Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.55
      1 /*	$NetBSD: layer_vnops.c,v 1.55 2014/02/27 16:51:38 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1992, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * John Heidemann of the UCLA Ficus project.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68  *
     69  * Ancestors:
     70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72  *	...and...
     73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74  */
     75 
     76 /*
     77  * Generic layer vnode operations.
     78  *
     79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  * the core implementation of stacked file-systems.
     81  *
     82  * The layerfs duplicates a portion of the file system name space under
     83  * a new name.  In this respect, it is similar to the loopback file system.
     84  * It differs from the loopback fs in two respects: it is implemented using
     85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  * lower-layer vnodes, not just over directory vnodes.
     87  *
     88  * OPERATION OF LAYERFS
     89  *
     90  * The layerfs is the minimum file system layer, bypassing all possible
     91  * operations to the lower layer for processing there.  The majority of its
     92  * activity centers on the bypass routine, through which nearly all vnode
     93  * operations pass.
     94  *
     95  * The bypass routine accepts arbitrary vnode operations for handling by
     96  * the lower layer.  It begins by examining vnode operation arguments and
     97  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  * invokes an operation on the lower layer.  Finally, it replaces the
     99  * layered nodes in the arguments and, if a vnode is returned by the
    100  * operation, stacks a layered node on top of the returned vnode.
    101  *
    102  * The bypass routine in this file, layer_bypass(), is suitable for use
    103  * by many different layered filesystems. It can be used by multiple
    104  * filesystems simultaneously. Alternatively, a layered fs may provide
    105  * its own bypass routine, in which case layer_bypass() should be used as
    106  * a model. For instance, the main functionality provided by umapfs, the user
    107  * identity mapping file system, is handled by a custom bypass routine.
    108  *
    109  * Typically a layered fs registers its selected bypass routine as the
    110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111  * the filesystem must store the bypass entry point in the layerm_bypass
    112  * field of struct layer_mount. All other layer routines in this file will
    113  * use the layerm_bypass() routine.
    114  *
    115  * Although the bypass routine handles most operations outright, a number
    116  * of operations are special cased and handled by the layerfs.  For instance,
    117  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  * and layer_unlock() must handle any locking for the current vnode as well
    119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  * these operations should not change the lock state, but should be changed
    124  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126  * the necessary locking at their layer.
    127  *
    128  * INSTANTIATING VNODE STACKS
    129  *
    130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  * the root of the new layerfs.  All other vnode stacks are created as a
    133  * result of vnode operations on this or other layerfs vnode stacks.
    134  *
    135  * New vnode stacks come into existence as a result of an operation which
    136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137  * vnode before returning it to the caller.
    138  *
    139  * For example, imagine mounting a null layer with:
    140  *
    141  *	"mount_null /usr/include /dev/layer/null"
    142  *
    143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  * which was created when the null layer was mounted).  Now consider opening
    145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  * This operation would bypass through to the lower layer which would return
    147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  * Later operations on the layerfs-node "sys" will repeat this process when
    150  * constructing other vnode stacks.
    151  *
    152  * INVOKING OPERATIONS ON LOWER LAYERS
    153  *
    154  * There are two techniques to invoke operations on a lower layer when the
    155  * operation cannot be completely bypassed.  Each method is appropriate in
    156  * different situations.  In both cases, it is the responsibility of the
    157  * aliasing layer to make the operation arguments "correct" for the lower
    158  * layer by mapping any vnode arguments to the lower layer.
    159  *
    160  * The first approach is to call the aliasing layer's bypass routine.  This
    161  * method is most suitable when you wish to invoke the operation currently
    162  * being handled on the lower layer.  It has the advantage that the bypass
    163  * routine already must do argument mapping.  An example of this is
    164  * layer_getattr().
    165  *
    166  * A second approach is to directly invoke vnode operations on the lower
    167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  * The disadvantage is that vnode's arguments must be manually mapped.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.55 2014/02/27 16:51:38 hannken Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/systm.h>
    177 #include <sys/proc.h>
    178 #include <sys/time.h>
    179 #include <sys/vnode.h>
    180 #include <sys/mount.h>
    181 #include <sys/namei.h>
    182 #include <sys/kmem.h>
    183 #include <sys/buf.h>
    184 #include <sys/kauth.h>
    185 
    186 #include <miscfs/genfs/layer.h>
    187 #include <miscfs/genfs/layer_extern.h>
    188 #include <miscfs/genfs/genfs.h>
    189 #include <miscfs/specfs/specdev.h>
    190 
    191 /*
    192  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    193  *		routine by John Heidemann.
