layer_vnops.c revision 1.52 1 /* $NetBSD: layer_vnops.c,v 1.52 2014/01/23 10:13:57 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1992, 1993
38 * The Regents of the University of California. All rights reserved.
39 *
40 * This code is derived from software contributed to Berkeley by
41 * John Heidemann of the UCLA Ficus project.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 *
69 * Ancestors:
70 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Generic layer vnode operations.
78 *
79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 * the core implementation of stacked file-systems.
81 *
82 * The layerfs duplicates a portion of the file system name space under
83 * a new name. In this respect, it is similar to the loopback file system.
84 * It differs from the loopback fs in two respects: it is implemented using
85 * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 * lower-layer vnodes, not just over directory vnodes.
87 *
88 * OPERATION OF LAYERFS
89 *
90 * The layerfs is the minimum file system layer, bypassing all possible
91 * operations to the lower layer for processing there. The majority of its
92 * activity centers on the bypass routine, through which nearly all vnode
93 * operations pass.
94 *
95 * The bypass routine accepts arbitrary vnode operations for handling by
96 * the lower layer. It begins by examining vnode operation arguments and
97 * replacing any layered nodes by their lower-layer equivalents. It then
98 * invokes an operation on the lower layer. Finally, it replaces the
99 * layered nodes in the arguments and, if a vnode is returned by the
100 * operation, stacks a layered node on top of the returned vnode.
101 *
102 * The bypass routine in this file, layer_bypass(), is suitable for use
103 * by many different layered filesystems. It can be used by multiple
104 * filesystems simultaneously. Alternatively, a layered fs may provide
105 * its own bypass routine, in which case layer_bypass() should be used as
106 * a model. For instance, the main functionality provided by umapfs, the user
107 * identity mapping file system, is handled by a custom bypass routine.
108 *
109 * Typically a layered fs registers its selected bypass routine as the
110 * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 * the filesystem must store the bypass entry point in the layerm_bypass
112 * field of struct layer_mount. All other layer routines in this file will
113 * use the layerm_bypass() routine.
114 *
115 * Although the bypass routine handles most operations outright, a number
116 * of operations are special cased and handled by the layerfs. For instance,
117 * layer_getattr() must change the fsid being returned. While layer_lock()
118 * and layer_unlock() must handle any locking for the current vnode as well
119 * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 * rmdir, and symlink) change the locking state within the operation. Ideally
123 * these operations should not change the lock state, but should be changed
124 * to let the caller of the function unlock them. Otherwise, all intermediate
125 * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 * the necessary locking at their layer.
127 *
128 * INSTANTIATING VNODE STACKS
129 *
130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 * stacking two VFSes. The initial mount creates a single vnode stack for
132 * the root of the new layerfs. All other vnode stacks are created as a
133 * result of vnode operations on this or other layerfs vnode stacks.
134 *
135 * New vnode stacks come into existence as a result of an operation which
136 * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 * vnode before returning it to the caller.
138 *
139 * For example, imagine mounting a null layer with:
140 *
141 * "mount_null /usr/include /dev/layer/null"
142 *
143 * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 * which was created when the null layer was mounted). Now consider opening
145 * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 * This operation would bypass through to the lower layer which would return
147 * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 * Later operations on the layerfs-node "sys" will repeat this process when
150 * constructing other vnode stacks.
151 *
152 * INVOKING OPERATIONS ON LOWER LAYERS
153 *
154 * There are two techniques to invoke operations on a lower layer when the
155 * operation cannot be completely bypassed. Each method is appropriate in
156 * different situations. In both cases, it is the responsibility of the
157 * aliasing layer to make the operation arguments "correct" for the lower
158 * layer by mapping any vnode arguments to the lower layer.
159 *
160 * The first approach is to call the aliasing layer's bypass routine. This
161 * method is most suitable when you wish to invoke the operation currently
162 * being handled on the lower layer. It has the advantage that the bypass
163 * routine already must do argument mapping. An example of this is
164 * layer_getattr().
165 *
166 * A second approach is to directly invoke vnode operations on the lower
167 * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 * is that it is easy to invoke arbitrary operations on the lower layer.
169 * The disadvantage is that vnode's arguments must be manually mapped.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.52 2014/01/23 10:13:57 hannken Exp $");
174
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185
186 #include <miscfs/genfs/layer.h>
187 #include <miscfs/genfs/layer_extern.h>
188 #include <miscfs/genfs/genfs.h>
189 #include <miscfs/specfs/specdev.h>
190
191 /*
192 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
193 * routine by John Heidemann.
