Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.47
      1 /*	$NetBSD: layer_vnops.c,v 1.47 2011/04/03 01:19:35 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1992, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * John Heidemann of the UCLA Ficus project.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68  *
     69  * Ancestors:
     70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72  *	...and...
     73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74  */
     75 
     76 /*
     77  * Generic layer vnode operations.
     78  *
     79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  * the core implementation of stacked file-systems.
     81  *
     82  * The layerfs duplicates a portion of the file system name space under
     83  * a new name.  In this respect, it is similar to the loopback file system.
     84  * It differs from the loopback fs in two respects: it is implemented using
     85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  * lower-layer vnodes, not just over directory vnodes.
     87  *
     88  * OPERATION OF LAYERFS
     89  *
     90  * The layerfs is the minimum file system layer, bypassing all possible
     91  * operations to the lower layer for processing there.  The majority of its
     92  * activity centers on the bypass routine, through which nearly all vnode
     93  * operations pass.
     94  *
     95  * The bypass routine accepts arbitrary vnode operations for handling by
     96  * the lower layer.  It begins by examining vnode operation arguments and
     97  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  * invokes an operation on the lower layer.  Finally, it replaces the
     99  * layered nodes in the arguments and, if a vnode is returned by the
    100  * operation, stacks a layered node on top of the returned vnode.
    101  *
    102  * The bypass routine in this file, layer_bypass(), is suitable for use
    103  * by many different layered filesystems. It can be used by multiple
    104  * filesystems simultaneously. Alternatively, a layered fs may provide
    105  * its own bypass routine, in which case layer_bypass() should be used as
    106  * a model. For instance, the main functionality provided by umapfs, the user
    107  * identity mapping file system, is handled by a custom bypass routine.
    108  *
    109  * Typically a layered fs registers its selected bypass routine as the
    110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111  * the filesystem must store the bypass entry point in the layerm_bypass
    112  * field of struct layer_mount. All other layer routines in this file will
    113  * use the layerm_bypass() routine.
    114  *
    115  * Although the bypass routine handles most operations outright, a number
    116  * of operations are special cased and handled by the layerfs.  For instance,
    117  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  * and layer_unlock() must handle any locking for the current vnode as well
    119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  * these operations should not change the lock state, but should be changed
    124  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126  * the necessary locking at their layer.
    127  *
    128  * INSTANTIATING VNODE STACKS
    129  *
    130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  * the root of the new layerfs.  All other vnode stacks are created as a
    133  * result of vnode operations on this or other layerfs vnode stacks.
    134  *
    135  * New vnode stacks come into existence as a result of an operation which
    136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137  * vnode before returning it to the caller.
    138  *
    139  * For example, imagine mounting a null layer with:
    140  *
    141  *	"mount_null /usr/include /dev/layer/null"
    142  *
    143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  * which was created when the null layer was mounted).  Now consider opening
    145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  * This operation would bypass through to the lower layer which would return
    147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  * Later operations on the layerfs-node "sys" will repeat this process when
    150  * constructing other vnode stacks.
    151  *
    152  * INVOKING OPERATIONS ON LOWER LAYERS
    153  *
    154  * There are two techniques to invoke operations on a lower layer when the
    155  * operation cannot be completely bypassed.  Each method is appropriate in
    156  * different situations.  In both cases, it is the responsibility of the
    157  * aliasing layer to make the operation arguments "correct" for the lower
    158  * layer by mapping any vnode arguments to the lower layer.
    159  *
    160  * The first approach is to call the aliasing layer's bypass routine.  This
    161  * method is most suitable when you wish to invoke the operation currently
    162  * being handled on the lower layer.  It has the advantage that the bypass
    163  * routine already must do argument mapping.  An example of this is
    164  * layer_getattr().