    194  *	The new element for this version is that the whole nullfs
    195  * system gained the concept of locks on the lower node.
    196  *    The 10-Apr-92 version was optimized for speed, throwing away some
    197  * safety checks.  It should still always work, but it's not as
    198  * robust to programmer errors.
    199  *
    200  * In general, we map all vnodes going down and unmap them on the way back.
    201  *
    202  * Also, some BSD vnode operations have the side effect of vrele'ing
    203  * their arguments.  With stacking, the reference counts are held
    204  * by the upper node, not the lower one, so we must handle these
    205  * side-effects here.  This is not of concern in Sun-derived systems
    206  * since there are no such side-effects.
    207  *
    208  * New for the 08-June-99 version: we also handle operations which unlock
    209  * the passed-in node (typically they vput the node).
    210  *
    211  * This makes the following assumptions:
    212  * - only one returned vpp
    213  * - no INOUT vpp's (Sun's vop_open has one of these)
    214  * - the vnode operation vector of the first vnode should be used
    215  *   to determine what implementation of the op should be invoked
    216  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    217  *   problems on rmdir'ing mount points and renaming?)
    218  */
    219 int
    220 layer_bypass(void *v)
    221 {
    222 	struct vop_generic_args /* {
    223 		struct vnodeop_desc *a_desc;
    224 		<other random data follows, presumably>
    225 	} */ *ap = v;
    226 	int (**our_vnodeop_p)(void *);
    227 	struct vnode **this_vp_p;
    228 	int error;
    229 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    230 	struct vnode **vps_p[VDESC_MAX_VPS];
    231 	struct vnode ***vppp;
    232 	struct mount *mp;
    233 	struct vnodeop_desc *descp = ap->a_desc;
    234 	int reles, i, flags;
    235 
    236 #ifdef DIAGNOSTIC
    237 	/*
    238 	 * We require at least one vp.
    239 	 */
    240 	if (descp->vdesc_vp_offsets == NULL ||
    241 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    242 		panic("%s: no vp's in map.\n", __func__);
    243 #endif
    244 
    245 	vps_p[0] =
    246 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    247 	vp0 = *vps_p[0];
    248 	mp = vp0->v_mount;
    249 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    250 	our_vnodeop_p = vp0->v_op;
    251 
    252 	if (flags & LAYERFS_MBYPASSDEBUG)
    253 		printf("%s: %s\n", __func__, descp->vdesc_name);
    254 
    255 	/*
    256 	 * Map the vnodes going in.
    257 	 * Later, we'll invoke the operation based on
    258 	 * the first mapped vnode's operation vector.
    259 	 */
    260 	reles = descp->vdesc_flags;
    261 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    262 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    263 			break;   /* bail out at end of list */
    264 		vps_p[i] = this_vp_p =
    265 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    266 		    ap);
    267 		/*
    268 		 * We're not guaranteed that any but the first vnode
    269 		 * are of our type.  Check for and don't map any
    270 		 * that aren't.  (We must always map first vp or vclean fails.)
    271 		 */
    272 		if (i && (*this_vp_p == NULL ||
    273 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    274 			old_vps[i] = NULL;
    275 		} else {
    276 			old_vps[i] = *this_vp_p;
    277 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    278 			/*
    279 			 * XXX - Several operations have the side effect
    280 			 * of vrele'ing their vp's.  We must account for
    281 			 * that.  (This should go away in the future.)
    282 			 */
    283 			if (reles & VDESC_VP0_WILLRELE)
    284 				vref(*this_vp_p);
    285 		}
    286 	}
    287 
    288 	/*
    289 	 * Call the operation on the lower layer
    290 	 * with the modified argument structure.
    291 	 */
    292 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    293 
    294 	/*
    295 	 * Maintain the illusion of call-by-value
    296 	 * by restoring vnodes in the argument structure
    297 	 * to their original value.
