Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.51
      1 /*	$NetBSD: layer_vnops.c,v 1.51 2012/10/10 06:55:25 dholland Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1992, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * John Heidemann of the UCLA Ficus project.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68  *
     69  * Ancestors:
     70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72  *	...and...
     73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74  */
     75 
     76 /*
     77  * Generic layer vnode operations.
     78  *
     79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  * the core implementation of stacked file-systems.
     81  *
     82  * The layerfs duplicates a portion of the file system name space under
     83  * a new name.  In this respect, it is similar to the loopback file system.
     84  * It differs from the loopback fs in two respects: it is implemented using
     85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  * lower-layer vnodes, not just over directory vnodes.
     87  *
     88  * OPERATION OF LAYERFS
     89  *
     90  * The layerfs is the minimum file system layer, bypassing all possible
     91  * operations to the lower layer for processing there.  The majority of its
     92  * activity centers on the bypass routine, through which nearly all vnode
     93  * operations pass.
     94  *
     95  * The bypass routine accepts arbitrary vnode operations for handling by
     96  * the lower layer.  It begins by examining vnode operation arguments and
     97  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  * invokes an operation on the lower layer.  Finally, it replaces the
     99  * layered nodes in the arguments and, if a vnode is returned by the
    100  * operation, stacks a layered node on top of the returned vnode.
    101  *
    102  * The bypass routine in this file, layer_bypass(), is suitable for use
    103  * by many different layered filesystems. It can be used by multiple
    104  * filesystems simultaneously. Alternatively, a layered fs may provide
    105  * its own bypass routine, in which case layer_bypass() should be used as
    106  * a model. For instance, the main functionality provided by umapfs, the user
    107  * identity mapping file system, is handled by a custom bypass routine.
    108  *
    109  * Typically a layered fs registers its selected bypass routine as the
    110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111  * the filesystem must store the bypass entry point in the layerm_bypass
    112  * field of struct layer_mount. All other layer routines in this file will
    113  * use the layerm_bypass() routine.
    114  *
    115  * Although the bypass routine handles most operations outright, a number
    116  * of operations are special cased and handled by the layerfs.  For instance,
    117  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  * and layer_unlock() must handle any locking for the current vnode as well
    119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  * these operations should not change the lock state, but should be changed
    124  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126  * the necessary locking at their layer.
    127  *
    128  * INSTANTIATING VNODE STACKS
    129  *
    130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  * the root of the new layerfs.  All other vnode stacks are created as a
    133  * result of vnode operations on this or other layerfs vnode stacks.
    134  *
    135  * New vnode stacks come into existence as a result of an operation which
    136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137  * vnode before returning it to the caller.
    138  *
    139  * For example, imagine mounting a null layer with:
    140  *
    141  *	"mount_null /usr/include /dev/layer/null"
    142  *
    143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  * which was created when the null layer was mounted).  Now consider opening
    145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  * This operation would bypass through to the lower layer which would return
    147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  * Later operations on the layerfs-node "sys" will repeat this process when
    150  * constructing other vnode stacks.
    151  *
    152  * INVOKING OPERATIONS ON LOWER LAYERS
    153  *
    154  * There are two techniques to invoke operations on a lower layer when the
    155  * operation cannot be completely bypassed.  Each method is appropriate in
    156  * different situations.  In both cases, it is the responsibility of the
    157  * aliasing layer to make the operation arguments "correct" for the lower
    158  * layer by mapping any vnode arguments to the lower layer.
    159  *
    160  * The first approach is to call the aliasing layer's bypass routine.  This
    161  * method is most suitable when you wish to invoke the operation currently
    162  * being handled on the lower layer.  It has the advantage that the bypass
    163  * routine already must do argument mapping.  An example of this is
    164  * layer_getattr().
