Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.6.2.2
      1 /*	$NetBSD: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 /*
     36  * Copyright (c) 1992, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  *
     39  * This code is derived from software contributed to Berkeley by
     40  * John Heidemann of the UCLA Ficus project.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     71  *
     72  * Ancestors:
     73  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     74  *	$Id: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $
     75  *	...and...
     76  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     77  */
     78 
     79 /*
     80  * Null Layer vnode routines.
     81  *
     82  * (See mount_null(8) for more information.)
     83  *
     84  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     85  * the core implimentation of the null file system and most other stacked
     86  * fs's. The description below refers to the null file system, but the
     87  * services provided by the layer* files are useful for all layered fs's.
     88  *
     89  * The null layer duplicates a portion of the file system
     90  * name space under a new name.  In this respect, it is
     91  * similar to the loopback file system.  It differs from
     92  * the loopback fs in two respects:  it is implemented using
     93  * a stackable layers techniques, and it's "null-node"s stack above
     94  * all lower-layer vnodes, not just over directory vnodes.
     95  *
     96  * The null layer has two purposes.  First, it serves as a demonstration
     97  * of layering by proving a layer which does nothing.  (It actually
     98  * does everything the loopback file system does, which is slightly
     99  * more than nothing.)  Second, the null layer can serve as a prototype
    100  * layer.  Since it provides all necessary layer framework,
    101  * new file system layers can be created very easily be starting
    102  * with a null layer.
    103  *
    104  * The remainder of the man page examines the null layer as a basis
    105  * for constructing new layers.
    106  *
    107  *
    108  * INSTANTIATING NEW NULL LAYERS
    109  *
    110  * New null layers are created with mount_null(8).
    111  * Mount_null(8) takes two arguments, the pathname
    112  * of the lower vfs (target-pn) and the pathname where the null
    113  * layer will appear in the namespace (alias-pn).  After
    114  * the null layer is put into place, the contents
    115  * of target-pn subtree will be aliased under alias-pn.
    116  *
    117  * It is conceivable that other overlay filesystems will take different
    118  * parameters. For instance, data migration or access controll layers might
    119  * only take one pathname which will serve both as the target-pn and
    120  * alias-pn described above.
    121  *
    122  *
    123  * OPERATION OF A NULL LAYER
    124  *
    125  * The null layer is the minimum file system layer,
    126  * simply bypassing all possible operations to the lower layer
    127  * for processing there.  The majority of its activity centers
    128  * on the bypass routine, though which nearly all vnode operations
    129  * pass.
    130  *
    131  * The bypass routine accepts arbitrary vnode operations for
    132  * handling by the lower layer.  It begins by examing vnode
    133  * operation arguments and replacing any layered nodes by their
    134  * lower-layer equivlants.  It then invokes the operation
    135  * on the lower layer.  Finally, it replaces the layered nodes
    136  * in the arguments and, if a vnode is return by the operation,
    137  * stacks a layered node on top of the returned vnode.
    138  *
    139  * The bypass routine in this file, layer_bypass(), is suitable for use
    140  * by many different layered filesystems. It can be used by multiple
    141  * filesystems simultaneously. Alternatively, a layered fs may provide
    142  * its own bypass routine, in which case layer_bypass() should be used as
    143  * a model. For instance, the main functionality provided by umapfs, the user
    144  * identity mapping file system, is handled by a custom bypass routine.
    145  *
    146  * Typically a layered fs registers its selected bypass routine as the
    147  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    148  * the filesystem must store the bypass entry point in the layerm_bypass
    149  * field of struct layer_mount. All other layer routines in this file will
    150  * use the layerm_bypass routine.
    151  *
    152  * Although the bypass routine handles most operations outright, a number
    153  * of operations are special cased, and handled by the layered fs. One
    154  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
    155  * layer_fsync, perform layer-specific manipulation in addition to calling
    156  * the bypass routine. The other group
    157 
    158  * Although bypass handles most operations, vop_getattr, vop_lock,
    159  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
    160  * bypassed. Vop_getattr must change the fsid being returned.
    161  * Vop_lock and vop_unlock must handle any locking for the
    162  * current vnode as well as pass the lock request down.
    163  * Vop_inactive and vop_reclaim are not bypassed so that
    164  * they can handle freeing null-layer specific data. Vop_print
    165  * is not bypassed to avoid excessive debugging information.