194 * The new element for this version is that the whole nullfs
195 * system gained the concept of locks on the lower node.
196 * The 10-Apr-92 version was optimized for speed, throwing away some
197 * safety checks. It should still always work, but it's not as
198 * robust to programmer errors.
199 *
200 * In general, we map all vnodes going down and unmap them on the way back.
201 *
202 * Also, some BSD vnode operations have the side effect of vrele'ing
203 * their arguments. With stacking, the reference counts are held
204 * by the upper node, not the lower one, so we must handle these
205 * side-effects here. This is not of concern in Sun-derived systems
206 * since there are no such side-effects.
207 *
208 * New for the 08-June-99 version: we also handle operations which unlock
209 * the passed-in node (typically they vput the node).
210 *
211 * This makes the following assumptions:
212 * - only one returned vpp
213 * - no INOUT vpp's (Sun's vop_open has one of these)
214 * - the vnode operation vector of the first vnode should be used
215 * to determine what implementation of the op should be invoked
216 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217 * problems on rmdir'ing mount points and renaming?)
218 */
219 int
220 layer_bypass(void *v)
221 {
222 struct vop_generic_args /* {
223 struct vnodeop_desc *a_desc;
224 <other random data follows, presumably>
225 } */ *ap = v;
226 int (**our_vnodeop_p)(void *);
227 struct vnode **this_vp_p;
228 int error;
229 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
230 struct vnode **vps_p[VDESC_MAX_VPS];
231 struct vnode ***vppp;
232 struct mount *mp;
233 struct vnodeop_desc *descp = ap->a_desc;
234 int reles, i, flags;
235
236 #ifdef DIAGNOSTIC
237 /*
238 * We require at least one vp.
239 */
240 if (descp->vdesc_vp_offsets == NULL ||
241 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
242 panic("%s: no vp's in map.\n", __func__);
243 #endif
244
245 vps_p[0] =
246 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
247 vp0 = *vps_p[0];
248 mp = vp0->v_mount;
249 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
250 our_vnodeop_p = vp0->v_op;
251
252 if (flags & LAYERFS_MBYPASSDEBUG)
253 printf("%s: %s\n", __func__, descp->vdesc_name);
254
255 /*
256 * Map the vnodes going in.
257 * Later, we'll invoke the operation based on
258 * the first mapped vnode's operation vector.
259 */
260 reles = descp->vdesc_flags;
261 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
262 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
263 break; /* bail out at end of list */
264 vps_p[i] = this_vp_p =
265 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
266 ap);
267 /*
268 * We're not guaranteed that any but the first vnode
269 * are of our type. Check for and don't map any
270 * that aren't. (We must always map first vp or vclean fails.)
271 */
272 if (i && (*this_vp_p == NULL ||
273 (*this_vp_p)->v_op != our_vnodeop_p)) {
274 old_vps[i] = NULL;
275 } else {
276 old_vps[i] = *this_vp_p;
277 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
278 /*
279 * XXX - Several operations have the side effect
280 * of vrele'ing their vp's. We must account for
281 * that. (This should go away in the future.)
282 */
283 if (reles & VDESC_VP0_WILLRELE)
284 vref(*this_vp_p);
285 }
286 }
287
288 /*
289 * Call the operation on the lower layer
290 * with the modified argument structure.
291 */
292 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
293
294 /*
295 * Maintain the illusion of call-by-value
296 * by restoring vnodes in the argument structure
297 * to their original value.
298 */
299 reles = descp->vdesc_flags;
300 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
301 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
302 break; /* bail out at end of list */
303 if (old_vps[i]) {
304 *(vps_p[i]) = old_vps[i];
305 if (reles & VDESC_VP0_WILLRELE)
306 vrele(*(vps_p[i]));
307 }
308 }
309
310 /*
311 * Map the possible out-going vpp
312 * (Assumes that the lower layer always returns
313 * a VREF'ed vpp unless it gets an error.)
314 */
315 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
316 vppp = VOPARG_OFFSETTO(struct vnode***,
317 descp->vdesc_vpp_offset, ap);
318 /*
319 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
320 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
321 * as a lookup on "." would generate a locking error.