    298 	 */
    299 	reles = descp->vdesc_flags;
    300 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    301 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    302 			break;   /* bail out at end of list */
    303 		if (old_vps[i]) {
    304 			*(vps_p[i]) = old_vps[i];
    305 			if (reles & VDESC_VP0_WILLRELE)
    306 				vrele(*(vps_p[i]));
    307 		}
    308 	}
    309 
    310 	/*
    311 	 * Map the possible out-going vpp
    312 	 * (Assumes that the lower layer always returns
    313 	 * a VREF'ed vpp unless it gets an error.)
    314 	 */
    315 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    316 		vppp = VOPARG_OFFSETTO(struct vnode***,
    317 				 descp->vdesc_vpp_offset, ap);
    318 		/*
    319 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
    320 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
    321 		 * as a lookup on "." would generate a locking error.
    322 		 * So all the calls which get us here have a unlocked vpp. :-)
    323 		 */
    324 		error = layer_node_create(mp, **vppp, *vppp);
    325 		if (error) {
    326 			vrele(**vppp);
    327 			**vppp = NULL;
    328 		}
    329 	}
    330 	return error;
    331 }
    332 
    333 /*
    334  * We have to carry on the locking protocol on the layer vnodes
    335  * as we progress through the tree. We also have to enforce read-only
    336  * if this layer is mounted read-only.
    337  */
    338 int
    339 layer_lookup(void *v)
    340 {
    341 	struct vop_lookup_v2_args /* {
    342 		struct vnodeop_desc *a_desc;
    343 		struct vnode * a_dvp;
    344 		struct vnode ** a_vpp;
    345 		struct componentname * a_cnp;
    346 	} */ *ap = v;
    347 	struct componentname *cnp = ap->a_cnp;
    348 	struct vnode *dvp, *lvp, *ldvp;
    349 	int error, flags = cnp->cn_flags;
    350 
    351 	dvp = ap->a_dvp;
    352 
    353 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    354 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    355 		*ap->a_vpp = NULL;
    356 		return EROFS;
    357 	}
    358 
    359 	ldvp = LAYERVPTOLOWERVP(dvp);
    360 	ap->a_dvp = ldvp;
    361 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    362 	lvp = *ap->a_vpp;
    363 	*ap->a_vpp = NULL;
    364 
    365 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    366 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    367 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    368 		error = EROFS;
    369 
    370 	/*
    371 	 * We must do the same locking and unlocking at this layer as
    372 	 * is done in the layers below us.
    373 	 */
    374 	if (ldvp == lvp) {
    375 		/*
    376 		 * Got the same object back, because we looked up ".",
    377 		 * or ".." in the root node of a mount point.
    378 		 * So we make another reference to dvp and return it.
    379 		 */
    380 		vref(dvp);
    381 		*ap->a_vpp = dvp;
    382 		vrele(lvp);
    383 	} else if (lvp != NULL) {
    384 		/* Note: dvp and ldvp are both locked. */
    385 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    386 		if (error) {
    387 			vrele(lvp);
    388 		}
    389 	}
    390 	return error;
    391 }
    392 
    393 /*
    394  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    395  */
    396 int
    397 layer_setattr(void *v)
    398 {
    399 	struct vop_setattr_args /* {
    400 		struct vnodeop_desc *a_desc;
    401 		struct vnode *a_vp;
    402 		struct vattr *a_vap;
    403 		kauth_cred_t a_cred;
    404 		struct lwp *a_l;
    405 	} */ *ap = v;
    406 	struct vnode *vp = ap->a_vp;
    407 	struct vattr *vap = ap->a_vap;
    408 
    409   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    410 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    411 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    412 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    413 		return EROFS;
    414 	if (vap->va_size != VNOVAL) {
    415  		switch (vp->v_type) {
    416  		case VDIR:
    417  			return EISDIR;
    418  		case VCHR:
    419  		case VBLK:
    420  		case VSOCK:
    421  		case VFIFO:
    422 			return 0;
    423 		case VREG:
    424 		case VLNK:
    425  		default:
    426 			/*
    427 			 * Disallow write attempts if the filesystem is
    428 			 * mounted read-only.