    165  *
    166  * A second approach is to directly invoke vnode operations on the lower
    167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  * The disadvantage is that vnode's arguments must be manually mapped.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.47 2011/04/03 01:19:35 rmind Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/systm.h>
    177 #include <sys/proc.h>
    178 #include <sys/time.h>
    179 #include <sys/vnode.h>
    180 #include <sys/mount.h>
    181 #include <sys/namei.h>
    182 #include <sys/kmem.h>
    183 #include <sys/buf.h>
    184 #include <sys/kauth.h>
    185 
    186 #include <miscfs/genfs/layer.h>
    187 #include <miscfs/genfs/layer_extern.h>
    188 #include <miscfs/genfs/genfs.h>
    189 
    190 /*
    191  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    192  *		routine by John Heidemann.
    193  *	The new element for this version is that the whole nullfs
    194  * system gained the concept of locks on the lower node.
    195  *    The 10-Apr-92 version was optimized for speed, throwing away some
    196  * safety checks.  It should still always work, but it's not as
    197  * robust to programmer errors.
    198  *
    199  * In general, we map all vnodes going down and unmap them on the way back.
    200  *
    201  * Also, some BSD vnode operations have the side effect of vrele'ing
    202  * their arguments.  With stacking, the reference counts are held
    203  * by the upper node, not the lower one, so we must handle these
    204  * side-effects here.  This is not of concern in Sun-derived systems
    205  * since there are no such side-effects.
    206  *
    207  * New for the 08-June-99 version: we also handle operations which unlock
    208  * the passed-in node (typically they vput the node).
    209  *
    210  * This makes the following assumptions:
    211  * - only one returned vpp
    212  * - no INOUT vpp's (Sun's vop_open has one of these)
    213  * - the vnode operation vector of the first vnode should be used
    214  *   to determine what implementation of the op should be invoked
    215  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    216  *   problems on rmdir'ing mount points and renaming?)
    217  */
    218 int
    219 layer_bypass(void *v)
    220 {
    221 	struct vop_generic_args /* {
    222 		struct vnodeop_desc *a_desc;
    223 		<other random data follows, presumably>
    224 	} */ *ap = v;
    225 	int (**our_vnodeop_p)(void *);
    226 	struct vnode **this_vp_p;
    227 	int error;
    228 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    229 	struct vnode **vps_p[VDESC_MAX_VPS];
    230 	struct vnode ***vppp;
    231 	struct mount *mp;
    232 	struct vnodeop_desc *descp = ap->a_desc;
    233 	int reles, i, flags;
    234 
    235 #ifdef DIAGNOSTIC
    236 	/*
    237 	 * We require at least one vp.
    238 	 */
    239 	if (descp->vdesc_vp_offsets == NULL ||
    240 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    241 		panic("%s: no vp's in map.\n", __func__);
    242 #endif
    243 
    244 	vps_p[0] =
    245 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    246 	vp0 = *vps_p[0];
    247 	mp = vp0->v_mount;
    248 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    249 	our_vnodeop_p = vp0->v_op;
    250 
    251 	if (flags & LAYERFS_MBYPASSDEBUG)
    252 		printf("%s: %s\n", __func__, descp->vdesc_name);
    253 
    254 	/*
    255 	 * Map the vnodes going in.
    256 	 * Later, we'll invoke the operation based on
    257 	 * the first mapped vnode's operation vector.
    258 	 */
    259 	reles = descp->vdesc_flags;
    260 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    261 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    262 			break;   /* bail out at end of list */
    263 		vps_p[i] = this_vp_p =
    264 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    265 		    ap);
    266 		/*
    267 		 * We're not guaranteed that any but the first vnode
    268 		 * are of our type.  Check for and don't map any
    269 		 * that aren't.  (We must always map first vp or vclean fails.)
    270 		 */
    271 		if (i && (*this_vp_p == NULL ||
    272 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    273 			old_vps[i] = NULL;
    274 		} else {
    275 			old_vps[i] = *this_vp_p;
    276 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    277 			/*
    278 			 * XXX - Several operations have the side effect
    279 			 * of vrele'ing their vp's.  We must account for
    280 			 * that.  (This should go away in the future.)
    281 			 */
    282 			if (reles & VDESC_VP0_WILLRELE)
    283 				vref(*this_vp_p);
    284 		}
    285 	}
    286 
    287 	/*
    288 	 * Call the operation on the lower layer
    289 	 * with the modified argument structure.
