layer_vnops.c revision 1.47 1 /* $NetBSD: layer_vnops.c,v 1.47 2011/04/03 01:19:35 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1992, 1993
38 * The Regents of the University of California. All rights reserved.
39 *
40 * This code is derived from software contributed to Berkeley by
41 * John Heidemann of the UCLA Ficus project.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 *
69 * Ancestors:
70 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Generic layer vnode operations.
78 *
79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 * the core implementation of stacked file-systems.
81 *
82 * The layerfs duplicates a portion of the file system name space under
83 * a new name. In this respect, it is similar to the loopback file system.
84 * It differs from the loopback fs in two respects: it is implemented using
85 * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 * lower-layer vnodes, not just over directory vnodes.
87 *
88 * OPERATION OF LAYERFS
89 *
90 * The layerfs is the minimum file system layer, bypassing all possible
91 * operations to the lower layer for processing there. The majority of its
92 * activity centers on the bypass routine, through which nearly all vnode
93 * operations pass.
94 *
95 * The bypass routine accepts arbitrary vnode operations for handling by
96 * the lower layer. It begins by examining vnode operation arguments and
97 * replacing any layered nodes by their lower-layer equivalents. It then
98 * invokes an operation on the lower layer. Finally, it replaces the
99 * layered nodes in the arguments and, if a vnode is returned by the
100 * operation, stacks a layered node on top of the returned vnode.
101 *
102 * The bypass routine in this file, layer_bypass(), is suitable for use
103 * by many different layered filesystems. It can be used by multiple
104 * filesystems simultaneously. Alternatively, a layered fs may provide
105 * its own bypass routine, in which case layer_bypass() should be used as
106 * a model. For instance, the main functionality provided by umapfs, the user
107 * identity mapping file system, is handled by a custom bypass routine.
108 *
109 * Typically a layered fs registers its selected bypass routine as the
110 * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 * the filesystem must store the bypass entry point in the layerm_bypass
112 * field of struct layer_mount. All other layer routines in this file will
113 * use the layerm_bypass() routine.
114 *
115 * Although the bypass routine handles most operations outright, a number
116 * of operations are special cased and handled by the layerfs. For instance,
117 * layer_getattr() must change the fsid being returned. While layer_lock()
118 * and layer_unlock() must handle any locking for the current vnode as well
119 * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 * rmdir, and symlink) change the locking state within the operation. Ideally
123 * these operations should not change the lock state, but should be changed
124 * to let the caller of the function unlock them. Otherwise, all intermediate
125 * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 * the necessary locking at their layer.
127 *
128 * INSTANTIATING VNODE STACKS
129 *
130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 * stacking two VFSes. The initial mount creates a single vnode stack for
132 * the root of the new layerfs. All other vnode stacks are created as a
133 * result of vnode operations on this or other layerfs vnode stacks.
134 *
135 * New vnode stacks come into existence as a result of an operation which
136 * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 * vnode before returning it to the caller.
138 *
139 * For example, imagine mounting a null layer with:
140 *
141 * "mount_null /usr/include /dev/layer/null"
142 *
143 * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 * which was created when the null layer was mounted). Now consider opening
145 * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 * This operation would bypass through to the lower layer which would return
147 * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 * Later operations on the layerfs-node "sys" will repeat this process when
150 * constructing other vnode stacks.
151 *
152 * INVOKING OPERATIONS ON LOWER LAYERS
153 *
154 * There are two techniques to invoke operations on a lower layer when the
155 * operation cannot be completely bypassed. Each method is appropriate in
156 * different situations. In both cases, it is the responsibility of the
157 * aliasing layer to make the operation arguments "correct" for the lower
158 * layer by mapping any vnode arguments to the lower layer.
159 *
160 * The first approach is to call the aliasing layer's bypass routine. This
161 * method is most suitable when you wish to invoke the operation currently
162 * being handled on the lower layer. It has the advantage that the bypass
163 * routine already must do argument mapping. An example of this is
164 * layer_getattr().
165 *
166 * A second approach is to directly invoke vnode operations on the lower
167 * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 * is that it is easy to invoke arbitrary operations on the lower layer.
169 * The disadvantage is that vnode's arguments must be manually mapped.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.47 2011/04/03 01:19:35 rmind Exp $");
174
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189
190 /*
191 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
192 * routine by John Heidemann.
193 * The new element for this version is that the whole nullfs
194 * system gained the concept of locks on the lower node.