    429 			 */
    430 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    431 				return EROFS;
    432 		}
    433 	}
    434 	return LAYERFS_DO_BYPASS(vp, ap);
    435 }
    436 
    437 /*
    438  *  We handle getattr only to change the fsid.
    439  */
    440 int
    441 layer_getattr(void *v)
    442 {
    443 	struct vop_getattr_args /* {
    444 		struct vnode *a_vp;
    445 		struct vattr *a_vap;
    446 		kauth_cred_t a_cred;
    447 		struct lwp *a_l;
    448 	} */ *ap = v;
    449 	struct vnode *vp = ap->a_vp;
    450 	int error;
    451 
    452 	error = LAYERFS_DO_BYPASS(vp, ap);
    453 	if (error) {
    454 		return error;
    455 	}
    456 	/* Requires that arguments be restored. */
    457 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    458 	return 0;
    459 }
    460 
    461 int
    462 layer_access(void *v)
    463 {
    464 	struct vop_access_args /* {
    465 		struct vnode *a_vp;
    466 		int  a_mode;
    467 		kauth_cred_t a_cred;
    468 		struct lwp *a_l;
    469 	} */ *ap = v;
    470 	struct vnode *vp = ap->a_vp;
    471 	mode_t mode = ap->a_mode;
    472 
    473 	/*
    474 	 * Disallow write attempts on read-only layers;
    475 	 * unless the file is a socket, fifo, or a block or
    476 	 * character device resident on the file system.
    477 	 */
    478 	if (mode & VWRITE) {
    479 		switch (vp->v_type) {
    480 		case VDIR:
    481 		case VLNK:
    482 		case VREG:
    483 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    484 				return EROFS;
    485 			break;
    486 		default:
    487 			break;
    488 		}
    489 	}
    490 	return LAYERFS_DO_BYPASS(vp, ap);
    491 }
    492 
    493 /*
    494  * We must handle open to be able to catch MNT_NODEV and friends.
    495  */
    496 int
    497 layer_open(void *v)
    498 {
    499 	struct vop_open_args /* {
    500 		const struct vnodeop_desc *a_desc;
    501 		struct vnode *a_vp;
    502 		int a_mode;
    503 		kauth_cred_t a_cred;
    504 	} */ *ap = v;
    505 	struct vnode *vp = ap->a_vp;
    506 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    507 
    508 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    509 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    510 		return ENXIO;
    511 
    512 	return LAYERFS_DO_BYPASS(vp, ap);
    513 }
    514 
    515 /*
    516  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    517  * syncing the underlying vnodes, since they'll be fsync'ed when
    518  * reclaimed; otherwise, pass it through to the underlying layer.
    519  *
    520  * XXX Do we still need to worry about shallow fsync?
    521  */
    522 int
    523 layer_fsync(void *v)
    524 {
    525 	struct vop_fsync_args /* {
    526 		struct vnode *a_vp;
    527 		kauth_cred_t a_cred;
    528 		int  a_flags;
    529 		off_t offlo;
    530 		off_t offhi;
    531 		struct lwp *a_l;
    532 	} */ *ap = v;
    533 	int error;
    534 
    535 	if (ap->a_flags & FSYNC_RECLAIM) {
    536 		return 0;
    537 	}
    538 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    539 		error = spec_fsync(v);
    540 		if (error)
    541 			return error;
    542 	}
    543 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    544 }
    545 
    546 int
    547 layer_inactive(void *v)
    548 {
    549 	struct vop_inactive_args /* {
    550 		struct vnode *a_vp;
    551 		bool *a_recycle;
    552 	} */ *ap = v;
    553 	struct vnode *vp = ap->a_vp;
    554 
    555 	/*
    556 	 * If we did a remove, don't cache the node.
    557 	 */
    558 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    559 
    560 	/*
    561 	 * Do nothing (and _don't_ bypass).
    562 	 * Wait to vrele lowervp until reclaim,
    563 	 * so that until then our layer_node is in the
    564 	 * cache and reusable.
    565 	 *
    566 	 * NEEDSWORK: Someday, consider inactive'ing
    567 	 * the lowervp and then trying to reactivate it
    568 	 * with capabilities (v_id)
    569 	 * like they do in the name lookup cache code.