    166  * Also, certain vnode operations change the locking state within
    167  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
    168  * and symlink). Ideally these operations should not change the
    169  * lock state, but should be changed to let the caller of the
    170  * function unlock them. Otherwise all intermediate vnode layers
    171  * (such as union, umapfs, etc) must catch these functions to do
    172  * the necessary locking at their layer.
    173  *
    174  *
    175  * INSTANTIATING VNODE STACKS
    176  *
    177  * Mounting associates the null layer with a lower layer,
    178  * effect stacking two VFSes.  Vnode stacks are instead
    179  * created on demand as files are accessed.
    180  *
    181  * The initial mount creates a single vnode stack for the
    182  * root of the new null layer.  All other vnode stacks
    183  * are created as a result of vnode operations on
    184  * this or other null vnode stacks.
    185  *
    186  * New vnode stacks come into existance as a result of
    187  * an operation which returns a vnode.
    188  * The bypass routine stacks a null-node above the new
    189  * vnode before returning it to the caller.
    190  *
    191  * For example, imagine mounting a null layer with
    192  * "mount_null /usr/include /dev/layer/null".
    193  * Changing directory to /dev/layer/null will assign
    194  * the root null-node (which was created when the null layer was mounted).
    195  * Now consider opening "sys".  A vop_lookup would be
    196  * done on the root null-node.  This operation would bypass through
    197  * to the lower layer which would return a vnode representing
    198  * the UFS "sys".  layer_bypass then builds a null-node
    199  * aliasing the UFS "sys" and returns this to the caller.
    200  * Later operations on the null-node "sys" will repeat this
    201  * process when constructing other vnode stacks.
    202  *
    203  *
    204  * CREATING OTHER FILE SYSTEM LAYERS
    205  *
    206  * One of the easiest ways to construct new file system layers is to make
    207  * a copy of the null layer, rename all files and variables, and
    208  * then begin modifing the copy.  Sed can be used to easily rename
    209  * all variables.
    210  *
    211  * The umap layer is an example of a layer descended from the
    212  * null layer.
    213  *
    214  *
    215  * INVOKING OPERATIONS ON LOWER LAYERS
    216  *
    217  * There are two techniques to invoke operations on a lower layer
    218  * when the operation cannot be completely bypassed.  Each method
    219  * is appropriate in different situations.  In both cases,
    220  * it is the responsibility of the aliasing layer to make
    221  * the operation arguments "correct" for the lower layer
    222  * by mapping an vnode arguments to the lower layer.
    223  *
    224  * The first approach is to call the aliasing layer's bypass routine.
    225  * This method is most suitable when you wish to invoke the operation
    226  * currently being hanldled on the lower layer.  It has the advantage
    227  * that the bypass routine already must do argument mapping.
    228  * An example of this is null_getattrs in the null layer.
    229  *
    230  * A second approach is to directly invoked vnode operations on
    231  * the lower layer with the VOP_OPERATIONNAME interface.
    232  * The advantage of this method is that it is easy to invoke
    233  * arbitrary operations on the lower layer.  The disadvantage
    234  * is that vnodes arguments must be manualy mapped.
    235  *
    236  */
    237 
    238 #include <sys/cdefs.h>
    239 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $");
    240 
    241 #include <sys/param.h>
    242 #include <sys/systm.h>
    243 #include <sys/proc.h>
    244 #include <sys/time.h>
    245 #include <sys/vnode.h>
    246 #include <sys/mount.h>
    247 #include <sys/namei.h>
    248 #include <sys/malloc.h>
    249 #include <sys/buf.h>
    250 #include <miscfs/genfs/layer.h>
    251 #include <miscfs/genfs/layer_extern.h>
    252 #include <miscfs/genfs/genfs.h>
    253 
    254 
    255 /*
    256  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    257  *		routine by John Heidemann.
    258  *	The new element for this version is that the whole nullfs
    259  * system gained the concept of locks on the lower node, and locks on
    260  * our nodes. When returning from a call to the lower layer, we may
    261  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
    262  * macros provide this functionality.
    263  *    The 10-Apr-92 version was optimized for speed, throwing away some
    264  * safety checks.  It should still always work, but it's not as
    265  * robust to programmer errors.
    266  *    Define SAFETY to include some error checking code.