    165  *
    166  * A second approach is to directly invoke vnode operations on the lower
    167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  * The disadvantage is that vnode's arguments must be manually mapped.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.51 2012/10/10 06:55:25 dholland Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/systm.h>
    177 #include <sys/proc.h>
    178 #include <sys/time.h>
    179 #include <sys/vnode.h>
    180 #include <sys/mount.h>
    181 #include <sys/namei.h>
    182 #include <sys/kmem.h>
    183 #include <sys/buf.h>
    184 #include <sys/kauth.h>
    185 
    186 #include <miscfs/genfs/layer.h>
    187 #include <miscfs/genfs/layer_extern.h>
    188 #include <miscfs/genfs/genfs.h>
    189 #include <miscfs/specfs/specdev.h>
    190 
    191 /*
    192  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    193  *		routine by John Heidemann.
    194  *	The new element for this version is that the whole nullfs
    195  * system gained the concept of locks on the lower node.
    196  *    The 10-Apr-92 version was optimized for speed, throwing away some
    197  * safety checks.  It should still always work, but it's not as
    198  * robust to programmer errors.
    199  *
    200  * In general, we map all vnodes going down and unmap them on the way back.
    201  *
    202  * Also, some BSD vnode operations have the side effect of vrele'ing
    203  * their arguments.  With stacking, the reference counts are held
    204  * by the upper node, not the lower one, so we must handle these
    205  * side-effects here.  This is not of concern in Sun-derived systems
    206  * since there are no such side-effects.
    207  *
    208  * New for the 08-June-99 version: we also handle operations which unlock
    209  * the passed-in node (typically they vput the node).
    210  *
    211  * This makes the following assumptions:
    212  * - only one returned vpp
    213  * - no INOUT vpp's (Sun's vop_open has one of these)
    214  * - the vnode operation vector of the first vnode should be used
    215  *   to determine what implementation of the op should be invoked
    216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    217  *   problems on rmdir'ing mount points and renaming?)
    218  */
    219 int
    220 layer_bypass(void *v)
    221 {
    222 	struct vop_generic_args /* {
    223 		struct vnodeop_desc *a_desc;
    224 		<other random data follows, presumably>
    225 	} */ *ap = v;
    226 	int (**our_vnodeop_p)(void *);
    227 	struct vnode **this_vp_p;
    228 	int error;
    229 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    230 	struct vnode **vps_p[VDESC_MAX_VPS];
    231 	struct vnode ***vppp;
    232 	struct mount *mp;
    233 	struct vnodeop_desc *descp = ap->a_desc;
    234 	int reles, i, flags;
    235 
    236 #ifdef DIAGNOSTIC
    237 	/*
    238 	 * We require at least one vp.
    239 	 */
    240 	if (descp->vdesc_vp_offsets == NULL ||
    241 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    242 		panic("%s: no vp's in map.\n", __func__);
    243 #endif
    244 
    245 	vps_p[0] =
    246 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    247 	vp0 = *vps_p[0];
    248 	mp = vp0->v_mount;
    249 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    250 	our_vnodeop_p = vp0->v_op;
    251 
    252 	if (flags & LAYERFS_MBYPASSDEBUG)
    253 		printf("%s: %s\n", __func__, descp->vdesc_name);
    254 
    255 	/*
    256 	 * Map the vnodes going in.
    257 	 * Later, we'll invoke the operation based on
    258 	 * the first mapped vnode's operation vector.
    259 	 */
    260 	reles = descp->vdesc_flags;
    261 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    262 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    263 			break;   /* bail out at end of list */
    264 		vps_p[i] = this_vp_p =
    265 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    266 		    ap);
    267 		/*
    268 		 * We're not guaranteed that any but the first vnode
    269 		 * are of our type.  Check for and don't map any
    270 		 * that aren't.  (We must always map first vp or vclean fails.)
    271 		 */
    272 		if (i && (*this_vp_p == NULL ||
    273 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    274 			old_vps[i] = NULL;
    275 		} else {
    276 			old_vps[i] = *this_vp_p;
    277 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    278 			/*
    279 			 * XXX - Several operations have the side effect
    280 			 * of vrele'ing their vp's.  We must account for
    281 			 * that.  (This should go away in the future.)
