layer_vnops.c revision 1.6.2.2 1 /* $NetBSD: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35 /*
36 * Copyright (c) 1992, 1993
37 * The Regents of the University of California. All rights reserved.
38 *
39 * This code is derived from software contributed to Berkeley by
40 * John Heidemann of the UCLA Ficus project.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
71 *
72 * Ancestors:
73 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
74 * $Id: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $
75 * ...and...
76 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
77 */
78
79 /*
80 * Null Layer vnode routines.
81 *
82 * (See mount_null(8) for more information.)
83 *
84 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
85 * the core implimentation of the null file system and most other stacked
86 * fs's. The description below refers to the null file system, but the
87 * services provided by the layer* files are useful for all layered fs's.
88 *
89 * The null layer duplicates a portion of the file system
90 * name space under a new name. In this respect, it is
91 * similar to the loopback file system. It differs from
92 * the loopback fs in two respects: it is implemented using
93 * a stackable layers techniques, and it's "null-node"s stack above
94 * all lower-layer vnodes, not just over directory vnodes.
95 *
96 * The null layer has two purposes. First, it serves as a demonstration
97 * of layering by proving a layer which does nothing. (It actually
98 * does everything the loopback file system does, which is slightly
99 * more than nothing.) Second, the null layer can serve as a prototype
100 * layer. Since it provides all necessary layer framework,
101 * new file system layers can be created very easily be starting
102 * with a null layer.
103 *
104 * The remainder of the man page examines the null layer as a basis
105 * for constructing new layers.
106 *
107 *
108 * INSTANTIATING NEW NULL LAYERS
109 *
110 * New null layers are created with mount_null(8).
111 * Mount_null(8) takes two arguments, the pathname
112 * of the lower vfs (target-pn) and the pathname where the null
113 * layer will appear in the namespace (alias-pn). After
114 * the null layer is put into place, the contents
115 * of target-pn subtree will be aliased under alias-pn.
116 *
117 * It is conceivable that other overlay filesystems will take different
118 * parameters. For instance, data migration or access controll layers might
119 * only take one pathname which will serve both as the target-pn and
120 * alias-pn described above.
121 *
122 *
123 * OPERATION OF A NULL LAYER
124 *
125 * The null layer is the minimum file system layer,
126 * simply bypassing all possible operations to the lower layer
127 * for processing there. The majority of its activity centers
128 * on the bypass routine, though which nearly all vnode operations
129 * pass.
130 *
131 * The bypass routine accepts arbitrary vnode operations for
132 * handling by the lower layer. It begins by examing vnode
133 * operation arguments and replacing any layered nodes by their
134 * lower-layer equivlants. It then invokes the operation
135 * on the lower layer. Finally, it replaces the layered nodes
136 * in the arguments and, if a vnode is return by the operation,
137 * stacks a layered node on top of the returned vnode.
138 *
139 * The bypass routine in this file, layer_bypass(), is suitable for use
140 * by many different layered filesystems. It can be used by multiple
141 * filesystems simultaneously. Alternatively, a layered fs may provide
142 * its own bypass routine, in which case layer_bypass() should be used as
143 * a model. For instance, the main functionality provided by umapfs, the user
144 * identity mapping file system, is handled by a custom bypass routine.
145 *
146 * Typically a layered fs registers its selected bypass routine as the
147 * default vnode operation in its vnodeopv_entry_desc table. Additionally
148 * the filesystem must store the bypass entry point in the layerm_bypass
149 * field of struct layer_mount. All other layer routines in this file will
150 * use the layerm_bypass routine.
151 *
152 * Although the bypass routine handles most operations outright, a number
153 * of operations are special cased, and handled by the layered fs. One
154 * group, layer_setattr, layer_getattr, layer_access, layer_open, and
155 * layer_fsync, perform layer-specific manipulation in addition to calling
156 * the bypass routine. The other group
157
158 * Although bypass handles most operations, vop_getattr, vop_lock,
159 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
160 * bypassed. Vop_getattr must change the fsid being returned.
