_bypass(), is suitable for use
103 * by many different layered filesystems. It can be used by multiple
104 * filesystems simultaneously. Alternatively, a layered fs may provide
105 * its own bypass routine, in which case layer_bypass() should be used as
106 * a model. For instance, the main functionality provided by umapfs, the user
107 * identity mapping file system, is handled by a custom bypass routine.
108 *
109 * Typically a layered fs registers its selected bypass routine as the
110 * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 * the filesystem must store the bypass entry point in the layerm_bypass
112 * field of struct layer_mount. All other layer routines in this file will
113 * use the layerm_bypass() routine.
114 *
115 * Although the bypass routine handles most operations outright, a number
116 * of operations are special cased and handled by the layerfs. For instance,
117 * layer_getattr() must change the fsid being returned. While layer_lock()
118 * and layer_unlock() must handle any locking for the current vnode as well
119 * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 * rmdir, and symlink) change the locking state within the operation. Ideally
123 * these operations should not change the lock state, but should be changed
124 * to let the caller of the function unlock them. Otherwise, all intermediate
125 * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 * the necessary locking at their layer.
127 *
128 * INSTANTIATING VNODE STACKS
129 *
130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 * stacking two VFSes. The initial mount creates a single vnode stack for
132 * the root of the new layerfs. All other vnode stacks are created as a
133 * result of vnode operations on this or other layerfs vnode stacks.
134 *
135 * New vnode stacks come into existence as a result of an operation which
136 * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 * vnode before returning it to the caller.
138 *
139 * For example, imagine mounting a null layer with:
140 *
141 * "mount_null /usr/include /dev/layer/null"
142 *
143 * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 * which was created when the null layer was mounted). Now consider opening
145 * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 * This operation would bypass through to the lower layer which would return
147 * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 * Later operations on the layerfs-node "sys" will repeat this process when
150 * constructing other vnode stacks.
151 *
152 * INVOKING OPERATIONS ON LOWER LAYERS
153 *
154 * There are two techniques to invoke operations on a lower layer when the
155 * operation cannot be completely bypassed. Each method is appropriate in
156 * different situations. In both cases, it is the responsibility of the
157 * aliasing layer to make the operation arguments "correct" for the lower
158 * layer by mapping any vnode arguments to the lower layer.
159 *
160 * The first approach is to call the aliasing layer's bypass routine. This
161 * method is most suitable when you wish to invoke the operation currently
162 * being handled on the lower layer. It has the advantage that the bypass
163 * routine already must do argument mapping. An example of this is
164 * layer_getattr().
165 *
166 * A second approach is to directly invoke vnode operations on the lower
167 * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 * is that it is easy to invoke arbitrary operations on the lower layer.
169 * The disadvantage is that vnode's arguments must be manually mapped.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.46 2011/01/13 10:28:38 hannken Exp $");
174
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189
190 /*
191 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
192 * routine by John Heidemann.
193 * The new element for this version is that the whole nullfs
194 * system gained the concept of locks on the lower node.
195 * The 10-Apr-92 version was optimized for speed, throwing away some
196 * safety checks. It should still always work, but it's not as
197 * robust to programmer errors.
198 *
199 * In general, we map all vnodes going down and unmap them on the way back.
200 *
201 * Also, some BSD vnode operations have the side effect of vrele'ing
202 * their arguments. With stacking, the reference counts are held
203 * by the upper node, not the lower one, so we must handle these
204 * side-effects here. This is not of concern in Sun-derived systems
205 * since there are no such side-effects.
206 *
207 * New for the 08-June-99 version: we also handle operations which unlock
208 * the passed-in node (typically they vput the node).
209 *
210 * This makes the following assumptions:
211 * - only one returned vpp
212 * - no INOUT vpp's (Sun's vop_open has one of these)
213 * - the vnode operation vector of the first vnode should be used
214 * to determine what implementation of the op should be invoked
215 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
216 * problems on rmdir'ing mount points and renaming?)