    282 			 */
    283 			if (reles & VDESC_VP0_WILLRELE)
    284 				vref(*this_vp_p);
    285 		}
    286 	}
    287 
    288 	/*
    289 	 * Call the operation on the lower layer
    290 	 * with the modified argument structure.
    291 	 */
    292 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    293 
    294 	/*
    295 	 * Maintain the illusion of call-by-value
    296 	 * by restoring vnodes in the argument structure
    297 	 * to their original value.
    298 	 */
    299 	reles = descp->vdesc_flags;
    300 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    301 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    302 			break;   /* bail out at end of list */
    303 		if (old_vps[i]) {
    304 			*(vps_p[i]) = old_vps[i];
    305 			if (reles & VDESC_VP0_WILLRELE)
    306 				vrele(*(vps_p[i]));
    307 		}
    308 	}
    309 
    310 	/*
    311 	 * Map the possible out-going vpp
    312 	 * (Assumes that the lower layer always returns
    313 	 * a VREF'ed vpp unless it gets an error.)
    314 	 */
    315 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    316 		vppp = VOPARG_OFFSETTO(struct vnode***,
    317 				 descp->vdesc_vpp_offset, ap);
    318 		/*
    319 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    320 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    321 		 * doesn't call bypass as the lower vpp is fine (we're just
    322 		 * going to do i/o on it). vop_lookup doesn't call bypass
    323 		 * as a lookup on "." would generate a locking error.
    324 		 * So all the calls which get us here have a locked vpp. :-)
    325 		 */
    326 		error = layer_node_create(mp, **vppp, *vppp);
    327 		if (error) {
    328 			vput(**vppp);
    329 			**vppp = NULL;
    330 		}
    331 	}
    332 	return error;
    333 }
    334 
    335 /*
    336  * We have to carry on the locking protocol on the layer vnodes
    337  * as we progress through the tree. We also have to enforce read-only
    338  * if this layer is mounted read-only.
    339  */
    340 int
    341 layer_lookup(void *v)
    342 {
    343 	struct vop_lookup_args /* {
    344 		struct vnodeop_desc *a_desc;
    345 		struct vnode * a_dvp;
    346 		struct vnode ** a_vpp;
    347 		struct componentname * a_cnp;
    348 	} */ *ap = v;
    349 	struct componentname *cnp = ap->a_cnp;
    350 	struct vnode *dvp, *lvp, *ldvp;
    351 	int error, flags = cnp->cn_flags;
    352 
    353 	dvp = ap->a_dvp;
    354 
    355 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    356 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    357 		*ap->a_vpp = NULL;
    358 		return EROFS;
    359 	}
    360 
    361 	ldvp = LAYERVPTOLOWERVP(dvp);
    362 	ap->a_dvp = ldvp;
    363 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    364 	lvp = *ap->a_vpp;
    365 	*ap->a_vpp = NULL;
    366 
    367 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    368 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    369 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    370 		error = EROFS;
    371 
    372 	/*
    373 	 * We must do the same locking and unlocking at this layer as
    374 	 * is done in the layers below us.
    375 	 */
    376 	if (ldvp == lvp) {
    377 		/*
    378 		 * Got the same object back, because we looked up ".",
    379 		 * or ".." in the root node of a mount point.
    380 		 * So we make another reference to dvp and return it.