322 * So all the calls which get us here have a unlocked vpp. :-)
323 */
324 /* XXX: lock node until lookup returns unlocked nodes. */
325 vn_lock(**vppp, LK_EXCLUSIVE | LK_RETRY);
326 error = layer_node_create(mp, **vppp, *vppp);
327 VOP_UNLOCK(**vppp);
328 if (error) {
329 vrele(**vppp);
330 **vppp = NULL;
331 }
332 }
333 return error;
334 }
335
336 /*
337 * We have to carry on the locking protocol on the layer vnodes
338 * as we progress through the tree. We also have to enforce read-only
339 * if this layer is mounted read-only.
340 */
341 int
342 layer_lookup(void *v)
343 {
344 struct vop_lookup_args /* {
345 struct vnodeop_desc *a_desc;
346 struct vnode * a_dvp;
347 struct vnode ** a_vpp;
348 struct componentname * a_cnp;
349 } */ *ap = v;
350 struct componentname *cnp = ap->a_cnp;
351 struct vnode *dvp, *lvp, *ldvp;
352 int error, flags = cnp->cn_flags;
353
354 dvp = ap->a_dvp;
355
356 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
357 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
358 *ap->a_vpp = NULL;
359 return EROFS;
360 }
361
362 ldvp = LAYERVPTOLOWERVP(dvp);
363 ap->a_dvp = ldvp;
364 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
365 lvp = *ap->a_vpp;
366 *ap->a_vpp = NULL;
367
368 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
369 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
370 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
371 error = EROFS;
372
373 /*
374 * We must do the same locking and unlocking at this layer as
375 * is done in the layers below us.
376 */
377 if (ldvp == lvp) {
378 /*
379 * Got the same object back, because we looked up ".",
380 * or ".." in the root node of a mount point.
381 * So we make another reference to dvp and return it.
382 */
383 vref(dvp);
384 *ap->a_vpp = dvp;
385 vrele(lvp);
386 } else if (lvp != NULL) {
387 /* Note: dvp, ldvp and lvp are all locked. */
388 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
389 if (error) {
390 vput(lvp);
391 }
392 }
393 return error;
394 }
395
396 /*
397 * Setattr call. Disallow write attempts if the layer is mounted read-only.
398 */
399 int
400 layer_setattr(void *v)
401 {
402 struct vop_setattr_args /* {
403 struct vnodeop_desc *a_desc;
404 struct vnode *a_vp;
405 struct vattr *a_vap;
406 kauth_cred_t a_cred;
407 struct lwp *a_l;
408 } */ *ap = v;
409 struct vnode *vp = ap->a_vp;
410 struct vattr *vap = ap->a_vap;
411
412 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
413 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
414 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
415 (vp->v_mount->mnt_flag & MNT_RDONLY))
416 return EROFS;
417 if (vap->va_size != VNOVAL) {
418 switch (vp->v_type) {
419 case VDIR:
420 return EISDIR;
421 case VCHR:
422 case VBLK:
423 case VSOCK:
424 case VFIFO:
425 return 0;
426 case VREG:
427 case VLNK:
428 default:
429 /*
430 * Disallow write attempts if the filesystem is
431 * mounted read-only.
432 */
433 if (vp->v_mount->mnt_flag & MNT_RDONLY)
434 return EROFS;
435 }
436 }
437 return LAYERFS_DO_BYPASS(vp, ap);
438 }
439
440 /*
441 * We handle getattr only to change the fsid.
442 */
443 int
444 layer_getattr(void *v)
445 {
446 struct vop_getattr_args /* {
447 struct vnode *a_vp;
448 struct vattr *a_vap;
449 kauth_cred_t a_cred;
450 struct lwp *a_l;
451 } */ *ap = v;
452 struct vnode *vp = ap->a_vp;
453 int error;
454
455 error = LAYERFS_DO_BYPASS(vp, ap);
456 if (error) {
457 return error;
458 }
459 /* Requires that arguments be restored. */
460 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
461 return 0;
462 }
463
464 int
465 layer_access(void *v)
466 {
467 struct vop_access_args /* {
468 struct vnode *a_vp;
469 int a_mode;
470 kauth_cred_t a_cred;
471 struct lwp *a_l;
472 } */ *ap = v;
473 struct vnode *vp = ap->a_vp;
474 mode_t mode = ap->a_mode;
475
476 /*
477 * Disallow write attempts on read-only layers;
478 * unless the file is a socket, fifo, or a block or
479 * character device resident on the file system.