161 * Vop_lock and vop_unlock must handle any locking for the
162 * current vnode as well as pass the lock request down.
163 * Vop_inactive and vop_reclaim are not bypassed so that
164 * they can handle freeing null-layer specific data. Vop_print
165 * is not bypassed to avoid excessive debugging information.
166 * Also, certain vnode operations change the locking state within
167 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
168 * and symlink). Ideally these operations should not change the
169 * lock state, but should be changed to let the caller of the
170 * function unlock them. Otherwise all intermediate vnode layers
171 * (such as union, umapfs, etc) must catch these functions to do
172 * the necessary locking at their layer.
173 *
174 *
175 * INSTANTIATING VNODE STACKS
176 *
177 * Mounting associates the null layer with a lower layer,
178 * effect stacking two VFSes. Vnode stacks are instead
179 * created on demand as files are accessed.
180 *
181 * The initial mount creates a single vnode stack for the
182 * root of the new null layer. All other vnode stacks
183 * are created as a result of vnode operations on
184 * this or other null vnode stacks.
185 *
186 * New vnode stacks come into existance as a result of
187 * an operation which returns a vnode.
188 * The bypass routine stacks a null-node above the new
189 * vnode before returning it to the caller.
190 *
191 * For example, imagine mounting a null layer with
192 * "mount_null /usr/include /dev/layer/null".
193 * Changing directory to /dev/layer/null will assign
194 * the root null-node (which was created when the null layer was mounted).
195 * Now consider opening "sys". A vop_lookup would be
196 * done on the root null-node. This operation would bypass through
197 * to the lower layer which would return a vnode representing
198 * the UFS "sys". layer_bypass then builds a null-node
199 * aliasing the UFS "sys" and returns this to the caller.
200 * Later operations on the null-node "sys" will repeat this
201 * process when constructing other vnode stacks.
202 *
203 *
204 * CREATING OTHER FILE SYSTEM LAYERS
205 *
206 * One of the easiest ways to construct new file system layers is to make
207 * a copy of the null layer, rename all files and variables, and
208 * then begin modifing the copy. Sed can be used to easily rename
209 * all variables.
210 *
211 * The umap layer is an example of a layer descended from the
212 * null layer.
213 *
214 *
215 * INVOKING OPERATIONS ON LOWER LAYERS
216 *
217 * There are two techniques to invoke operations on a lower layer
218 * when the operation cannot be completely bypassed. Each method
219 * is appropriate in different situations. In both cases,
220 * it is the responsibility of the aliasing layer to make
221 * the operation arguments "correct" for the lower layer
222 * by mapping an vnode arguments to the lower layer.
223 *
224 * The first approach is to call the aliasing layer's bypass routine.
225 * This method is most suitable when you wish to invoke the operation
226 * currently being hanldled on the lower layer. It has the advantage
227 * that the bypass routine already must do argument mapping.
228 * An example of this is null_getattrs in the null layer.
229 *
230 * A second approach is to directly invoked vnode operations on
231 * the lower layer with the VOP_OPERATIONNAME interface.
232 * The advantage of this method is that it is easy to invoke
233 * arbitrary operations on the lower layer. The disadvantage
234 * is that vnodes arguments must be manualy mapped.
235 *
236 */
237
238 #include <sys/cdefs.h>
239 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.6.2.2 2002/01/10 20:01:36 thorpej Exp $");
240
241 #include <sys/param.h>
242 #include <sys/systm.h>
243 #include <sys/proc.h>
244 #include <sys/time.h>
245 #include <sys/vnode.h>
246 #include <sys/mount.h>
247 #include <sys/namei.h>
248 #include <sys/malloc.h>
249 #include <sys/buf.h>
250 #include <miscfs/genfs/layer.h>
251 #include <miscfs/genfs/layer_extern.h>
252 #include <miscfs/genfs/genfs.h>
253
254
255 /*
256 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
257 * routine by John Heidemann.