    290 	 */
    291 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    292 
    293 	/*
    294 	 * Maintain the illusion of call-by-value
    295 	 * by restoring vnodes in the argument structure
    296 	 * to their original value.
    297 	 */
    298 	reles = descp->vdesc_flags;
    299 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    300 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    301 			break;   /* bail out at end of list */
    302 		if (old_vps[i]) {
    303 			*(vps_p[i]) = old_vps[i];
    304 			if (reles & VDESC_VP0_WILLRELE)
    305 				vrele(*(vps_p[i]));
    306 		}
    307 	}
    308 
    309 	/*
    310 	 * Map the possible out-going vpp
    311 	 * (Assumes that the lower layer always returns
    312 	 * a VREF'ed vpp unless it gets an error.)
    313 	 */
    314 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    315 		vppp = VOPARG_OFFSETTO(struct vnode***,
    316 				 descp->vdesc_vpp_offset, ap);
    317 		/*
    318 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    319 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    320 		 * doesn't call bypass as the lower vpp is fine (we're just
    321 		 * going to do i/o on it). vop_lookup doesn't call bypass
    322 		 * as a lookup on "." would generate a locking error.
    323 		 * So all the calls which get us here have a locked vpp. :-)
    324 		 */
    325 		error = layer_node_create(mp, **vppp, *vppp);
    326 		if (error) {
    327 			vput(**vppp);
    328 			**vppp = NULL;
    329 		}
    330 	}
    331 	return error;
    332 }
    333 
    334 /*
    335  * We have to carry on the locking protocol on the layer vnodes
    336  * as we progress through the tree. We also have to enforce read-only
    337  * if this layer is mounted read-only.
    338  */
    339 int
    340 layer_lookup(void *v)
    341 {
    342 	struct vop_lookup_args /* {
    343 		struct vnodeop_desc *a_desc;
    344 		struct vnode * a_dvp;
    345 		struct vnode ** a_vpp;
    346 		struct componentname * a_cnp;
    347 	} */ *ap = v;
    348 	struct componentname *cnp = ap->a_cnp;
    349 	struct vnode *dvp, *lvp, *ldvp;
    350 	int error, flags = cnp->cn_flags;
    351 
    352 	dvp = ap->a_dvp;
    353 
    354 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    355 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    356 		return EROFS;
    357 
    358 	ldvp = LAYERVPTOLOWERVP(dvp);
    359 	ap->a_dvp = ldvp;
    360 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    361 	lvp = *ap->a_vpp;
    362 	*ap->a_vpp = NULL;
    363 
    364 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    365 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    366 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    367 		error = EROFS;
    368 
    369 	/*
    370 	 * We must do the same locking and unlocking at this layer as
    371 	 * is done in the layers below us.
    372 	 */
    373 	if (ldvp == lvp) {
    374 		/*
    375 		 * Got the same object back, because we looked up ".",
    376 		 * or ".." in the root node of a mount point.
    377 		 * So we make another reference to dvp and return it.
    378 		 */
    379 		vref(dvp);
    380 		*ap->a_vpp = dvp;
    381 		vrele(lvp);
    382 	} else if (lvp != NULL) {
    383 		/* Note: dvp, ldvp and lvp are all locked. */
    384 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    385 		if (error) {
    386 			vput(lvp);
    387 		}
    388 	}
    389 	return error;
    390 }
    391 
    392 /*
    393  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    394  */
    395 int
    396 layer_setattr(void *v)
    397 {
    398 	struct vop_setattr_args /* {
    399 		struct vnodeop_desc *a_desc;
    400 		struct vnode *a_vp;
    401 		struct vattr *a_vap;
    402 		kauth_cred_t a_cred;
    403 		struct lwp *a_l;
    404 	} */ *ap = v;
    405 	struct vnode *vp = ap->a_vp;
    406 	struct vattr *vap = ap->a_vap;
    407 
    408   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    409 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    410 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    411 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    412 		return EROFS;
    413 	if (vap->va_size != VNOVAL) {
    414  		switch (vp->v_type) {
    415  		case VDIR:
    416  			return EISDIR;
    417  		case VCHR:
    418  		case VBLK:
    419  		case VSOCK:
    420  		case VFIFO:
    421 			return 0;
    422 		case VREG:
    423 		case VLNK:
    424  		default:
    425 			/*
    426 			 * Disallow write attempts if the filesystem is
    427 			 * mounted read-only.