    570 	 * That's too much work for now.
    571 	 */
    572 	VOP_UNLOCK(vp);
    573 	return 0;
    574 }
    575 
    576 int
    577 layer_remove(void *v)
    578 {
    579 	struct vop_remove_args /* {
    580 		struct vonde		*a_dvp;
    581 		struct vnode		*a_vp;
    582 		struct componentname	*a_cnp;
    583 	} */ *ap = v;
    584 	struct vnode *vp = ap->a_vp;
    585 	int error;
    586 
    587 	vref(vp);
    588 	error = LAYERFS_DO_BYPASS(vp, ap);
    589 	if (error == 0) {
    590 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    591 	}
    592 	vrele(vp);
    593 
    594 	return error;
    595 }
    596 
    597 int
    598 layer_rename(void *v)
    599 {
    600 	struct vop_rename_args  /* {
    601 		struct vnode		*a_fdvp;
    602 		struct vnode		*a_fvp;
    603 		struct componentname	*a_fcnp;
    604 		struct vnode		*a_tdvp;
    605 		struct vnode		*a_tvp;
    606 		struct componentname	*a_tcnp;
    607 	} */ *ap = v;
    608 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    609 	int error;
    610 
    611 	tvp = ap->a_tvp;
    612 	if (tvp) {
    613 		if (tvp->v_mount != fdvp->v_mount)
    614 			tvp = NULL;
    615 		else
    616 			vref(tvp);
    617 	}
    618 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    619 	if (tvp) {
    620 		if (error == 0)
    621 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    622 		vrele(tvp);
    623 	}
    624 	return error;
    625 }
    626 
    627 int
    628 layer_rmdir(void *v)
    629 {
    630 	struct vop_rmdir_args /* {
    631 		struct vnode		*a_dvp;
    632 		struct vnode		*a_vp;
    633 		struct componentname	*a_cnp;
    634 	} */ *ap = v;
    635 	int		error;
    636 	struct vnode	*vp = ap->a_vp;
    637 
    638 	vref(vp);
    639 	error = LAYERFS_DO_BYPASS(vp, ap);
    640 	if (error == 0) {
    641 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    642 	}
    643 	vrele(vp);
    644 
    645 	return error;
    646 }
    647 
    648 int
    649 layer_revoke(void *v)
    650 {
    651         struct vop_revoke_args /* {
    652 		struct vnode *a_vp;
    653 		int a_flags;
    654 	} */ *ap = v;
    655 	struct vnode *vp = ap->a_vp;
    656 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    657 	int error;
    658 
    659 	/*
    660 	 * We will most likely end up in vclean which uses the v_usecount
    661 	 * to determine if a vnode is active.  Take an extra reference on
    662 	 * the lower vnode so it will always close and inactivate.
    663 	 */
    664 	vref(lvp);
    665 	error = LAYERFS_DO_BYPASS(vp, ap);
    666 	vrele(lvp);
    667 
    668 	return error;
    669 }
    670 
    671 int
    672 layer_reclaim(void *v)
    673 {
    674 	struct vop_reclaim_args /* {
    675 		struct vnode *a_vp;
    676 		struct lwp *a_l;
    677 	} */ *ap = v;
    678 	struct vnode *vp = ap->a_vp;
    679 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    680 	struct layer_node *xp = VTOLAYER(vp);
    681 	struct vnode *lowervp = xp->layer_lowervp;
    682 
    683 	/*
    684 	 * Note: in vop_reclaim, the node's struct lock has been
    685 	 * decomissioned, so we have to be careful about calling
    686 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    687 	 */
    688 	if (vp == lmp->layerm_rootvp) {
    689 		/*
    690 		 * Oops! We no longer have a root node. Most likely reason is
    691 		 * that someone forcably unmunted the underlying fs.