258 * The new element for this version is that the whole nullfs
259 * system gained the concept of locks on the lower node, and locks on
260 * our nodes. When returning from a call to the lower layer, we may
261 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
262 * macros provide this functionality.
263 * The 10-Apr-92 version was optimized for speed, throwing away some
264 * safety checks. It should still always work, but it's not as
265 * robust to programmer errors.
266 * Define SAFETY to include some error checking code.
267 *
268 * In general, we map all vnodes going down and unmap them on the way back.
269 *
270 * Also, some BSD vnode operations have the side effect of vrele'ing
271 * their arguments. With stacking, the reference counts are held
272 * by the upper node, not the lower one, so we must handle these
273 * side-effects here. This is not of concern in Sun-derived systems
274 * since there are no such side-effects.
275 *
276 * New for the 08-June-99 version: we also handle operations which unlock
277 * the passed-in node (typically they vput the node).
278 *
279 * This makes the following assumptions:
280 * - only one returned vpp
281 * - no INOUT vpp's (Sun's vop_open has one of these)
282 * - the vnode operation vector of the first vnode should be used
283 * to determine what implementation of the op should be invoked
284 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
285 * problems on rmdir'ing mount points and renaming?)
286 */
287 int
288 layer_bypass(v)
289 void *v;
290 {
291 struct vop_generic_args /* {
292 struct vnodeop_desc *a_desc;
293 <other random data follows, presumably>
294 } */ *ap = v;
295 int (**our_vnodeop_p) __P((void *));
296 struct vnode **this_vp_p;
297 int error, error1;
298 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
299 struct vnode **vps_p[VDESC_MAX_VPS];
300 struct vnode ***vppp;
301 struct vnodeop_desc *descp = ap->a_desc;
302 int reles, i, flags;
303
304 #ifdef SAFETY
305 /*
306 * We require at least one vp.
307 */
308 if (descp->vdesc_vp_offsets == NULL ||
309 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
310 panic ("layer_bypass: no vp's in map.\n");
311 #endif
312
313 vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
314 vp0 = *vps_p[0];
315 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
316 our_vnodeop_p = vp0->v_op;
317
318 if (flags & LAYERFS_MBYPASSDEBUG)
319 printf ("layer_bypass: %s\n", descp->vdesc_name);
320
321 /*
322 * Map the vnodes going in.
323 * Later, we'll invoke the operation based on
324 * the first mapped vnode's operation vector.
325 */
326 reles = descp->vdesc_flags;
327 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
328 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
329 break; /* bail out at end of list */
330 vps_p[i] = this_vp_p =
331 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
332 /*
333 * We're not guaranteed that any but the first vnode
334 * are of our type. Check for and don't map any
335 * that aren't. (We must always map first vp or vclean fails.)
336 */
337 if (i && (*this_vp_p == NULL ||
338 (*this_vp_p)->v_op != our_vnodeop_p)) {
339 old_vps[i] = NULL;
340 } else {
341 old_vps[i] = *this_vp_p;
342 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
343 /*
344 * XXX - Several operations have the side effect
345 * of vrele'ing their vp's. We must account for
346 * that. (This should go away in the future.)
347 */
348 if (reles & VDESC_VP0_WILLRELE)
349 VREF(*this_vp_p);
350 }
351
352 }
353
354 /*
355 * Call the operation on the lower layer
356 * with the modified argument structure.
357 */
358 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
359
360 /*
361 * Maintain the illusion of call-by-value
362 * by restoring vnodes in the argument structure
363 * to their original value.
364 */
365 reles = descp->vdesc_flags;
366 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
367 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
368 break; /* bail out at end of list */
369 if (old_vps[i]) {
370 *(vps_p[i]) = old_vps[i];
371 if (reles & VDESC_VP0_WILLUNLOCK)
372 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
373 if (reles & VDESC_VP0_WILLRELE)
374 vrele(*(vps_p[i]));
375 }
376 }
377
378 /*
379 * Map the possible out-going vpp
380 * (Assumes that the lower layer always returns
381 * a VREF'ed vpp unless it gets an error.)