    267  *
    268  * In general, we map all vnodes going down and unmap them on the way back.
    269  *
    270  * Also, some BSD vnode operations have the side effect of vrele'ing
    271  * their arguments.  With stacking, the reference counts are held
    272  * by the upper node, not the lower one, so we must handle these
    273  * side-effects here.  This is not of concern in Sun-derived systems
    274  * since there are no such side-effects.
    275  *
    276  * New for the 08-June-99 version: we also handle operations which unlock
    277  * the passed-in node (typically they vput the node).
    278  *
    279  * This makes the following assumptions:
    280  * - only one returned vpp
    281  * - no INOUT vpp's (Sun's vop_open has one of these)
    282  * - the vnode operation vector of the first vnode should be used
    283  *   to determine what implementation of the op should be invoked
    284  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    285  *   problems on rmdir'ing mount points and renaming?)
    286  */
    287 int
    288 layer_bypass(v)
    289 	void *v;
    290 {
    291 	struct vop_generic_args /* {
    292 		struct vnodeop_desc *a_desc;
    293 		<other random data follows, presumably>
    294 	} */ *ap = v;
    295 	int (**our_vnodeop_p) __P((void *));
    296 	struct vnode **this_vp_p;
    297 	int error, error1;
    298 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    299 	struct vnode **vps_p[VDESC_MAX_VPS];
    300 	struct vnode ***vppp;
    301 	struct vnodeop_desc *descp = ap->a_desc;
    302 	int reles, i, flags;
    303 
    304 #ifdef SAFETY
    305 	/*
    306 	 * We require at least one vp.
    307 	 */
    308 	if (descp->vdesc_vp_offsets == NULL ||
    309 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    310 		panic ("layer_bypass: no vp's in map.\n");
    311 #endif
    312 
    313 	vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
    314 	vp0 = *vps_p[0];
    315 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
    316 	our_vnodeop_p = vp0->v_op;
    317 
    318 	if (flags & LAYERFS_MBYPASSDEBUG)
    319 		printf ("layer_bypass: %s\n", descp->vdesc_name);
    320 
    321 	/*
    322 	 * Map the vnodes going in.
    323 	 * Later, we'll invoke the operation based on
    324 	 * the first mapped vnode's operation vector.
    325 	 */
    326 	reles = descp->vdesc_flags;
    327 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    328 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    329 			break;   /* bail out at end of list */
    330 		vps_p[i] = this_vp_p =
    331 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
    332 		/*
    333 		 * We're not guaranteed that any but the first vnode
    334 		 * are of our type.  Check for and don't map any
    335 		 * that aren't.  (We must always map first vp or vclean fails.)
    336 		 */
    337 		if (i && (*this_vp_p == NULL ||
    338 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    339 			old_vps[i] = NULL;
    340 		} else {
    341 			old_vps[i] = *this_vp_p;
    342 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    343 			/*
    344 			 * XXX - Several operations have the side effect
    345 			 * of vrele'ing their vp's.  We must account for
    346 			 * that.  (This should go away in the future.)
    347 			 */
    348 			if (reles & VDESC_VP0_WILLRELE)
    349 				VREF(*this_vp_p);
    350 		}
    351 
    352 	}
    353 
    354 	/*
    355 	 * Call the operation on the lower layer
    356 	 * with the modified argument structure.
    357 	 */
    358 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    359 
    360 	/*
    361 	 * Maintain the illusion of call-by-value
    362 	 * by restoring vnodes in the argument structure
    363 	 * to their original value.
    364 	 */
    365 	reles = descp->vdesc_flags;
    366 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    367 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    368 			break;   /* bail out at end of list */
    369 		if (old_vps[i]) {
    370 			*(vps_p[i]) = old_vps[i];
    371 			if (reles & VDESC_VP0_WILLUNLOCK)
    372 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
    373 			if (reles & VDESC_VP0_WILLRELE)
    374 				vrele(*(vps_p[i]));
    375 		}
    376 	}
    377 
    378 	/*
    379 	 * Map the possible out-going vpp
    380 	 * (Assumes that the lower layer always returns
    381 	 * a VREF'ed vpp unless it gets an error.)
    382 	 */
    383 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
    384 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
    385 	    !error) {
    386 		/*
    387 		 * XXX - even though some ops have vpp returned vp's,
    388 		 * several ops actually vrele this before returning.