480 */
481 if (mode & VWRITE) {
482 switch (vp->v_type) {
483 case VDIR:
484 case VLNK:
485 case VREG:
486 if (vp->v_mount->mnt_flag & MNT_RDONLY)
487 return EROFS;
488 break;
489 default:
490 break;
491 }
492 }
493 return LAYERFS_DO_BYPASS(vp, ap);
494 }
495
496 /*
497 * We must handle open to be able to catch MNT_NODEV and friends.
498 */
499 int
500 layer_open(void *v)
501 {
502 struct vop_open_args /* {
503 const struct vnodeop_desc *a_desc;
504 struct vnode *a_vp;
505 int a_mode;
506 kauth_cred_t a_cred;
507 } */ *ap = v;
508 struct vnode *vp = ap->a_vp;
509 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
510
511 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
512 (vp->v_mount->mnt_flag & MNT_NODEV))
513 return ENXIO;
514
515 return LAYERFS_DO_BYPASS(vp, ap);
516 }
517
518 /*
519 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
520 * syncing the underlying vnodes, since they'll be fsync'ed when
521 * reclaimed; otherwise, pass it through to the underlying layer.
522 *
523 * XXX Do we still need to worry about shallow fsync?
524 */
525 int
526 layer_fsync(void *v)
527 {
528 struct vop_fsync_args /* {
529 struct vnode *a_vp;
530 kauth_cred_t a_cred;
531 int a_flags;
532 off_t offlo;
533 off_t offhi;
534 struct lwp *a_l;
535 } */ *ap = v;
536 int error;
537
538 if (ap->a_flags & FSYNC_RECLAIM) {
539 return 0;
540 }
541 if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
542 error = spec_fsync(v);
543 if (error)
544 return error;
545 }
546 return LAYERFS_DO_BYPASS(ap->a_vp, ap);
547 }
548
549 int
550 layer_inactive(void *v)
551 {
552 struct vop_inactive_args /* {
553 struct vnode *a_vp;
554 bool *a_recycle;
555 } */ *ap = v;
556 struct vnode *vp = ap->a_vp;
557
558 /*
559 * If we did a remove, don't cache the node.
560 */
561 *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
562
563 /*
564 * Do nothing (and _don't_ bypass).
565 * Wait to vrele lowervp until reclaim,
566 * so that until then our layer_node is in the
567 * cache and reusable.
568 *
569 * NEEDSWORK: Someday, consider inactive'ing
570 * the lowervp and then trying to reactivate it
571 * with capabilities (v_id)
572 * like they do in the name lookup cache code.
573 * That's too much work for now.
574 */
575 VOP_UNLOCK(vp);
576 return 0;
577 }
578
579 int
580 layer_remove(void *v)
581 {
582 struct vop_remove_args /* {
583 struct vonde *a_dvp;
584 struct vnode *a_vp;
585 struct componentname *a_cnp;
586 } */ *ap = v;
587 struct vnode *vp = ap->a_vp;
588 int error;
589
590 vref(vp);
591 error = LAYERFS_DO_BYPASS(vp, ap);
592 if (error == 0) {
593 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
594 }
595 vrele(vp);
596
597 return error;
598 }
599
600 int
601 layer_rename(void *v)
602 {
603 struct vop_rename_args /* {
604 struct vnode *a_fdvp;
605 struct vnode *a_fvp;
606 struct componentname *a_fcnp;
607 struct vnode *a_tdvp;
608 struct vnode *a_tvp;
609 struct componentname *a_tcnp;
610 } */ *ap = v;
611 struct vnode *fdvp = ap->a_fdvp, *tvp;
612 int error;
613
614 tvp = ap->a_tvp;
615 if (tvp) {
616 if (tvp->v_mount != fdvp->v_mount)
617 tvp = NULL;
618 else
619 vref(tvp);
620 }
621 error = LAYERFS_DO_BYPASS(fdvp, ap);
622 if (tvp) {
623 if (error == 0)
624 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
625 vrele(tvp);
626 }
627 return error;
628 }
629
630 int
631 layer_rmdir(void *v)
632 {
633 struct vop_rmdir_args /* {
634 struct vnode *a_dvp;
635 struct vnode *a_vp;
636 struct componentname *a_cnp;
637 } */ *ap = v;
638 int error;
639 struct vnode *vp = ap->a_vp;
640
641 vref(vp);
642 error = LAYERFS_DO_BYPASS(vp, ap);
643 if (error == 0) {
644 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
645 }
646 vrele(vp);
647
648 return error;
649 }
650
651 int
652 layer_revoke(void *v)
653 {
654 struct vop_revoke_args /* {
655 struct vnode *a_vp;
656 int a_flags;
657 } */ *ap = v;
658 struct vnode *vp = ap->a_vp;
659 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
660 int error;
661
662 /*
663 * We will most likely end up in vclean which uses the v_usecount
664 * to determine if a vnode is active. Take an extra reference on
665 * the lower vnode so it will always close and inactivate.