382 */
383 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
384 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
385 !error) {
386 /*
387 * XXX - even though some ops have vpp returned vp's,
388 * several ops actually vrele this before returning.
389 * We must avoid these ops.
390 * (This should go away when these ops are regularized.)
391 */
392 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
393 goto out;
394 vppp = VOPARG_OFFSETTO(struct vnode***,
395 descp->vdesc_vpp_offset,ap);
396 /*
397 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
398 * vop_mknod, and vop_symlink return vpp's. vop_bmap
399 * doesn't call bypass as the lower vpp is fine (we're just
400 * going to do i/o on it). vop_loookup doesn't call bypass
401 * as a lookup on "." would generate a locking error.
402 * So all the calls which get us here have a locked vpp. :-)
403 */
404 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
405 }
406
407 out:
408 return (error);
409 }
410
411 /*
412 * We have to carry on the locking protocol on the layer vnodes
413 * as we progress through the tree. We also have to enforce read-only
414 * if this layer is mounted read-only.
415 */
416 int
417 layer_lookup(v)
418 void *v;
419 {
420 struct vop_lookup_args /* {
421 struct vnodeop_desc *a_desc;
422 struct vnode * a_dvp;
423 struct vnode ** a_vpp;
424 struct componentname * a_cnp;
425 } */ *ap = v;
426 struct componentname *cnp = ap->a_cnp;
427 int flags = cnp->cn_flags;
428 struct vnode *dvp, *vp, *ldvp;
429 int error, r;
430
431 dvp = ap->a_dvp;
432
433 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
434 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
435 return (EROFS);
436
437 ldvp = LAYERVPTOLOWERVP(dvp);
438 ap->a_dvp = ldvp;
439 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
440 vp = *ap->a_vpp;
441
442 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
443 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
444 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
445 error = EROFS;
446 /*
447 * We must do the same locking and unlocking at this layer as
448 * is done in the layers below us. It used to be we would try
449 * to guess based on what was set with the flags and error codes.
450 *
451 * But that doesn't work. So now we have the underlying VOP_LOOKUP
452 * tell us if it released the parent vnode, and we adjust the
453 * upper node accordingly. We can't just look at the lock states
454 * of the lower nodes as someone else might have come along and
455 * locked the parent node after our call to VOP_LOOKUP locked it.
456 */
457 if ((cnp->cn_flags & PDIRUNLOCK)) {
458 LAYERFS_UPPERUNLOCK(dvp, 0, r);
459 }
460 if (ldvp == vp) {
461 /*
462 * Did lookup on "." or ".." in the root node of a mount point.
463 * So we return dvp after a VREF.
464 */
465 *ap->a_vpp = dvp;
466 VREF(dvp);
467 vrele(vp);
468 } else if (vp != NULL) {
469 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
470 }
471 return (error);
472 }
473
474 /*
475 * Setattr call. Disallow write attempts if the layer is mounted read-only.
476 */
477 int
478 layer_setattr(v)
479 void *v;
480 {
481 struct vop_setattr_args /* {
482 struct vnodeop_desc *a_desc;
483 struct vnode *a_vp;
484 struct vattr *a_vap;
485 struct ucred *a_cred;
486 struct proc *a_p;
487 } */ *ap = v;
488 struct vnode *vp = ap->a_vp;
489 struct vattr *vap = ap->a_vap;
490
491 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
492 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
493 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
494 (vp->v_mount->mnt_flag & MNT_RDONLY))
495 return (EROFS);
496 if (vap->va_size != VNOVAL) {
497 switch (vp->v_type) {
498 case VDIR:
499 return (EISDIR);
500 case VCHR:
501 case VBLK:
502 case VSOCK:
503 case VFIFO:
504 return (0);
505 case VREG:
506 case VLNK:
507 default:
508 /*
509 * Disallow write attempts if the filesystem is
510 * mounted read-only.