217 */
218 int
219 layer_bypass(void *v)
220 {
221 struct vop_generic_args /* {
222 struct vnodeop_desc *a_desc;
223 <other random data follows, presumably>
224 } */ *ap = v;
225 int (**our_vnodeop_p)(void *);
226 struct vnode **this_vp_p;
227 int error;
228 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
229 struct vnode **vps_p[VDESC_MAX_VPS];
230 struct vnode ***vppp;
231 struct mount *mp;
232 struct vnodeop_desc *descp = ap->a_desc;
233 int reles, i, flags;
234
235 #ifdef DIAGNOSTIC
236 /*
237 * We require at least one vp.
238 */
239 if (descp->vdesc_vp_offsets == NULL ||
240 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
241 panic("%s: no vp's in map.\n", __func__);
242 #endif
243
244 vps_p[0] =
245 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
246 vp0 = *vps_p[0];
247 mp = vp0->v_mount;
248 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
249 our_vnodeop_p = vp0->v_op;
250
251 if (flags & LAYERFS_MBYPASSDEBUG)
252 printf("%s: %s\n", __func__, descp->vdesc_name);
253
254 /*
255 * Map the vnodes going in.
256 * Later, we'll invoke the operation based on
257 * the first mapped vnode's operation vector.
258 */
259 reles = descp->vdesc_flags;
260 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
261 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
262 break; /* bail out at end of list */
263 vps_p[i] = this_vp_p =
264 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
265 ap);
266 /*
267 * We're not guaranteed that any but the first vnode
268 * are of our type. Check for and don't map any
269 * that aren't. (We must always map first vp or vclean fails.)
270 */
271 if (i && (*this_vp_p == NULL ||
272 (*this_vp_p)->v_op != our_vnodeop_p)) {
273 old_vps[i] = NULL;
274 } else {
275 old_vps[i] = *this_vp_p;
276 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
277 /*
278 * XXX - Several operations have the side effect
279 * of vrele'ing their vp's. We must account for
280 * that. (This should go away in the future.)
281 */
282 if (reles & VDESC_VP0_WILLRELE)
283 vref(*this_vp_p);
284 }
285 }
286
287 /*
288 * Call the operation on the lower layer
289 * with the modified argument structure.
290 */
291 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
292
293 /*
294 * Maintain the illusion of call-by-value
295 * by restoring vnodes in the argument structure
296 * to their original value.
297 */
298 reles = descp->vdesc_flags;
299 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
300 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
301 break; /* bail out at end of list */
302 if (old_vps[i]) {
303 *(vps_p[i]) = old_vps[i];
304 if (reles & VDESC_VP0_WILLRELE)
305 vrele(*(vps_p[i]));
306 }
307 }
308
309 /*
310 * Map the possible out-going vpp
311 * (Assumes that the lower layer always returns
312 * a VREF'ed vpp unless it gets an error.)
313 */
314 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
315 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
316 !error) {
317 /*
318 * XXX - even though some ops have vpp returned vp's,
319 * several ops actually vrele this before returning.
320 * We must avoid these ops.
321 * (This should go away when these ops are regularized.)
322 */
323 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
324 goto out;
325 vppp = VOPARG_OFFSETTO(struct vnode***,
326 descp->vdesc_vpp_offset, ap);
327 /*
328 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
329 * vop_mknod, and vop_symlink return vpp's. vop_bmap
330 * doesn't call bypass as the lower vpp is fine (we're just
331 * going to do i/o on it). vop_lookup doesn't call bypass
332 * as a lookup on "." would generate a locking error.
333 * So all the calls which get us here have a locked vpp. :-)
334 */
335 error = layer_node_create(mp, **vppp, *vppp);
336 if (error) {
337 vput(**vppp);
338 **vppp = NULL;
339 }
340 }
341 out:
342 return error;
343 }
344
345 /*
346 * We have to carry on the locking protocol on the layer vnodes
347 * as we progress through the tree. We also have to enforce read-only
348 * if this layer is mounted read-only.
349 */
350 int
351 layer_lookup(void *v)
352 {
353 struct vop_lookup_args /* {
354 struct vnodeop_desc *a_desc;
355 struct vnode * a_dvp;
356 struct vnode ** a_vpp;
357 struct componentname * a_cnp;
358 } */ *ap = v;
359 struct componentname *cnp = ap->a_cnp;
360 struct vnode *dvp, *lvp, *ldvp;
361 int error, flags = cnp->cn_flags;
362
363 dvp = ap->a_dvp;
364
365 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
366 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
367 return EROFS;
368
369 ldvp = LAYERVPTOLOWERVP(dvp);
370 ap->a_dvp = ldvp;
371 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
372 lvp = *ap->a_vpp;
373 *ap->a_vpp = NULL;
374
375 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
376 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
377 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
378 error = EROFS;
379
380 /*
381 * We must do the same locking and unlocking at this layer as
382 * is done in the layers below us.