195 * The 10-Apr-92 version was optimized for speed, throwing away some
196 * safety checks. It should still always work, but it's not as
197 * robust to programmer errors.
198 *
199 * In general, we map all vnodes going down and unmap them on the way back.
200 *
201 * Also, some BSD vnode operations have the side effect of vrele'ing
202 * their arguments. With stacking, the reference counts are held
203 * by the upper node, not the lower one, so we must handle these
204 * side-effects here. This is not of concern in Sun-derived systems
205 * since there are no such side-effects.
206 *
207 * New for the 08-June-99 version: we also handle operations which unlock
208 * the passed-in node (typically they vput the node).
209 *
210 * This makes the following assumptions:
211 * - only one returned vpp
212 * - no INOUT vpp's (Sun's vop_open has one of these)
213 * - the vnode operation vector of the first vnode should be used
214 * to determine what implementation of the op should be invoked
215 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
216 * problems on rmdir'ing mount points and renaming?)
217 */
218 int
219 layer_bypass(void *v)
220 {
221 struct vop_generic_args /* {
222 struct vnodeop_desc *a_desc;
223 <other random data follows, presumably>
224 } */ *ap = v;
225 int (**our_vnodeop_p)(void *);
226 struct vnode **this_vp_p;
227 int error;
228 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
229 struct vnode **vps_p[VDESC_MAX_VPS];
230 struct vnode ***vppp;
231 struct mount *mp;
232 struct vnodeop_desc *descp = ap->a_desc;
233 int reles, i, flags;
234
235 #ifdef DIAGNOSTIC
236 /*
237 * We require at least one vp.
238 */
239 if (descp->vdesc_vp_offsets == NULL ||
240 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
241 panic("%s: no vp's in map.\n", __func__);
242 #endif
243
244 vps_p[0] =
245 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
246 vp0 = *vps_p[0];
247 mp = vp0->v_mount;
248 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
249 our_vnodeop_p = vp0->v_op;
250
251 if (flags & LAYERFS_MBYPASSDEBUG)
252 printf("%s: %s\n", __func__, descp->vdesc_name);
253
254 /*
255 * Map the vnodes going in.
256 * Later, we'll invoke the operation based on
257 * the first mapped vnode's operation vector.
258 */
259 reles = descp->vdesc_flags;
260 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
261 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
262 break; /* bail out at end of list */
263 vps_p[i] = this_vp_p =
264 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
265 ap);
266 /*
267 * We're not guaranteed that any but the first vnode
268 * are of our type. Check for and don't map any
269 * that aren't. (We must always map first vp or vclean fails.)
270 */
271 if (i && (*this_vp_p == NULL ||
272 (*this_vp_p)->v_op != our_vnodeop_p)) {
273 old_vps[i] = NULL;
274 } else {
275 old_vps[i] = *this_vp_p;
276 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
277 /*
278 * XXX - Several operations have the side effect
279 * of vrele'ing their vp's. We must account for
280 * that. (This should go away in the future.)
281 */
282 if (reles & VDESC_VP0_WILLRELE)
283 vref(*this_vp_p);
284 }
285 }
286
287 /*
288 * Call the operation on the lower layer
289 * with the modified argument structure.
290 */
291 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
292
293 /*
294 * Maintain the illusion of call-by-value
295 * by restoring vnodes in the argument structure
296 * to their original value.
297 */
298 reles = descp->vdesc_flags;
299 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
300 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
301 break; /* bail out at end of list */
302 if (old_vps[i]) {
303 *(vps_p[i]) = old_vps[i];
304 if (reles & VDESC_VP0_WILLRELE)
305 vrele(*(vps_p[i]));
306 }
307 }
308
309 /*
310 * Map the possible out-going vpp
311 * (Assumes that the lower layer always returns
312 * a VREF'ed vpp unless it gets an error.)
313 */
314 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
315 vppp = VOPARG_OFFSETTO(struct vnode***,
316 descp->vdesc_vpp_offset, ap);
317 /*
318 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
319 * vop_mknod, and vop_symlink return vpp's. vop_bmap
320 * doesn't call bypass as the lower vpp is fine (we're just
321 * going to do i/o on it). vop_lookup doesn't call bypass
322 * as a lookup on "." would generate a locking error.
323 * So all the calls which get us here have a locked vpp. :-)
324 */
325 error = layer_node_create(mp, **vppp, *vppp);
326 if (error) {
327 vput(**vppp);
328 **vppp = NULL;
329 }
330 }
331 return error;
332 }
333
334 /*
335 * We have to carry on the locking protocol on the layer vnodes
336 * as we progress through the tree. We also have to enforce read-only
337 * if this layer is mounted read-only.