511 */
512 if (vp->v_mount->mnt_flag & MNT_RDONLY)
513 return (EROFS);
514 }
515 }
516 return (LAYERFS_DO_BYPASS(vp, ap));
517 }
518
519 /*
520 * We handle getattr only to change the fsid.
521 */
522 int
523 layer_getattr(v)
524 void *v;
525 {
526 struct vop_getattr_args /* {
527 struct vnode *a_vp;
528 struct vattr *a_vap;
529 struct ucred *a_cred;
530 struct proc *a_p;
531 } */ *ap = v;
532 struct vnode *vp = ap->a_vp;
533 int error;
534
535 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
536 return (error);
537 /* Requires that arguments be restored. */
538 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
539 return (0);
540 }
541
542 int
543 layer_access(v)
544 void *v;
545 {
546 struct vop_access_args /* {
547 struct vnode *a_vp;
548 int a_mode;
549 struct ucred *a_cred;
550 struct proc *a_p;
551 } */ *ap = v;
552 struct vnode *vp = ap->a_vp;
553 mode_t mode = ap->a_mode;
554
555 /*
556 * Disallow write attempts on read-only layers;
557 * unless the file is a socket, fifo, or a block or
558 * character device resident on the file system.
559 */
560 if (mode & VWRITE) {
561 switch (vp->v_type) {
562 case VDIR:
563 case VLNK:
564 case VREG:
565 if (vp->v_mount->mnt_flag & MNT_RDONLY)
566 return (EROFS);
567 break;
568 default:
569 break;
570 }
571 }
572 return (LAYERFS_DO_BYPASS(vp, ap));
573 }
574
575 /*
576 * We must handle open to be able to catch MNT_NODEV and friends.
577 */
578 int
579 layer_open(v)
580 void *v;
581 {
582 struct vop_open_args *ap = v;
583 struct vnode *vp = ap->a_vp;
584 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
585
586 if (((lower_type == VBLK) || (lower_type == VCHR)) &&
587 (vp->v_mount->mnt_flag & MNT_NODEV))
588 return ENXIO;
589
590 return LAYERFS_DO_BYPASS(vp, ap);
591 }
592
593 /*
594 * We need to process our own vnode lock and then clear the
595 * interlock flag as it applies only to our vnode, not the
596 * vnodes below us on the stack.
597 */
598 int
599 layer_lock(v)
600 void *v;
601 {
602 struct vop_lock_args /* {
603 struct vnode *a_vp;
604 int a_flags;
605 struct proc *a_p;
606 } */ *ap = v;
607 struct vnode *vp = ap->a_vp, *lowervp;
608 int flags = ap->a_flags, error;
609
610 if (vp->v_vnlock != NULL) {
611 /*
612 * The lower level has exported a struct lock to us. Use
613 * it so that all vnodes in the stack lock and unlock
614 * simultaneously. Note: we don't DRAIN the lock as DRAIN
615 * decommissions the lock - just because our vnode is
616 * going away doesn't mean the struct lock below us is.
617 * LK_EXCLUSIVE is fine.
618 */
619 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
620 return(lockmgr(vp->v_vnlock,
621 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
622 &vp->v_interlock));
623 } else
624 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
625 } else {
626 /*
627 * Ahh well. It would be nice if the fs we're over would
628 * export a struct lock for us to use, but it doesn't.
629 *
630 * To prevent race conditions involving doing a lookup
631 * on "..", we have to lock the lower node, then lock our
632 * node. Most of the time it won't matter that we lock our
633 * node (as any locking would need the lower one locked
634 * first). But we can LK_DRAIN the upper lock as a step
635 * towards decomissioning it.