383 */
384 if (ldvp == lvp) {
385 /*
386 * Got the same object back, because we looked up ".",
387 * or ".." in the root node of a mount point.
388 * So we make another reference to dvp and return it.
389 */
390 vref(dvp);
391 *ap->a_vpp = dvp;
392 vrele(lvp);
393 } else if (lvp != NULL) {
394 /* Note: dvp, ldvp and lvp are all locked. */
395 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
396 if (error) {
397 vput(lvp);
398 }
399 }
400 return error;
401 }
402
403 /*
404 * Setattr call. Disallow write attempts if the layer is mounted read-only.
405 */
406 int
407 layer_setattr(void *v)
408 {
409 struct vop_setattr_args /* {
410 struct vnodeop_desc *a_desc;
411 struct vnode *a_vp;
412 struct vattr *a_vap;
413 kauth_cred_t a_cred;
414 struct lwp *a_l;
415 } */ *ap = v;
416 struct vnode *vp = ap->a_vp;
417 struct vattr *vap = ap->a_vap;
418
419 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
420 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
421 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
422 (vp->v_mount->mnt_flag & MNT_RDONLY))
423 return EROFS;
424 if (vap->va_size != VNOVAL) {
425 switch (vp->v_type) {
426 case VDIR:
427 return EISDIR;
428 case VCHR:
429 case VBLK:
430 case VSOCK:
431 case VFIFO:
432 return 0;
433 case VREG:
434 case VLNK:
435 default:
436 /*
437 * Disallow write attempts if the filesystem is
438 * mounted read-only.
439 */
440 if (vp->v_mount->mnt_flag & MNT_RDONLY)
441 return EROFS;
442 }
443 }
444 return LAYERFS_DO_BYPASS(vp, ap);
445 }
446
447 /*
448 * We handle getattr only to change the fsid.
449 */
450 int
451 layer_getattr(void *v)
452 {
453 struct vop_getattr_args /* {
454 struct vnode *a_vp;
455 struct vattr *a_vap;
456 kauth_cred_t a_cred;
457 struct lwp *a_l;
458 } */ *ap = v;
459 struct vnode *vp = ap->a_vp;
460 int error;
461
462 error = LAYERFS_DO_BYPASS(vp, ap);
463 if (error) {
464 return error;
465 }
466 /* Requires that arguments be restored. */
467 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
468 return 0;
469 }
470
471 int
472 layer_access(void *v)
473 {
474 struct vop_access_args /* {
475 struct vnode *a_vp;
476 int a_mode;
477 kauth_cred_t a_cred;
478 struct lwp *a_l;
479 } */ *ap = v;
480 struct vnode *vp = ap->a_vp;
481 mode_t mode = ap->a_mode;
482
483 /*
484 * Disallow write attempts on read-only layers;
485 * unless the file is a socket, fifo, or a block or
486 * character device resident on the file system.
487 */
488 if (mode & VWRITE) {
489 switch (vp->v_type) {
490 case VDIR:
491 case VLNK:
492 case VREG:
493 if (vp->v_mount->mnt_flag & MNT_RDONLY)
494 return EROFS;
495 break;
496 default:
497 break;
498 }
499 }
500 return LAYERFS_DO_BYPASS(vp, ap);
501 }
502
503 /*
504 * We must handle open to be able to catch MNT_NODEV and friends.
505 */
506 int
507 layer_open(void *v)
508 {
509 struct vop_open_args /* {
510 const struct vnodeop_desc *a_desc;
511 struct vnode *a_vp;
512 int a_mode;
513 kauth_cred_t a_cred;
514 } */ *ap = v;
515 struct vnode *vp = ap->a_vp;
516 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
517
518 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
519 (vp->v_mount->mnt_flag & MNT_NODEV))
520 return ENXIO;
521
522 return LAYERFS_DO_BYPASS(vp, ap);
523 }
524
525 /*
526 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
527 * syncing the underlying vnodes, since they'll be fsync'ed when
528 * reclaimed; otherwise, pass it through to the underlying layer.