    428 			 */
    429 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    430 				return EROFS;
    431 		}
    432 	}
    433 	return LAYERFS_DO_BYPASS(vp, ap);
    434 }
    435 
    436 /*
    437  *  We handle getattr only to change the fsid.
    438  */
    439 int
    440 layer_getattr(void *v)
    441 {
    442 	struct vop_getattr_args /* {
    443 		struct vnode *a_vp;
    444 		struct vattr *a_vap;
    445 		kauth_cred_t a_cred;
    446 		struct lwp *a_l;
    447 	} */ *ap = v;
    448 	struct vnode *vp = ap->a_vp;
    449 	int error;
    450 
    451 	error = LAYERFS_DO_BYPASS(vp, ap);
    452 	if (error) {
    453 		return error;
    454 	}
    455 	/* Requires that arguments be restored. */
    456 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    457 	return 0;
    458 }
    459 
    460 int
    461 layer_access(void *v)
    462 {
    463 	struct vop_access_args /* {
    464 		struct vnode *a_vp;
    465 		int  a_mode;
    466 		kauth_cred_t a_cred;
    467 		struct lwp *a_l;
    468 	} */ *ap = v;
    469 	struct vnode *vp = ap->a_vp;
    470 	mode_t mode = ap->a_mode;
    471 
    472 	/*
    473 	 * Disallow write attempts on read-only layers;
    474 	 * unless the file is a socket, fifo, or a block or
    475 	 * character device resident on the file system.
    476 	 */
    477 	if (mode & VWRITE) {
    478 		switch (vp->v_type) {
    479 		case VDIR:
    480 		case VLNK:
    481 		case VREG:
    482 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    483 				return EROFS;
    484 			break;
    485 		default:
    486 			break;
    487 		}
    488 	}
    489 	return LAYERFS_DO_BYPASS(vp, ap);
    490 }
    491 
    492 /*
    493  * We must handle open to be able to catch MNT_NODEV and friends.
    494  */
    495 int
    496 layer_open(void *v)
    497 {
    498 	struct vop_open_args /* {
    499 		const struct vnodeop_desc *a_desc;
    500 		struct vnode *a_vp;
    501 		int a_mode;
    502 		kauth_cred_t a_cred;
    503 	} */ *ap = v;
    504 	struct vnode *vp = ap->a_vp;
    505 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    506 
    507 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    508 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    509 		return ENXIO;
    510 
    511 	return LAYERFS_DO_BYPASS(vp, ap);
    512 }
    513 
    514 /*
    515  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    516  * syncing the underlying vnodes, since they'll be fsync'ed when
    517  * reclaimed; otherwise, pass it through to the underlying layer.
    518  *
    519  * XXX Do we still need to worry about shallow fsync?
    520  */
    521 int
    522 layer_fsync(void *v)
    523 {
    524 	struct vop_fsync_args /* {
    525 		struct vnode *a_vp;
    526 		kauth_cred_t a_cred;
    527 		int  a_flags;
    528 		off_t offlo;
    529 		off_t offhi;
    530 		struct lwp *a_l;
    531 	} */ *ap = v;
    532 
    533 	if (ap->a_flags & FSYNC_RECLAIM) {
    534 		return 0;
    535 	}
    536 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    537 }
    538 
    539 int
    540 layer_inactive(void *v)
    541 {
    542 	struct vop_inactive_args /* {
    543 		struct vnode *a_vp;
    544 		bool *a_recycle;
    545 	} */ *ap = v;
    546 	struct vnode *vp = ap->a_vp;
    547 
    548 	/*
    549 	 * If we did a remove, don't cache the node.
    550 	 */
    551 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    552 
    553 	/*
    554 	 * Do nothing (and _don't_ bypass).