666 */
667 vref(lvp);
668 error = LAYERFS_DO_BYPASS(vp, ap);
669 vrele(lvp);
670
671 return error;
672 }
673
674 int
675 layer_reclaim(void *v)
676 {
677 struct vop_reclaim_args /* {
678 struct vnode *a_vp;
679 struct lwp *a_l;
680 } */ *ap = v;
681 struct vnode *vp = ap->a_vp;
682 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
683 struct layer_node *xp = VTOLAYER(vp);
684 struct vnode *lowervp = xp->layer_lowervp;
685
686 /*
687 * Note: in vop_reclaim, the node's struct lock has been
688 * decomissioned, so we have to be careful about calling
689 * VOP's on ourself. We must be careful as VXLOCK is set.
690 */
691 if (vp == lmp->layerm_rootvp) {
692 /*
693 * Oops! We no longer have a root node. Most likely reason is
694 * that someone forcably unmunted the underlying fs.
695 *
696 * Now getting the root vnode will fail. We're dead. :-(
697 */
698 lmp->layerm_rootvp = NULL;
699 }
700 /* After this assignment, this node will not be re-used. */
701 xp->layer_lowervp = NULL;
702 mutex_enter(&lmp->layerm_hashlock);
703 LIST_REMOVE(xp, layer_hash);
704 mutex_exit(&lmp->layerm_hashlock);
705 kmem_free(vp->v_data, lmp->layerm_size);
706 vp->v_data = NULL;
707 vrele(lowervp);
708
709 return 0;
710 }
711
712 /*
713 * We just feed the returned vnode up to the caller - there's no need
714 * to build a layer node on top of the node on which we're going to do
715 * i/o. :-)
716 */
717 int
718 layer_bmap(void *v)
719 {
720 struct vop_bmap_args /* {
721 struct vnode *a_vp;
722 daddr_t a_bn;
723 struct vnode **a_vpp;
724 daddr_t *a_bnp;
725 int *a_runp;
726 } */ *ap = v;
727 struct vnode *vp;
728
729 vp = LAYERVPTOLOWERVP(ap->a_vp);
730 ap->a_vp = vp;
731
732 return VCALL(vp, ap->a_desc->vdesc_offset, ap);
733 }
734
735 int
736 layer_print(void *v)
737 {
738 struct vop_print_args /* {
739 struct vnode *a_vp;
740 } */ *ap = v;
741 struct vnode *vp = ap->a_vp;
742 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
743 return 0;
744 }
745
746 int
747 layer_getpages(void *v)
748 {
749 struct vop_getpages_args /* {
750 struct vnode *a_vp;
751 voff_t a_offset;
752 struct vm_page **a_m;
753 int *a_count;
754 int a_centeridx;
755 vm_prot_t a_access_type;
756 int a_advice;
757 int a_flags;
758 } */ *ap = v;
759 struct vnode *vp = ap->a_vp;
760
761 KASSERT(mutex_owned(vp->v_interlock));
762
763 if (ap->a_flags & PGO_LOCKED) {
764 return EBUSY;
765 }
766 ap->a_vp = LAYERVPTOLOWERVP(vp);
767 KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
768
769 /* Just pass the request on to the underlying layer. */
770 return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
771 }
772
773 int
774 layer_putpages(void *v)
775 {
776 struct vop_putpages_args /* {
777 struct vnode *a_vp;
778 voff_t a_offlo;
779 voff_t a_offhi;
780 int a_flags;
781 } */ *ap = v;
782 struct vnode *vp = ap->a_vp;
783
784 KASSERT(mutex_owned(vp->v_interlock));
785
786 ap->a_vp = LAYERVPTOLOWERVP(vp);
787 KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
788
789 if (ap->a_flags & PGO_RECLAIM) {
790 mutex_exit(vp->v_interlock);
791 return 0;
792 }
793
794 /* Just pass the request on to the underlying layer. */
795 return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
796 }
797