636 */
637 lowervp = LAYERVPTOLOWERVP(vp);
638 if (flags & LK_INTERLOCK) {
639 simple_unlock(&vp->v_interlock);
640 flags &= ~LK_INTERLOCK;
641 }
642 if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
643 error = VOP_LOCK(lowervp,
644 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
645 } else
646 error = VOP_LOCK(lowervp, flags);
647 if (error)
648 return (error);
649 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
650 VOP_UNLOCK(lowervp, 0);
651 }
652 return (error);
653 }
654 }
655
656 /*
657 */
658 int
659 layer_unlock(v)
660 void *v;
661 {
662 struct vop_unlock_args /* {
663 struct vnode *a_vp;
664 int a_flags;
665 struct proc *a_p;
666 } */ *ap = v;
667 struct vnode *vp = ap->a_vp;
668 int flags = ap->a_flags;
669
670 if (vp->v_vnlock != NULL) {
671 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
672 &vp->v_interlock));
673 } else {
674 if (flags & LK_INTERLOCK) {
675 simple_unlock(&vp->v_interlock);
676 flags &= ~LK_INTERLOCK;
677 }
678 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
679 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
680 &vp->v_interlock));
681 }
682 }
683
684 /*
685 * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
686 * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
687 */
688 int
689 layer_islocked(v)
690 void *v;
691 {
692 struct vop_islocked_args /* {
693 struct vnode *a_vp;
694 } */ *ap = v;
695 struct vnode *vp = ap->a_vp;
696
697 if (vp->v_vnlock != NULL)
698 return (lockstatus(vp->v_vnlock));
699 else
700 return (lockstatus(&vp->v_lock));
701 }
702
703 /*
704 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
705 * syncing the underlying vnodes, since they'll be fsync'ed when
706 * reclaimed; otherwise,
707 * pass it through to the underlying layer.
708 *
709 * XXX Do we still need to worry about shallow fsync?
710 */
711
712 int
713 layer_fsync(v)
714 void *v;
715 {
716 struct vop_fsync_args /* {
717 struct vnode *a_vp;
718 struct ucred *a_cred;
719 int a_flags;
720 off_t offlo;
721 off_t offhi;
722 struct proc *a_p;
723 } */ *ap = v;
724
725 if (ap->a_flags & FSYNC_RECLAIM) {
726 return 0;
727 }
728
729 return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
730 }
731
732
733 int
734 layer_inactive(v)
735 void *v;
736 {
737 struct vop_inactive_args /* {
738 struct vnode *a_vp;
739 struct proc *a_p;
740 } */ *ap = v;
741 struct vnode *vp = ap->a_vp;
742
743 /*
744 * Do nothing (and _don't_ bypass).
745 * Wait to vrele lowervp until reclaim,
746 * so that until then our layer_node is in the
747 * cache and reusable.
748 *
749 * NEEDSWORK: Someday, consider inactive'ing
750 * the lowervp and then trying to reactivate it
751 * with capabilities (v_id)
752 * like they do in the name lookup cache code.
753 * That's too much work for now.
754 */
755 VOP_UNLOCK(vp, 0);
756
757 /* ..., but don't cache the device node. */
758 if (vp->v_type == VBLK || vp->v_type == VCHR)
759 vgone(vp);
760 return (0);
761 }
762
763 int
764 layer_reclaim(v)
765 void *v;
766 {
767 struct vop_reclaim_args /* {
768 struct vnode *a_vp;
769 struct proc *a_p;
770 } */ *ap = v;
771 struct vnode *vp = ap->a_vp;
772 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
773 struct layer_node *xp = VTOLAYER(vp);
774 struct vnode *lowervp = xp->layer_lowervp;
775
776 /*
777 * Note: in vop_reclaim, the node's struct lock has been
778 * decomissioned, so we have to be careful about calling
779 * VOP's on ourself. Even if we turned a LK_DRAIN into an
780 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
781 * set.
782 */
783 /* After this assignment, this node will not be re-used. */
784 if ((vp == lmp->layerm_rootvp)) {
785 /*
786 * Oops! We no longer have a root node. Most likely reason is
787 * that someone forcably unmunted the underlying fs.