338 */
339 int
340 layer_lookup(void *v)
341 {
342 struct vop_lookup_args /* {
343 struct vnodeop_desc *a_desc;
344 struct vnode * a_dvp;
345 struct vnode ** a_vpp;
346 struct componentname * a_cnp;
347 } */ *ap = v;
348 struct componentname *cnp = ap->a_cnp;
349 struct vnode *dvp, *lvp, *ldvp;
350 int error, flags = cnp->cn_flags;
351
352 dvp = ap->a_dvp;
353
354 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
355 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
356 return EROFS;
357
358 ldvp = LAYERVPTOLOWERVP(dvp);
359 ap->a_dvp = ldvp;
360 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
361 lvp = *ap->a_vpp;
362 *ap->a_vpp = NULL;
363
364 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
365 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
366 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
367 error = EROFS;
368
369 /*
370 * We must do the same locking and unlocking at this layer as
371 * is done in the layers below us.
372 */
373 if (ldvp == lvp) {
374 /*
375 * Got the same object back, because we looked up ".",
376 * or ".." in the root node of a mount point.
377 * So we make another reference to dvp and return it.
378 */
379 vref(dvp);
380 *ap->a_vpp = dvp;
381 vrele(lvp);
382 } else if (lvp != NULL) {
383 /* Note: dvp, ldvp and lvp are all locked. */
384 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
385 if (error) {
386 vput(lvp);
387 }
388 }
389 return error;
390 }
391
392 /*
393 * Setattr call. Disallow write attempts if the layer is mounted read-only.
394 */
395 int
396 layer_setattr(void *v)
397 {
398 struct vop_setattr_args /* {
399 struct vnodeop_desc *a_desc;
400 struct vnode *a_vp;
401 struct vattr *a_vap;
402 kauth_cred_t a_cred;
403 struct lwp *a_l;
404 } */ *ap = v;
405 struct vnode *vp = ap->a_vp;
406 struct vattr *vap = ap->a_vap;
407
408 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
409 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
410 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
411 (vp->v_mount->mnt_flag & MNT_RDONLY))
412 return EROFS;
413 if (vap->va_size != VNOVAL) {
414 switch (vp->v_type) {
415 case VDIR:
416 return EISDIR;
417 case VCHR:
418 case VBLK:
419 case VSOCK:
420 case VFIFO:
421 return 0;
422 case VREG:
423 case VLNK:
424 default:
425 /*
426 * Disallow write attempts if the filesystem is
427 * mounted read-only.
428 */
429 if (vp->v_mount->mnt_flag & MNT_RDONLY)
430 return EROFS;
431 }
432 }
433 return LAYERFS_DO_BYPASS(vp, ap);
434 }
435
436 /*
437 * We handle getattr only to change the fsid.
438 */
439 int
440 layer_getattr(void *v)
441 {
442 struct vop_getattr_args /* {
443 struct vnode *a_vp;
444 struct vattr *a_vap;
445 kauth_cred_t a_cred;
446 struct lwp *a_l;
447 } */ *ap = v;
448 struct vnode *vp = ap->a_vp;
449 int error;
450
451 error = LAYERFS_DO_BYPASS(vp, ap);
452 if (error) {
453 return error;
454 }
455 /* Requires that arguments be restored. */
456 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
457 return 0;
458 }
459
460 int
461 layer_access(void *v)
462 {
463 struct vop_access_args /* {
464 struct vnode *a_vp;
465 int a_mode;
466 kauth_cred_t a_cred;
467 struct lwp *a_l;
468 } */ *ap = v;
469 struct vnode *vp = ap->a_vp;
470 mode_t mode = ap->a_mode;
471
472 /*
473 * Disallow write attempts on read-only layers;
474 * unless the file is a socket, fifo, or a block or
475 * character device resident on the file system.
476 */
477 if (mode & VWRITE) {
478 switch (vp->v_type) {
479 case VDIR:
480 case VLNK:
481 case VREG:
482 if (vp->v_mount->mnt_flag & MNT_RDONLY)
483 return EROFS;
484 break;
485 default:
486 break;
487 }
488 }
489 return LAYERFS_DO_BYPASS(vp, ap);
490 }
491
492 /*
493 * We must handle open to be able to catch MNT_NODEV and friends.