    389 		 * We must avoid these ops.
    390 		 * (This should go away when these ops are regularized.)
    391 		 */
    392 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
    393 			goto out;
    394 		vppp = VOPARG_OFFSETTO(struct vnode***,
    395 				 descp->vdesc_vpp_offset,ap);
    396 		/*
    397 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
    398 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
    399 		 * doesn't call bypass as the lower vpp is fine (we're just
    400 		 * going to do i/o on it). vop_loookup doesn't call bypass
    401 		 * as a lookup on "." would generate a locking error.
    402 		 * So all the calls which get us here have a locked vpp. :-)
    403 		 */
    404 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
    405 	}
    406 
    407  out:
    408 	return (error);
    409 }
    410 
    411 /*
    412  * We have to carry on the locking protocol on the layer vnodes
    413  * as we progress through the tree. We also have to enforce read-only
    414  * if this layer is mounted read-only.
    415  */
    416 int
    417 layer_lookup(v)
    418 	void *v;
    419 {
    420 	struct vop_lookup_args /* {
    421 		struct vnodeop_desc *a_desc;
    422 		struct vnode * a_dvp;
    423 		struct vnode ** a_vpp;
    424 		struct componentname * a_cnp;
    425 	} */ *ap = v;
    426 	struct componentname *cnp = ap->a_cnp;
    427 	int flags = cnp->cn_flags;
    428 	struct vnode *dvp, *vp, *ldvp;
    429 	int error, r;
    430 
    431 	dvp = ap->a_dvp;
    432 
    433 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    434 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
    435 		return (EROFS);
    436 
    437 	ldvp = LAYERVPTOLOWERVP(dvp);
    438 	ap->a_dvp = ldvp;
    439 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    440 	vp = *ap->a_vpp;
    441 
    442 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    443 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    444 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    445 		error = EROFS;
    446 	/*
    447 	 * We must do the same locking and unlocking at this layer as
    448 	 * is done in the layers below us. It used to be we would try
    449 	 * to guess based on what was set with the flags and error codes.
    450 	 *
    451 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
    452 	 * tell us if it released the parent vnode, and we adjust the
    453 	 * upper node accordingly. We can't just look at the lock states
    454 	 * of the lower nodes as someone else might have come along and
    455 	 * locked the parent node after our call to VOP_LOOKUP locked it.
    456 	 */
    457 	if ((cnp->cn_flags & PDIRUNLOCK)) {
    458 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
    459 	}
    460 	if (ldvp == vp) {
    461 		/*
    462 		 * Did lookup on "." or ".." in the root node of a mount point.
    463 		 * So we return dvp after a VREF.
    464 		 */
    465 		*ap->a_vpp = dvp;
    466 		VREF(dvp);
    467 		vrele(vp);
    468 	} else if (vp != NULL) {
    469 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
    470 	}
    471 	return (error);
    472 }
    473 
    474 /*
    475  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    476  */
    477 int
    478 layer_setattr(v)
    479 	void *v;
    480 {
    481 	struct vop_setattr_args /* {
    482 		struct vnodeop_desc *a_desc;
    483 		struct vnode *a_vp;
    484 		struct vattr *a_vap;
    485 		struct ucred *a_cred;
    486 		struct proc *a_p;
    487 	} */ *ap = v;
    488 	struct vnode *vp = ap->a_vp;
    489 	struct vattr *vap = ap->a_vap;
    490 
    491   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    492 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    493 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    494 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    495 		return (EROFS);
    496 	if (vap->va_size != VNOVAL) {
    497  		switch (vp->v_type) {
    498  		case VDIR:
    499  			return (EISDIR);
    500  		case VCHR:
    501  		case VBLK:
    502  		case VSOCK:
    503  		case VFIFO:
    504 			return (0);
    505 		case VREG:
    506 		case VLNK:
    507  		default:
    508 			/*
    509 			 * Disallow write attempts if the filesystem is
    510 			 * mounted read-only.
    511 			 */
    512 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    513 				return (EROFS);
    514 		}
    515 	}
    516 	return (LAYERFS_DO_BYPASS(vp, ap));
    517 }
    518 
    519 /*
    520  *  We handle getattr only to change the fsid.