529 *
530 * XXX Do we still need to worry about shallow fsync?
531 */
532 int
533 layer_fsync(void *v)
534 {
535 struct vop_fsync_args /* {
536 struct vnode *a_vp;
537 kauth_cred_t a_cred;
538 int a_flags;
539 off_t offlo;
540 off_t offhi;
541 struct lwp *a_l;
542 } */ *ap = v;
543
544 if (ap->a_flags & FSYNC_RECLAIM) {
545 return 0;
546 }
547 return LAYERFS_DO_BYPASS(ap->a_vp, ap);
548 }
549
550 int
551 layer_inactive(void *v)
552 {
553 struct vop_inactive_args /* {
554 struct vnode *a_vp;
555 bool *a_recycle;
556 } */ *ap = v;
557 struct vnode *vp = ap->a_vp;
558
559 /*
560 * If we did a remove, don't cache the node.
561 */
562 *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
563
564 /*
565 * Do nothing (and _don't_ bypass).
566 * Wait to vrele lowervp until reclaim,
567 * so that until then our layer_node is in the
568 * cache and reusable.
569 *
570 * NEEDSWORK: Someday, consider inactive'ing
571 * the lowervp and then trying to reactivate it
572 * with capabilities (v_id)
573 * like they do in the name lookup cache code.
574 * That's too much work for now.
575 */
576 VOP_UNLOCK(vp);
577 return 0;
578 }
579
580 int
581 layer_remove(void *v)
582 {
583 struct vop_remove_args /* {
584 struct vonde *a_dvp;
585 struct vnode *a_vp;
586 struct componentname *a_cnp;
587 } */ *ap = v;
588 struct vnode *vp = ap->a_vp;
589 int error;
590
591 vref(vp);
592 error = LAYERFS_DO_BYPASS(vp, ap);
593 if (error == 0) {
594 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
595 }
596 vrele(vp);
597
598 return error;
599 }
600
601 int
602 layer_rename(void *v)
603 {
604 struct vop_rename_args /* {
605 struct vnode *a_fdvp;
606 struct vnode *a_fvp;
607 struct componentname *a_fcnp;
608 struct vnode *a_tdvp;
609 struct vnode *a_tvp;
610 struct componentname *a_tcnp;
611 } */ *ap = v;
612 struct vnode *fdvp = ap->a_fdvp, *tvp;
613 int error;
614
615 tvp = ap->a_tvp;
616 if (tvp) {
617 if (tvp->v_mount != fdvp->v_mount)
618 tvp = NULL;
619 else
620 vref(tvp);
621 }
622 error = LAYERFS_DO_BYPASS(fdvp, ap);
623 if (tvp) {
624 if (error == 0)
625 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
626 vrele(tvp);
627 }
628 return error;
629 }
630
631 int
632 layer_rmdir(void *v)
633 {
634 struct vop_rmdir_args /* {
635 struct vnode *a_dvp;
636 struct vnode *a_vp;
637 struct componentname *a_cnp;
638 } */ *ap = v;
639 int error;
640 struct vnode *vp = ap->a_vp;
641
642 vref(vp);
643 error = LAYERFS_DO_BYPASS(vp, ap);
644 if (error == 0) {
645 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
646 }
647 vrele(vp);
648
649 return error;
650 }
651
652 int
653 layer_revoke(void *v)
654 {
655 struct vop_revoke_args /* {
656 struct vnode *a_vp;
657 int a_flags;
658 } */ *ap = v;
659 struct vnode *vp = ap->a_vp;
660 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
661 int error;
662
663 /*
664 * We will most likely end up in vclean which uses the v_usecount
665 * to determine if a vnode is active. Take an extra reference on
666 * the lower vnode so it will always close and inactivate.