    381 		 */
    382 		vref(dvp);
    383 		*ap->a_vpp = dvp;
    384 		vrele(lvp);
    385 	} else if (lvp != NULL) {
    386 		/* Note: dvp, ldvp and lvp are all locked. */
    387 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    388 		if (error) {
    389 			vput(lvp);
    390 		}
    391 	}
    392 	return error;
    393 }
    394 
    395 /*
    396  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    397  */
    398 int
    399 layer_setattr(void *v)
    400 {
    401 	struct vop_setattr_args /* {
    402 		struct vnodeop_desc *a_desc;
    403 		struct vnode *a_vp;
    404 		struct vattr *a_vap;
    405 		kauth_cred_t a_cred;
    406 		struct lwp *a_l;
    407 	} */ *ap = v;
    408 	struct vnode *vp = ap->a_vp;
    409 	struct vattr *vap = ap->a_vap;
    410 
    411   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    412 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    413 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    414 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    415 		return EROFS;
    416 	if (vap->va_size != VNOVAL) {
    417  		switch (vp->v_type) {
    418  		case VDIR:
    419  			return EISDIR;
    420  		case VCHR:
    421  		case VBLK:
    422  		case VSOCK:
    423  		case VFIFO:
    424 			return 0;
    425 		case VREG:
    426 		case VLNK:
    427  		default:
    428 			/*
    429 			 * Disallow write attempts if the filesystem is
    430 			 * mounted read-only.
    431 			 */
    432 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    433 				return EROFS;
    434 		}
    435 	}
    436 	return LAYERFS_DO_BYPASS(vp, ap);
    437 }
    438 
    439 /*
    440  *  We handle getattr only to change the fsid.
    441  */
    442 int
    443 layer_getattr(void *v)
    444 {
    445 	struct vop_getattr_args /* {
    446 		struct vnode *a_vp;
    447 		struct vattr *a_vap;
    448 		kauth_cred_t a_cred;
    449 		struct lwp *a_l;
    450 	} */ *ap = v;
    451 	struct vnode *vp = ap->a_vp;
    452 	int error;
    453 
    454 	error = LAYERFS_DO_BYPASS(vp, ap);
    455 	if (error) {
    456 		return error;
    457 	}
    458 	/* Requires that arguments be restored. */
    459 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    460 	return 0;
    461 }
    462 
    463 int
    464 layer_access(void *v)
    465 {
    466 	struct vop_access_args /* {
    467 		struct vnode *a_vp;
    468 		int  a_mode;
    469 		kauth_cred_t a_cred;
    470 		struct lwp *a_l;
    471 	} */ *ap = v;
    472 	struct vnode *vp = ap->a_vp;
    473 	mode_t mode = ap->a_mode;
    474 
    475 	/*
    476 	 * Disallow write attempts on read-only layers;
    477 	 * unless the file is a socket, fifo, or a block or
    478 	 * character device resident on the file system.
    479 	 */
    480 	if (mode & VWRITE) {
    481 		switch (vp->v_type) {
    482 		case VDIR:
    483 		case VLNK:
    484 		case VREG:
    485 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    486 				return EROFS;
    487 			break;
    488 		default:
    489 			break;
    490 		}
    491 	}
    492 	return LAYERFS_DO_BYPASS(vp, ap);
    493 }
    494 
    495 /*
    496  * We must handle open to be able to catch MNT_NODEV and friends.
    497  */
    498 int
    499 layer_open(void *v)
    500 {
    501 	struct vop_open_args /* {
    502 		const struct vnodeop_desc *a_desc;
    503 		struct vnode *a_vp;
    504 		int a_mode;
    505 		kauth_cred_t a_cred;
    506 	} */ *ap = v;
    507 	struct vnode *vp = ap->a_vp;
    508 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    509 
    510 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    511 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    512 		return ENXIO;
    513 
    514 	return LAYERFS_DO_BYPASS(vp, ap);
    515 }
    516 
    517 /*
    518  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    519  * syncing the underlying vnodes, since they'll be fsync'ed when
    520  * reclaimed; otherwise, pass it through to the underlying layer.
    521  *
    522  * XXX Do we still need to worry about shallow fsync?