    692 		 *
    693 		 * Now getting the root vnode will fail. We're dead. :-(
    694 		 */
    695 		lmp->layerm_rootvp = NULL;
    696 	}
    697 	/* After this assignment, this node will not be re-used. */
    698 	xp->layer_lowervp = NULL;
    699 	mutex_enter(&lmp->layerm_hashlock);
    700 	LIST_REMOVE(xp, layer_hash);
    701 	mutex_exit(&lmp->layerm_hashlock);
    702 	kmem_free(vp->v_data, lmp->layerm_size);
    703 	vp->v_data = NULL;
    704 	vrele(lowervp);
    705 
    706 	return 0;
    707 }
    708 
    709 int
    710 layer_lock(void *v)
    711 {
    712 	struct vop_lock_args /* {
    713 		struct vnode *a_vp;
    714 		int a_flags;
    715 	} */ *ap = v;
    716 	struct vnode *vp = ap->a_vp;
    717 	struct vnode *lowervp = LAYERVPTOLOWERVP(vp);
    718 	int flags = ap->a_flags;
    719 	int error;
    720 
    721 	if ((flags & LK_NOWAIT) != 0) {
    722 		if (!mutex_tryenter(vp->v_interlock))
    723 			return EBUSY;
    724 		if ((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0) {
    725 			mutex_exit(vp->v_interlock);
    726 			return EBUSY;
    727 		}
    728 		mutex_exit(vp->v_interlock);
    729 		return VOP_LOCK(lowervp, flags);
    730 	}
    731 
    732 	error = VOP_LOCK(lowervp, flags);
    733 	if (error)
    734 		return error;
    735 
    736 	mutex_enter(vp->v_interlock);
    737 	if ((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0) {
    738 		VOP_UNLOCK(lowervp);
    739 		if ((vp->v_iflag & VI_XLOCK))
    740 			vwait(vp, VI_XLOCK);
    741 		mutex_exit(vp->v_interlock);
    742 		return ENOENT;
    743 	}
    744 	mutex_exit(vp->v_interlock);
    745 
    746 	return 0;
    747 }
    748 
    749 /*
    750  * We just feed the returned vnode up to the caller - there's no need
    751  * to build a layer node on top of the node on which we're going to do
    752  * i/o. :-)
    753  */
    754 int
    755 layer_bmap(void *v)
    756 {
    757 	struct vop_bmap_args /* {
    758 		struct vnode *a_vp;
    759 		daddr_t  a_bn;
    760 		struct vnode **a_vpp;
    761 		daddr_t *a_bnp;
    762 		int *a_runp;
    763 	} */ *ap = v;
    764 	struct vnode *vp;
    765 
    766 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    767 	ap->a_vp = vp;
    768 
    769 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    770 }
    771 
    772 int
    773 layer_print(void *v)
    774 {
    775 	struct vop_print_args /* {
    776 		struct vnode *a_vp;
    777 	} */ *ap = v;
    778 	struct vnode *vp = ap->a_vp;
    779 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    780 	return 0;
    781 }
    782 
    783 int
    784 layer_getpages(void *v)
    785 {
    786 	struct vop_getpages_args /* {
    787 		struct vnode *a_vp;
    788 		voff_t a_offset;
    789 		struct vm_page **a_m;
    790 		int *a_count;
    791 		int a_centeridx;
    792 		vm_prot_t a_access_type;
    793 		int a_advice;
    794 		int a_flags;
    795 	} */ *ap = v;
    796 	struct vnode *vp = ap->a_vp;
    797 
    798 	KASSERT(mutex_owned(vp->v_interlock));
    799 
    800 	if (ap->a_flags & PGO_LOCKED) {
    801 		return EBUSY;
    802 	}
    803 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    804 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    805 
    806 	/* Just pass the request on to the underlying layer. */
    807 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    808 }
    809 
    810 int
    811 layer_putpages(void *v)
    812 {
    813 	struct vop_putpages_args /* {
    814 		struct vnode *a_vp;
    815 		voff_t a_offlo;
    816 		voff_t a_offhi;
    817 		int a_flags;
    818 	} */ *ap = v;
    819 	struct vnode *vp = ap->a_vp;
    820 
    821 	KASSERT(mutex_owned(vp->v_interlock));
    822 
    823 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    824 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    825 
    826 	if (ap->a_flags & PGO_RECLAIM) {
    827 		mutex_exit(vp->v_interlock);
    828 		return 0;
    829 	}
    830 
    831 	/* Just pass the request on to the underlying layer. */
    832 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    833 }
    834