    555 	 * Wait to vrele lowervp until reclaim,
    556 	 * so that until then our layer_node is in the
    557 	 * cache and reusable.
    558 	 *
    559 	 * NEEDSWORK: Someday, consider inactive'ing
    560 	 * the lowervp and then trying to reactivate it
    561 	 * with capabilities (v_id)
    562 	 * like they do in the name lookup cache code.
    563 	 * That's too much work for now.
    564 	 */
    565 	VOP_UNLOCK(vp);
    566 	return 0;
    567 }
    568 
    569 int
    570 layer_remove(void *v)
    571 {
    572 	struct vop_remove_args /* {
    573 		struct vonde		*a_dvp;
    574 		struct vnode		*a_vp;
    575 		struct componentname	*a_cnp;
    576 	} */ *ap = v;
    577 	struct vnode *vp = ap->a_vp;
    578 	int error;
    579 
    580 	vref(vp);
    581 	error = LAYERFS_DO_BYPASS(vp, ap);
    582 	if (error == 0) {
    583 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    584 	}
    585 	vrele(vp);
    586 
    587 	return error;
    588 }
    589 
    590 int
    591 layer_rename(void *v)
    592 {
    593 	struct vop_rename_args  /* {
    594 		struct vnode		*a_fdvp;
    595 		struct vnode		*a_fvp;
    596 		struct componentname	*a_fcnp;
    597 		struct vnode		*a_tdvp;
    598 		struct vnode		*a_tvp;
    599 		struct componentname	*a_tcnp;
    600 	} */ *ap = v;
    601 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    602 	int error;
    603 
    604 	tvp = ap->a_tvp;
    605 	if (tvp) {
    606 		if (tvp->v_mount != fdvp->v_mount)
    607 			tvp = NULL;
    608 		else
    609 			vref(tvp);
    610 	}
    611 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    612 	if (tvp) {
    613 		if (error == 0)
    614 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    615 		vrele(tvp);
    616 	}
    617 	return error;
    618 }
    619 
    620 int
    621 layer_rmdir(void *v)
    622 {
    623 	struct vop_rmdir_args /* {
    624 		struct vnode		*a_dvp;
    625 		struct vnode		*a_vp;
    626 		struct componentname	*a_cnp;
    627 	} */ *ap = v;
    628 	int		error;
    629 	struct vnode	*vp = ap->a_vp;
    630 
    631 	vref(vp);
    632 	error = LAYERFS_DO_BYPASS(vp, ap);
    633 	if (error == 0) {
    634 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    635 	}
    636 	vrele(vp);
    637 
    638 	return error;
    639 }
    640 
    641 int
    642 layer_revoke(void *v)
    643 {
    644         struct vop_revoke_args /* {
    645 		struct vnode *a_vp;
    646 		int a_flags;
    647 	} */ *ap = v;
    648 	struct vnode *vp = ap->a_vp;
    649 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    650 	int error;
    651 
    652 	/*
    653 	 * We will most likely end up in vclean which uses the v_usecount
    654 	 * to determine if a vnode is active.  Take an extra reference on
    655 	 * the lower vnode so it will always close and inactivate.
    656 	 */
    657 	vref(lvp);
    658 	error = LAYERFS_DO_BYPASS(vp, ap);
    659 	vrele(lvp);
    660 
    661 	return error;
    662 }
    663 
    664 int
    665 layer_reclaim(void *v)
    666 {
    667 	struct vop_reclaim_args /* {
    668 		struct vnode *a_vp;
    669 		struct lwp *a_l;
    670 	} */ *ap = v;
    671 	struct vnode *vp = ap->a_vp;
    672 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    673 	struct layer_node *xp = VTOLAYER(vp);
    674 	struct vnode *lowervp = xp->layer_lowervp;
    675 
    676 	/*
    677 	 * Note: in vop_reclaim, the node's struct lock has been
    678 	 * decomissioned, so we have to be careful about calling
    679 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    680 	 */
    681 	if (vp == lmp->layerm_rootvp) {
    682 		/*
    683 		 * Oops! We no longer have a root node. Most likely reason is
    684 		 * that someone forcably unmunted the underlying fs.