    523  */
    524 int
    525 layer_fsync(void *v)
    526 {
    527 	struct vop_fsync_args /* {
    528 		struct vnode *a_vp;
    529 		kauth_cred_t a_cred;
    530 		int  a_flags;
    531 		off_t offlo;
    532 		off_t offhi;
    533 		struct lwp *a_l;
    534 	} */ *ap = v;
    535 	int error;
    536 
    537 	if (ap->a_flags & FSYNC_RECLAIM) {
    538 		return 0;
    539 	}
    540 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    541 		error = spec_fsync(v);
    542 		if (error)
    543 			return error;
    544 	}
    545 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    546 }
    547 
    548 int
    549 layer_inactive(void *v)
    550 {
    551 	struct vop_inactive_args /* {
    552 		struct vnode *a_vp;
    553 		bool *a_recycle;
    554 	} */ *ap = v;
    555 	struct vnode *vp = ap->a_vp;
    556 
    557 	/*
    558 	 * If we did a remove, don't cache the node.
    559 	 */
    560 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    561 
    562 	/*
    563 	 * Do nothing (and _don't_ bypass).
    564 	 * Wait to vrele lowervp until reclaim,
    565 	 * so that until then our layer_node is in the
    566 	 * cache and reusable.
    567 	 *
    568 	 * NEEDSWORK: Someday, consider inactive'ing
    569 	 * the lowervp and then trying to reactivate it
    570 	 * with capabilities (v_id)
    571 	 * like they do in the name lookup cache code.
    572 	 * That's too much work for now.
    573 	 */
    574 	VOP_UNLOCK(vp);
    575 	return 0;
    576 }
    577 
    578 int
    579 layer_remove(void *v)
    580 {
    581 	struct vop_remove_args /* {
    582 		struct vonde		*a_dvp;
    583 		struct vnode		*a_vp;
    584 		struct componentname	*a_cnp;
    585 	} */ *ap = v;
    586 	struct vnode *vp = ap->a_vp;
    587 	int error;
    588 
    589 	vref(vp);
    590 	error = LAYERFS_DO_BYPASS(vp, ap);
    591 	if (error == 0) {
    592 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    593 	}
    594 	vrele(vp);
    595 
    596 	return error;
    597 }
    598 
    599 int
    600 layer_rename(void *v)
    601 {
    602 	struct vop_rename_args  /* {
    603 		struct vnode		*a_fdvp;
    604 		struct vnode		*a_fvp;
    605 		struct componentname	*a_fcnp;
    606 		struct vnode		*a_tdvp;
    607 		struct vnode		*a_tvp;
    608 		struct componentname	*a_tcnp;
    609 	} */ *ap = v;
    610 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    611 	int error;
    612 
    613 	tvp = ap->a_tvp;
    614 	if (tvp) {
    615 		if (tvp->v_mount != fdvp->v_mount)
    616 			tvp = NULL;
    617 		else
    618 			vref(tvp);
    619 	}
    620 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    621 	if (tvp) {
    622 		if (error == 0)
    623 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    624 		vrele(tvp);
    625 	}
    626 	return error;
    627 }
    628 
    629 int
    630 layer_rmdir(void *v)
    631 {
    632 	struct vop_rmdir_args /* {
    633 		struct vnode		*a_dvp;
    634 		struct vnode		*a_vp;
    635 		struct componentname	*a_cnp;
    636 	} */ *ap = v;
    637 	int		error;
    638 	struct vnode	*vp = ap->a_vp;
    639 
    640 	vref(vp);
    641 	error = LAYERFS_DO_BYPASS(vp, ap);
    642 	if (error == 0) {
    643 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    644 	}
    645 	vrele(vp);
    646 
    647 	return error;
    648 }
    649 
    650 int
    651 layer_revoke(void *v)
    652 {
    653         struct vop_revoke_args /* {
    654 		struct vnode *a_vp;
    655 		int a_flags;
    656 	} */ *ap = v;
    657 	struct vnode *vp = ap->a_vp;
    658 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    659 	int error;
    660 
    661 	/*
    662 	 * We will most likely end up in vclean which uses the v_usecount
    663 	 * to determine if a vnode is active.  Take an extra reference on
    664 	 * the lower vnode so it will always close and inactivate.