    521  */
    522 int
    523 layer_getattr(v)
    524 	void *v;
    525 {
    526 	struct vop_getattr_args /* {
    527 		struct vnode *a_vp;
    528 		struct vattr *a_vap;
    529 		struct ucred *a_cred;
    530 		struct proc *a_p;
    531 	} */ *ap = v;
    532 	struct vnode *vp = ap->a_vp;
    533 	int error;
    534 
    535 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
    536 		return (error);
    537 	/* Requires that arguments be restored. */
    538 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
    539 	return (0);
    540 }
    541 
    542 int
    543 layer_access(v)
    544 	void *v;
    545 {
    546 	struct vop_access_args /* {
    547 		struct vnode *a_vp;
    548 		int  a_mode;
    549 		struct ucred *a_cred;
    550 		struct proc *a_p;
    551 	} */ *ap = v;
    552 	struct vnode *vp = ap->a_vp;
    553 	mode_t mode = ap->a_mode;
    554 
    555 	/*
    556 	 * Disallow write attempts on read-only layers;
    557 	 * unless the file is a socket, fifo, or a block or
    558 	 * character device resident on the file system.
    559 	 */
    560 	if (mode & VWRITE) {
    561 		switch (vp->v_type) {
    562 		case VDIR:
    563 		case VLNK:
    564 		case VREG:
    565 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    566 				return (EROFS);
    567 			break;
    568 		default:
    569 			break;
    570 		}
    571 	}
    572 	return (LAYERFS_DO_BYPASS(vp, ap));
    573 }
    574 
    575 /*
    576  * We must handle open to be able to catch MNT_NODEV and friends.
    577  */
    578 int
    579 layer_open(v)
    580 	void *v;
    581 {
    582 	struct vop_open_args *ap = v;
    583 	struct vnode *vp = ap->a_vp;
    584 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
    585 
    586 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
    587 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    588 		return ENXIO;
    589 
    590 	return LAYERFS_DO_BYPASS(vp, ap);
    591 }
    592 
    593 /*
    594  * We need to process our own vnode lock and then clear the
    595  * interlock flag as it applies only to our vnode, not the
    596  * vnodes below us on the stack.
    597  */
    598 int
    599 layer_lock(v)
    600 	void *v;
    601 {
    602 	struct vop_lock_args /* {
    603 		struct vnode *a_vp;
    604 		int a_flags;
    605 		struct proc *a_p;
    606 	} */ *ap = v;
    607 	struct vnode *vp = ap->a_vp, *lowervp;
    608 	int	flags = ap->a_flags, error;
    609 
    610 	if (vp->v_vnlock != NULL) {
    611 		/*
    612 		 * The lower level has exported a struct lock to us. Use
    613 		 * it so that all vnodes in the stack lock and unlock
    614 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
    615 		 * decommissions the lock - just because our vnode is
    616 		 * going away doesn't mean the struct lock below us is.
    617 		 * LK_EXCLUSIVE is fine.
    618 		 */
    619 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    620 			return(lockmgr(vp->v_vnlock,
    621 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
    622 				&vp->v_interlock));
    623 		} else
    624 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
    625 	} else {
    626 		/*
    627 		 * Ahh well. It would be nice if the fs we're over would
    628 		 * export a struct lock for us to use, but it doesn't.
    629 		 *
    630 		 * To prevent race conditions involving doing a lookup
    631 		 * on "..", we have to lock the lower node, then lock our
    632 		 * node. Most of the time it won't matter that we lock our
    633 		 * node (as any locking would need the lower one locked
    634 		 * first). But we can LK_DRAIN the upper lock as a step
    635 		 * towards decomissioning it.