    685 		 *
    686 		 * Now getting the root vnode will fail. We're dead. :-(
    687 		 */
    688 		lmp->layerm_rootvp = NULL;
    689 	}
    690 	/* After this assignment, this node will not be re-used. */
    691 	xp->layer_lowervp = NULL;
    692 	mutex_enter(&lmp->layerm_hashlock);
    693 	LIST_REMOVE(xp, layer_hash);
    694 	mutex_exit(&lmp->layerm_hashlock);
    695 	kmem_free(vp->v_data, lmp->layerm_size);
    696 	vp->v_data = NULL;
    697 	vrele(lowervp);
    698 
    699 	return 0;
    700 }
    701 
    702 /*
    703  * We just feed the returned vnode up to the caller - there's no need
    704  * to build a layer node on top of the node on which we're going to do
    705  * i/o. :-)
    706  */
    707 int
    708 layer_bmap(void *v)
    709 {
    710 	struct vop_bmap_args /* {
    711 		struct vnode *a_vp;
    712 		daddr_t  a_bn;
    713 		struct vnode **a_vpp;
    714 		daddr_t *a_bnp;
    715 		int *a_runp;
    716 	} */ *ap = v;
    717 	struct vnode *vp;
    718 
    719 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    720 	ap->a_vp = vp;
    721 
    722 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    723 }
    724 
    725 int
    726 layer_print(void *v)
    727 {
    728 	struct vop_print_args /* {
    729 		struct vnode *a_vp;
    730 	} */ *ap = v;
    731 	struct vnode *vp = ap->a_vp;
    732 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    733 	return 0;
    734 }
    735 
    736 /*
    737  * XXX - vop_bwrite must be hand coded because it has no
    738  * vnode in its arguments.
    739  * This goes away with a merged VM/buffer cache.
    740  */
    741 int
    742 layer_bwrite(void *v)
    743 {
    744 	struct vop_bwrite_args /* {
    745 		struct buf *a_bp;
    746 	} */ *ap = v;
    747 	struct buf *bp = ap->a_bp;
    748 	struct vnode *savedvp;
    749 	int error;
    750 
    751 	savedvp = bp->b_vp;
    752 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    753 	error = VOP_BWRITE(bp);
    754 	bp->b_vp = savedvp;
    755 
    756 	return error;
    757 }
    758 
    759 int
    760 layer_getpages(void *v)
    761 {
    762 	struct vop_getpages_args /* {
    763 		struct vnode *a_vp;
    764 		voff_t a_offset;
    765 		struct vm_page **a_m;
    766 		int *a_count;
    767 		int a_centeridx;
    768 		vm_prot_t a_access_type;
    769 		int a_advice;
    770 		int a_flags;
    771 	} */ *ap = v;
    772 	struct vnode *vp = ap->a_vp;
    773 	int error;
    774 
    775 	/*
    776 	 * just pass the request on to the underlying layer.
    777 	 */
    778 
    779 	if (ap->a_flags & PGO_LOCKED) {
    780 		return EBUSY;
    781 	}
    782 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    783 	mutex_exit(&vp->v_interlock);
    784 	mutex_enter(&ap->a_vp->v_interlock);
    785 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    786 	return error;
    787 }
    788 
    789 int
    790 layer_putpages(void *v)
    791 {
    792 	struct vop_putpages_args /* {
    793 		struct vnode *a_vp;
    794 		voff_t a_offlo;
    795 		voff_t a_offhi;
    796 		int a_flags;
    797 	} */ *ap = v;
    798 	struct vnode *vp = ap->a_vp;
    799 	int error;
    800 
    801 	/*
    802 	 * just pass the request on to the underlying layer.
    803 	 */
    804 
    805 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    806 	mutex_exit(&vp->v_interlock);
    807 	if (ap->a_flags & PGO_RECLAIM) {
    808 		return 0;
    809 	}
    810 	mutex_enter(&ap->a_vp->v_interlock);
    811 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    812 	return error;
    813 }
    814