667 */
668 vref(lvp);
669 error = LAYERFS_DO_BYPASS(vp, ap);
670 vrele(lvp);
671
672 return error;
673 }
674
675 int
676 layer_reclaim(void *v)
677 {
678 struct vop_reclaim_args /* {
679 struct vnode *a_vp;
680 struct lwp *a_l;
681 } */ *ap = v;
682 struct vnode *vp = ap->a_vp;
683 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
684 struct layer_node *xp = VTOLAYER(vp);
685 struct vnode *lowervp = xp->layer_lowervp;
686
687 /*
688 * Note: in vop_reclaim, the node's struct lock has been
689 * decomissioned, so we have to be careful about calling
690 * VOP's on ourself. We must be careful as VXLOCK is set.
691 */
692 if (vp == lmp->layerm_rootvp) {
693 /*
694 * Oops! We no longer have a root node. Most likely reason is
695 * that someone forcably unmunted the underlying fs.
696 *
697 * Now getting the root vnode will fail. We're dead. :-(
698 */
699 lmp->layerm_rootvp = NULL;
700 }
701 /* After this assignment, this node will not be re-used. */
702 xp->layer_lowervp = NULL;
703 mutex_enter(&lmp->layerm_hashlock);
704 LIST_REMOVE(xp, layer_hash);
705 mutex_exit(&lmp->layerm_hashlock);
706 kmem_free(vp->v_data, lmp->layerm_size);
707 vp->v_data = NULL;
708 vrele(lowervp);
709
710 return 0;
711 }
712
713 /*
714 * We just feed the returned vnode up to the caller - there's no need
715 * to build a layer node on top of the node on which we're going to do
716 * i/o. :-)
717 */
718 int
719 layer_bmap(void *v)
720 {
721 struct vop_bmap_args /* {
722 struct vnode *a_vp;
723 daddr_t a_bn;
724 struct vnode **a_vpp;
725 daddr_t *a_bnp;
726 int *a_runp;
727 } */ *ap = v;
728 struct vnode *vp;
729
730 vp = LAYERVPTOLOWERVP(ap->a_vp);
731 ap->a_vp = vp;
732
733 return VCALL(vp, ap->a_desc->vdesc_offset, ap);
734 }
735
736 int
737 layer_print(void *v)
738 {
739 struct vop_print_args /* {
740 struct vnode *a_vp;
741 } */ *ap = v;
742 struct vnode *vp = ap->a_vp;
743 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
744 return 0;
745 }
746
747 /*
748 * XXX - vop_bwrite must be hand coded because it has no
749 * vnode in its arguments.
750 * This goes away with a merged VM/buffer cache.
751 */
752 int
753 layer_bwrite(void *v)
754 {
755 struct vop_bwrite_args /* {
756 struct buf *a_bp;
757 } */ *ap = v;
758 struct buf *bp = ap->a_bp;
759 struct vnode *savedvp;
760 int error;
761
762 savedvp = bp->b_vp;
763 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
764 error = VOP_BWRITE(bp);
765 bp->b_vp = savedvp;
766
767 return error;
768 }
769
770 int
771 layer_getpages(void *v)
772 {
773 struct vop_getpages_args /* {
774 struct vnode *a_vp;
775 voff_t a_offset;
776 struct vm_page **a_m;
777 int *a_count;
778 int a_centeridx;
779 vm_prot_t a_access_type;
780 int a_advice;
781 int a_flags;
782 } */ *ap = v;
783 struct vnode *vp = ap->a_vp;
784 int error;
785
786 /*
787 * just pass the request on to the underlying layer.
788 */
789
790 if (ap->a_flags & PGO_LOCKED) {
791 return EBUSY;
792 }
793 ap->a_vp = LAYERVPTOLOWERVP(vp);
794 mutex_exit(&vp->v_interlock);
795 mutex_enter(&ap->a_vp->v_interlock);
796 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
797 return error;
798 }
799
800 int
801 layer_putpages(void *v)
802 {
803 struct vop_putpages_args /* {
804 struct vnode *a_vp;
805 voff_t a_offlo;
806 voff_t a_offhi;
807 int a_flags;
808 } */ *ap = v;
809 struct vnode *vp = ap->a_vp;
810 int error;
811
812 /*
813 * just pass the request on to the underlying layer.
814 */
815
816 ap->a_vp = LAYERVPTOLOWERVP(vp);
817 mutex_exit(&vp->v_interlock);
818 if (ap->a_flags & PGO_RECLAIM) {
819 return 0;
820 }
821 mutex_enter(&ap->a_vp->v_interlock);
822 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
823 return error;
824 }
825