494 */
495 int
496 layer_open(void *v)
497 {
498 struct vop_open_args /* {
499 const struct vnodeop_desc *a_desc;
500 struct vnode *a_vp;
501 int a_mode;
502 kauth_cred_t a_cred;
503 } */ *ap = v;
504 struct vnode *vp = ap->a_vp;
505 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
506
507 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
508 (vp->v_mount->mnt_flag & MNT_NODEV))
509 return ENXIO;
510
511 return LAYERFS_DO_BYPASS(vp, ap);
512 }
513
514 /*
515 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
516 * syncing the underlying vnodes, since they'll be fsync'ed when
517 * reclaimed; otherwise, pass it through to the underlying layer.
518 *
519 * XXX Do we still need to worry about shallow fsync?
520 */
521 int
522 layer_fsync(void *v)
523 {
524 struct vop_fsync_args /* {
525 struct vnode *a_vp;
526 kauth_cred_t a_cred;
527 int a_flags;
528 off_t offlo;
529 off_t offhi;
530 struct lwp *a_l;
531 } */ *ap = v;
532
533 if (ap->a_flags & FSYNC_RECLAIM) {
534 return 0;
535 }
536 return LAYERFS_DO_BYPASS(ap->a_vp, ap);
537 }
538
539 int
540 layer_inactive(void *v)
541 {
542 struct vop_inactive_args /* {
543 struct vnode *a_vp;
544 bool *a_recycle;
545 } */ *ap = v;
546 struct vnode *vp = ap->a_vp;
547
548 /*
549 * If we did a remove, don't cache the node.
550 */
551 *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
552
553 /*
554 * Do nothing (and _don't_ bypass).
555 * Wait to vrele lowervp until reclaim,
556 * so that until then our layer_node is in the
557 * cache and reusable.
558 *
559 * NEEDSWORK: Someday, consider inactive'ing
560 * the lowervp and then trying to reactivate it
561 * with capabilities (v_id)
562 * like they do in the name lookup cache code.
563 * That's too much work for now.
564 */
565 VOP_UNLOCK(vp);
566 return 0;
567 }
568
569 int
570 layer_remove(void *v)
571 {
572 struct vop_remove_args /* {
573 struct vonde *a_dvp;
574 struct vnode *a_vp;
575 struct componentname *a_cnp;
576 } */ *ap = v;
577 struct vnode *vp = ap->a_vp;
578 int error;
579
580 vref(vp);
581 error = LAYERFS_DO_BYPASS(vp, ap);
582 if (error == 0) {
583 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
584 }
585 vrele(vp);
586
587 return error;
588 }
589
590 int
591 layer_rename(void *v)
592 {
593 struct vop_rename_args /* {
594 struct vnode *a_fdvp;
595 struct vnode *a_fvp;
596 struct componentname *a_fcnp;
597 struct vnode *a_tdvp;
598 struct vnode *a_tvp;
599 struct componentname *a_tcnp;
600 } */ *ap = v;
601 struct vnode *fdvp = ap->a_fdvp, *tvp;
602 int error;
603
604 tvp = ap->a_tvp;
605 if (tvp) {
606 if (tvp->v_mount != fdvp->v_mount)
607 tvp = NULL;
608 else
609 vref(tvp);
610 }
611 error = LAYERFS_DO_BYPASS(fdvp, ap);
612 if (tvp) {
613 if (error == 0)
614 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
615 vrele(tvp);
616 }
617 return error;
618 }
619
620 int
621 layer_rmdir(void *v)
622 {
623 struct vop_rmdir_args /* {
624 struct vnode *a_dvp;
625 struct vnode *a_vp;
626 struct componentname *a_cnp;
627 } */ *ap = v;
628 int error;
629 struct vnode *vp = ap->a_vp;
630
631 vref(vp);
632 error = LAYERFS_DO_BYPASS(vp, ap);
633 if (error == 0) {
634 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
635 }
636 vrele(vp);
637
638 return error;
639 }
640
641 int
642 layer_revoke(void *v)
643 {
644 struct vop_revoke_args /* {
645 struct vnode *a_vp;
646 int a_flags;
647 } */ *ap = v;
648 struct vnode *vp = ap->a_vp;
649 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
650 int error;
651
652 /*
653 * We will most likely end up in vclean which uses the v_usecount
654 * to determine if a vnode is active. Take an extra reference on
655 * the lower vnode so it will always close and inactivate.