    636 		 */
    637 		lowervp = LAYERVPTOLOWERVP(vp);
    638 		if (flags & LK_INTERLOCK) {
    639 			simple_unlock(&vp->v_interlock);
    640 			flags &= ~LK_INTERLOCK;
    641 		}
    642 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
    643 			error = VOP_LOCK(lowervp,
    644 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
    645 		} else
    646 			error = VOP_LOCK(lowervp, flags);
    647 		if (error)
    648 			return (error);
    649 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
    650 			VOP_UNLOCK(lowervp, 0);
    651 		}
    652 		return (error);
    653 	}
    654 }
    655 
    656 /*
    657  */
    658 int
    659 layer_unlock(v)
    660 	void *v;
    661 {
    662 	struct vop_unlock_args /* {
    663 		struct vnode *a_vp;
    664 		int a_flags;
    665 		struct proc *a_p;
    666 	} */ *ap = v;
    667 	struct vnode *vp = ap->a_vp;
    668 	int	flags = ap->a_flags;
    669 
    670 	if (vp->v_vnlock != NULL) {
    671 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    672 			&vp->v_interlock));
    673 	} else {
    674 		if (flags & LK_INTERLOCK) {
    675 			simple_unlock(&vp->v_interlock);
    676 			flags &= ~LK_INTERLOCK;
    677 		}
    678 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
    679 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
    680 			&vp->v_interlock));
    681 	}
    682 }
    683 
    684 /*
    685  * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
    686  * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
    687  */
    688 int
    689 layer_islocked(v)
    690 	void *v;
    691 {
    692 	struct vop_islocked_args /* {
    693 		struct vnode *a_vp;
    694 	} */ *ap = v;
    695 	struct vnode *vp = ap->a_vp;
    696 
    697 	if (vp->v_vnlock != NULL)
    698 		return (lockstatus(vp->v_vnlock));
    699 	else
    700 		return (lockstatus(&vp->v_lock));
    701 }
    702 
    703 /*
    704  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    705  * syncing the underlying vnodes, since they'll be fsync'ed when
    706  * reclaimed; otherwise,
    707  * pass it through to the underlying layer.
    708  *
    709  * XXX Do we still need to worry about shallow fsync?
    710  */
    711 
    712 int
    713 layer_fsync(v)
    714 	void *v;
    715 {
    716 	struct vop_fsync_args /* {
    717 		struct vnode *a_vp;
    718 		struct ucred *a_cred;
    719 		int  a_flags;
    720 		off_t offlo;
    721 		off_t offhi;
    722 		struct proc *a_p;
    723 	} */ *ap = v;
    724 
    725 	if (ap->a_flags & FSYNC_RECLAIM) {
    726 		return 0;
    727 	}
    728 
    729 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
    730 }
    731 
    732 
    733 int
    734 layer_inactive(v)
    735 	void *v;
    736 {
    737 	struct vop_inactive_args /* {
    738 		struct vnode *a_vp;
    739 		struct proc *a_p;
    740 	} */ *ap = v;
    741 	struct vnode *vp = ap->a_vp;
    742 
    743 	/*
    744 	 * Do nothing (and _don't_ bypass).
    745 	 * Wait to vrele lowervp until reclaim,
    746 	 * so that until then our layer_node is in the
    747 	 * cache and reusable.
    748 	 *
    749 	 * NEEDSWORK: Someday, consider inactive'ing
    750 	 * the lowervp and then trying to reactivate it
    751 	 * with capabilities (v_id)
    752 	 * like they do in the name lookup cache code.
    753 	 * That's too much work for now.
    754 	 */
    755 	VOP_UNLOCK(vp, 0);
    756 
    757 	/* ..., but don't cache the device node. */
    758 	if (vp->v_type == VBLK || vp->v_type == VCHR)
    759 		vgone(vp);
    760 	return (0);
    761 }
    762 
    763 int
    764 layer_reclaim(v)
    765 	void *v;
    766 {
    767 	struct vop_reclaim_args /* {
    768 		struct vnode *a_vp;
    769 		struct proc *a_p;
    770 	} */ *ap = v;
    771 	struct vnode *vp = ap->a_vp;
    772 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    773 	struct layer_node *xp = VTOLAYER(vp);
    774 	struct vnode *lowervp = xp->layer_lowervp;
    775 
    776 	/*
    777 	 * Note: in vop_reclaim, the node's struct lock has been
    778 	 * decomissioned, so we have to be careful about calling
    779 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
    780 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
    781 	 * set.
    782 	 */
    783 	/* After this assignment, this node will not be re-used. */
    784 	if ((vp == lmp->layerm_rootvp)) {
    785 		/*
    786 		 * Oops! We no longer have a root node. Most likely reason is
    787 		 * that someone forcably unmunted the underlying fs.