788 *
789 * Now getting the root vnode will fail. We're dead. :-(
790 */
791 lmp->layerm_rootvp = NULL;
792 }
793 xp->layer_lowervp = NULL;
794 simple_lock(&lmp->layerm_hashlock);
795 LIST_REMOVE(xp, layer_hash);
796 simple_unlock(&lmp->layerm_hashlock);
797 FREE(vp->v_data, M_TEMP);
798 vp->v_data = NULL;
799 vrele (lowervp);
800 return (0);
801 }
802
803 /*
804 * We just feed the returned vnode up to the caller - there's no need
805 * to build a layer node on top of the node on which we're going to do
806 * i/o. :-)
807 */
808 int
809 layer_bmap(v)
810 void *v;
811 {
812 struct vop_bmap_args /* {
813 struct vnode *a_vp;
814 daddr_t a_bn;
815 struct vnode **a_vpp;
816 daddr_t *a_bnp;
817 int *a_runp;
818 } */ *ap = v;
819 struct vnode *vp;
820
821 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
822
823 return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
824 }
825
826 int
827 layer_print(v)
828 void *v;
829 {
830 struct vop_print_args /* {
831 struct vnode *a_vp;
832 } */ *ap = v;
833 struct vnode *vp = ap->a_vp;
834 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
835 return (0);
836 }
837
838 /*
839 * XXX - vop_strategy must be hand coded because it has no
840 * vnode in its arguments.
841 * This goes away with a merged VM/buffer cache.
842 */
843 int
844 layer_strategy(v)
845 void *v;
846 {
847 struct vop_strategy_args /* {
848 struct buf *a_bp;
849 } */ *ap = v;
850 struct buf *bp = ap->a_bp;
851 int error;
852 struct vnode *savedvp;
853
854 savedvp = bp->b_vp;
855 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
856
857 error = VOP_STRATEGY(bp);
858
859 bp->b_vp = savedvp;
860
861 return (error);
862 }
863
864 /*
865 * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
866 * vnode in its arguments.
867 * This goes away with a merged VM/buffer cache.
868 */
869 int
870 layer_bwrite(v)
871 void *v;
872 {
873 struct vop_bwrite_args /* {
874 struct buf *a_bp;
875 } */ *ap = v;
876 struct buf *bp = ap->a_bp;
877 int error;
878 struct vnode *savedvp;
879
880 savedvp = bp->b_vp;
881 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
882
883 error = VOP_BWRITE(bp);
884
885 bp->b_vp = savedvp;
886
887 return (error);
888 }
889
890 int
891 layer_getpages(v)
892 void *v;
893 {
894 struct vop_getpages_args /* {
895 struct vnode *a_vp;
896 voff_t a_offset;
897 struct vm_page **a_m;
898 int *a_count;
899 int a_centeridx;
900 vm_prot_t a_access_type;
901 int a_advice;
902 int a_flags;
903 } */ *ap = v;
904 struct vnode *vp = ap->a_vp;
905 int error;
906
907 /*
908 * just pass the request on to the underlying layer.
909 */
910
911 if (ap->a_flags & PGO_LOCKED) {
912 return EBUSY;
913 }
914 ap->a_vp = LAYERVPTOLOWERVP(vp);
915 simple_unlock(&vp->v_interlock);
916 simple_lock(&ap->a_vp->v_interlock);
917 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
918 return error;
919 }
920
921 int
922 layer_putpages(v)
923 void *v;
924 {
925 struct vop_putpages_args /* {
926 struct vnode *a_vp;
927 voff_t a_offlo;
928 voff_t a_offhi;
929 int a_flags;
930 } */ *ap = v;
931 struct vnode *vp = ap->a_vp;
932 int error;
933
934 /*
935 * just pass the request on to the underlying layer.
936 */
937
938 ap->a_vp = LAYERVPTOLOWERVP(vp);
939 simple_unlock(&vp->v_interlock);
940 simple_lock(&ap->a_vp->v_interlock);
941 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
942 return error;
943 }
944