656 */
657 vref(lvp);
658 error = LAYERFS_DO_BYPASS(vp, ap);
659 vrele(lvp);
660
661 return error;
662 }
663
664 int
665 layer_reclaim(void *v)
666 {
667 struct vop_reclaim_args /* {
668 struct vnode *a_vp;
669 struct lwp *a_l;
670 } */ *ap = v;
671 struct vnode *vp = ap->a_vp;
672 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
673 struct layer_node *xp = VTOLAYER(vp);
674 struct vnode *lowervp = xp->layer_lowervp;
675
676 /*
677 * Note: in vop_reclaim, the node's struct lock has been
678 * decomissioned, so we have to be careful about calling
679 * VOP's on ourself. We must be careful as VXLOCK is set.
680 */
681 if (vp == lmp->layerm_rootvp) {
682 /*
683 * Oops! We no longer have a root node. Most likely reason is
684 * that someone forcably unmunted the underlying fs.
685 *
686 * Now getting the root vnode will fail. We're dead. :-(
687 */
688 lmp->layerm_rootvp = NULL;
689 }
690 /* After this assignment, this node will not be re-used. */
691 xp->layer_lowervp = NULL;
692 mutex_enter(&lmp->layerm_hashlock);
693 LIST_REMOVE(xp, layer_hash);
694 mutex_exit(&lmp->layerm_hashlock);
695 kmem_free(vp->v_data, lmp->layerm_size);
696 vp->v_data = NULL;
697 vrele(lowervp);
698
699 return 0;
700 }
701
702 /*
703 * We just feed the returned vnode up to the caller - there's no need
704 * to build a layer node on top of the node on which we're going to do
705 * i/o. :-)
706 */
707 int
708 layer_bmap(void *v)
709 {
710 struct vop_bmap_args /* {
711 struct vnode *a_vp;
712 daddr_t a_bn;
713 struct vnode **a_vpp;
714 daddr_t *a_bnp;
715 int *a_runp;
716 } */ *ap = v;
717 struct vnode *vp;
718
719 vp = LAYERVPTOLOWERVP(ap->a_vp);
720 ap->a_vp = vp;
721
722 return VCALL(vp, ap->a_desc->vdesc_offset, ap);
723 }
724
725 int
726 layer_print(void *v)
727 {
728 struct vop_print_args /* {
729 struct vnode *a_vp;
730 } */ *ap = v;
731 struct vnode *vp = ap->a_vp;
732 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
733 return 0;
734 }
735
736 /*
737 * XXX - vop_bwrite must be hand coded because it has no
738 * vnode in its arguments.
739 * This goes away with a merged VM/buffer cache.
740 */
741 int
742 layer_bwrite(void *v)
743 {
744 struct vop_bwrite_args /* {
745 struct buf *a_bp;
746 } */ *ap = v;
747 struct buf *bp = ap->a_bp;
748 struct vnode *savedvp;
749 int error;
750
751 savedvp = bp->b_vp;
752 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
753 error = VOP_BWRITE(bp);
754 bp->b_vp = savedvp;
755
756 return error;
757 }
758
759 int
760 layer_getpages(void *v)
761 {
762 struct vop_getpages_args /* {
763 struct vnode *a_vp;
764 voff_t a_offset;
765 struct vm_page **a_m;
766 int *a_count;
767 int a_centeridx;
768 vm_prot_t a_access_type;
769 int a_advice;
770 int a_flags;
771 } */ *ap = v;
772 struct vnode *vp = ap->a_vp;
773 int error;
774
775 /*
776 * just pass the request on to the underlying layer.
777 */
778
779 if (ap->a_flags & PGO_LOCKED) {
780 return EBUSY;
781 }
782 ap->a_vp = LAYERVPTOLOWERVP(vp);
783 mutex_exit(&vp->v_interlock);
784 mutex_enter(&ap->a_vp->v_interlock);
785 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
786 return error;
787 }
788
789 int
790 layer_putpages(void *v)
791 {
792 struct vop_putpages_args /* {
793 struct vnode *a_vp;
794 voff_t a_offlo;
795 voff_t a_offhi;
796 int a_flags;
797 } */ *ap = v;
798 struct vnode *vp = ap->a_vp;
799 int error;
800
801 /*
802 * just pass the request on to the underlying layer.
803 */
804
805 ap->a_vp = LAYERVPTOLOWERVP(vp);
806 mutex_exit(&vp->v_interlock);
807 if (ap->a_flags & PGO_RECLAIM) {
808 return 0;
809 }
810 mutex_enter(&ap->a_vp->v_interlock);
811 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
812 return error;
813 }
814