    788 		 *
    789 		 * Now getting the root vnode will fail. We're dead. :-(
    790 		 */
    791 		lmp->layerm_rootvp = NULL;
    792 	}
    793 	xp->layer_lowervp = NULL;
    794 	simple_lock(&lmp->layerm_hashlock);
    795 	LIST_REMOVE(xp, layer_hash);
    796 	simple_unlock(&lmp->layerm_hashlock);
    797 	FREE(vp->v_data, M_TEMP);
    798 	vp->v_data = NULL;
    799 	vrele (lowervp);
    800 	return (0);
    801 }
    802 
    803 /*
    804  * We just feed the returned vnode up to the caller - there's no need
    805  * to build a layer node on top of the node on which we're going to do
    806  * i/o. :-)
    807  */
    808 int
    809 layer_bmap(v)
    810 	void *v;
    811 {
    812 	struct vop_bmap_args /* {
    813 		struct vnode *a_vp;
    814 		daddr_t  a_bn;
    815 		struct vnode **a_vpp;
    816 		daddr_t *a_bnp;
    817 		int *a_runp;
    818 	} */ *ap = v;
    819 	struct vnode *vp;
    820 
    821 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
    822 
    823 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
    824 }
    825 
    826 int
    827 layer_print(v)
    828 	void *v;
    829 {
    830 	struct vop_print_args /* {
    831 		struct vnode *a_vp;
    832 	} */ *ap = v;
    833 	struct vnode *vp = ap->a_vp;
    834 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    835 	return (0);
    836 }
    837 
    838 /*
    839  * XXX - vop_strategy must be hand coded because it has no
    840  * vnode in its arguments.
    841  * This goes away with a merged VM/buffer cache.
    842  */
    843 int
    844 layer_strategy(v)
    845 	void *v;
    846 {
    847 	struct vop_strategy_args /* {
    848 		struct buf *a_bp;
    849 	} */ *ap = v;
    850 	struct buf *bp = ap->a_bp;
    851 	int error;
    852 	struct vnode *savedvp;
    853 
    854 	savedvp = bp->b_vp;
    855 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    856 
    857 	error = VOP_STRATEGY(bp);
    858 
    859 	bp->b_vp = savedvp;
    860 
    861 	return (error);
    862 }
    863 
    864 /*
    865  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
    866  * vnode in its arguments.
    867  * This goes away with a merged VM/buffer cache.
    868  */
    869 int
    870 layer_bwrite(v)
    871 	void *v;
    872 {
    873 	struct vop_bwrite_args /* {
    874 		struct buf *a_bp;
    875 	} */ *ap = v;
    876 	struct buf *bp = ap->a_bp;
    877 	int error;
    878 	struct vnode *savedvp;
    879 
    880 	savedvp = bp->b_vp;
    881 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
    882 
    883 	error = VOP_BWRITE(bp);
    884 
    885 	bp->b_vp = savedvp;
    886 
    887 	return (error);
    888 }
    889 
    890 int
    891 layer_getpages(v)
    892 	void *v;
    893 {
    894 	struct vop_getpages_args /* {
    895 		struct vnode *a_vp;
    896 		voff_t a_offset;
    897 		struct vm_page **a_m;
    898 		int *a_count;
    899 		int a_centeridx;
    900 		vm_prot_t a_access_type;
    901 		int a_advice;
    902 		int a_flags;
    903 	} */ *ap = v;
    904 	struct vnode *vp = ap->a_vp;
    905 	int error;
    906 
    907 	/*
    908 	 * just pass the request on to the underlying layer.
    909 	 */
    910 
    911 	if (ap->a_flags & PGO_LOCKED) {
    912 		return EBUSY;
    913 	}
    914 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    915 	simple_unlock(&vp->v_interlock);
    916 	simple_lock(&ap->a_vp->v_interlock);
    917 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    918 	return error;
    919 }
    920 
    921 int
    922 layer_putpages(v)
    923 	void *v;
    924 {
    925 	struct vop_putpages_args /* {
    926 		struct vnode *a_vp;
    927 		voff_t a_offlo;
    928 		voff_t a_offhi;
    929 		int a_flags;
    930 	} */ *ap = v;
    931 	struct vnode *vp = ap->a_vp;
    932 	int error;
    933 
    934 	/*
    935 	 * just pass the request on to the underlying layer.
    936 	 */
    937 
    938 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    939 	simple_unlock(&vp->v_interlock);
    940 	simple_lock(&ap->a_vp->v_interlock);
    941 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    942 	return error;
    943 }
    944