    665 	 */
    666 	vref(lvp);
    667 	error = LAYERFS_DO_BYPASS(vp, ap);
    668 	vrele(lvp);
    669 
    670 	return error;
    671 }
    672 
    673 int
    674 layer_reclaim(void *v)
    675 {
    676 	struct vop_reclaim_args /* {
    677 		struct vnode *a_vp;
    678 		struct lwp *a_l;
    679 	} */ *ap = v;
    680 	struct vnode *vp = ap->a_vp;
    681 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    682 	struct layer_node *xp = VTOLAYER(vp);
    683 	struct vnode *lowervp = xp->layer_lowervp;
    684 
    685 	/*
    686 	 * Note: in vop_reclaim, the node's struct lock has been
    687 	 * decomissioned, so we have to be careful about calling
    688 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    689 	 */
    690 	if (vp == lmp->layerm_rootvp) {
    691 		/*
    692 		 * Oops! We no longer have a root node. Most likely reason is
    693 		 * that someone forcably unmunted the underlying fs.
    694 		 *
    695 		 * Now getting the root vnode will fail. We're dead. :-(
    696 		 */
    697 		lmp->layerm_rootvp = NULL;
    698 	}
    699 	/* After this assignment, this node will not be re-used. */
    700 	xp->layer_lowervp = NULL;
    701 	mutex_enter(&lmp->layerm_hashlock);
    702 	LIST_REMOVE(xp, layer_hash);
    703 	mutex_exit(&lmp->layerm_hashlock);
    704 	kmem_free(vp->v_data, lmp->layerm_size);
    705 	vp->v_data = NULL;
    706 	vrele(lowervp);
    707 
    708 	return 0;
    709 }
    710 
    711 /*
    712  * We just feed the returned vnode up to the caller - there's no need
    713  * to build a layer node on top of the node on which we're going to do
    714  * i/o. :-)
    715  */
    716 int
    717 layer_bmap(void *v)
    718 {
    719 	struct vop_bmap_args /* {
    720 		struct vnode *a_vp;
    721 		daddr_t  a_bn;
    722 		struct vnode **a_vpp;
    723 		daddr_t *a_bnp;
    724 		int *a_runp;
    725 	} */ *ap = v;
    726 	struct vnode *vp;
    727 
    728 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    729 	ap->a_vp = vp;
    730 
    731 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    732 }
    733 
    734 int
    735 layer_print(void *v)
    736 {
    737 	struct vop_print_args /* {
    738 		struct vnode *a_vp;
    739 	} */ *ap = v;
    740 	struct vnode *vp = ap->a_vp;
    741 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    742 	return 0;
    743 }
    744 
    745 int
    746 layer_getpages(void *v)
    747 {
    748 	struct vop_getpages_args /* {
    749 		struct vnode *a_vp;
    750 		voff_t a_offset;
    751 		struct vm_page **a_m;
    752 		int *a_count;
    753 		int a_centeridx;
    754 		vm_prot_t a_access_type;
    755 		int a_advice;
    756 		int a_flags;
    757 	} */ *ap = v;
    758 	struct vnode *vp = ap->a_vp;
    759 
    760 	KASSERT(mutex_owned(vp->v_interlock));
    761 
    762 	if (ap->a_flags & PGO_LOCKED) {
    763 		return EBUSY;
    764 	}
    765 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    766 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    767 
    768 	/* Just pass the request on to the underlying layer. */
    769 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    770 }
    771 
    772 int
    773 layer_putpages(void *v)
    774 {
    775 	struct vop_putpages_args /* {
    776 		struct vnode *a_vp;
    777 		voff_t a_offlo;
    778 		voff_t a_offhi;
    779 		int a_flags;
    780 	} */ *ap = v;
    781 	struct vnode *vp = ap->a_vp;
    782 
    783 	KASSERT(mutex_owned(vp->v_interlock));
    784 
    785 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    786 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    787 
    788 	if (ap->a_flags & PGO_RECLAIM) {
    789 		mutex_exit(vp->v_interlock);
    790 		return 0;
    791 	}
    792 
    793 	/* Just pass the request on to the underlying layer. */
    794 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    795 }
    796