layer_vnops.c revision 1.64 1 /* $NetBSD: layer_vnops.c,v 1.64 2017/05/07 08:21:57 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1999 National Aeronautics & Space Administration
5 * All rights reserved.
6 *
7 * This software was written by William Studenmund of the
8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the National Aeronautics & Space Administration
19 * nor the names of its contributors may be used to endorse or promote
20 * products derived from this software without specific prior written
21 * permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1992, 1993
38 * The Regents of the University of California. All rights reserved.
39 *
40 * This code is derived from software contributed to Berkeley by
41 * John Heidemann of the UCLA Ficus project.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
68 *
69 * Ancestors:
70 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
71 * Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
72 * ...and...
73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74 */
75
76 /*
77 * Generic layer vnode operations.
78 *
79 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
80 * the core implementation of stacked file-systems.
81 *
82 * The layerfs duplicates a portion of the file system name space under
83 * a new name. In this respect, it is similar to the loopback file system.
84 * It differs from the loopback fs in two respects: it is implemented using
85 * a stackable layers technique, and it is "layerfs-nodes" stack above all
86 * lower-layer vnodes, not just over directory vnodes.
87 *
88 * OPERATION OF LAYERFS
89 *
90 * The layerfs is the minimum file system layer, bypassing all possible
91 * operations to the lower layer for processing there. The majority of its
92 * activity centers on the bypass routine, through which nearly all vnode
93 * operations pass.
94 *
95 * The bypass routine accepts arbitrary vnode operations for handling by
96 * the lower layer. It begins by examining vnode operation arguments and
97 * replacing any layered nodes by their lower-layer equivalents. It then
98 * invokes an operation on the lower layer. Finally, it replaces the
99 * layered nodes in the arguments and, if a vnode is returned by the
100 * operation, stacks a layered node on top of the returned vnode.
101 *
102 * The bypass routine in this file, layer_bypass(), is suitable for use
103 * by many different layered filesystems. It can be used by multiple
104 * filesystems simultaneously. Alternatively, a layered fs may provide
105 * its own bypass routine, in which case layer_bypass() should be used as
106 * a model. For instance, the main functionality provided by umapfs, the user
107 * identity mapping file system, is handled by a custom bypass routine.
108 *
109 * Typically a layered fs registers its selected bypass routine as the
110 * default vnode operation in its vnodeopv_entry_desc table. Additionally
111 * the filesystem must store the bypass entry point in the layerm_bypass
112 * field of struct layer_mount. All other layer routines in this file will
113 * use the layerm_bypass() routine.
114 *
115 * Although the bypass routine handles most operations outright, a number
116 * of operations are special cased and handled by the layerfs. For instance,
117 * layer_getattr() must change the fsid being returned. While layer_lock()
118 * and layer_unlock() must handle any locking for the current vnode as well
119 * as pass the lock request down. layer_inactive() and layer_reclaim() are
120 * not bypassed so that they can handle freeing layerfs-specific data. Also,
121 * certain vnode operations (create, mknod, remove, link, rename, mkdir,
122 * rmdir, and symlink) change the locking state within the operation. Ideally
123 * these operations should not change the lock state, but should be changed
124 * to let the caller of the function unlock them. Otherwise, all intermediate
125 * vnode layers (such as union, umapfs, etc) must catch these functions to do
126 * the necessary locking at their layer.
127 *
128 * INSTANTIATING VNODE STACKS
129 *
130 * Mounting associates "layerfs-nodes" stack and lower layer, in effect
131 * stacking two VFSes. The initial mount creates a single vnode stack for
132 * the root of the new layerfs. All other vnode stacks are created as a
133 * result of vnode operations on this or other layerfs vnode stacks.
134 *
135 * New vnode stacks come into existence as a result of an operation which
136 * returns a vnode. The bypass routine stacks a layerfs-node above the new
137 * vnode before returning it to the caller.
138 *
139 * For example, imagine mounting a null layer with:
140 *
141 * "mount_null /usr/include /dev/layer/null"
142 *
143 * Changing directory to /dev/layer/null will assign the root layerfs-node,
144 * which was created when the null layer was mounted). Now consider opening
145 * "sys". A layer_lookup() would be performed on the root layerfs-node.
146 * This operation would bypass through to the lower layer which would return
147 * a vnode representing the UFS "sys". Then, layer_bypass() builds a
148 * layerfs-node aliasing the UFS "sys" and returns this to the caller.
149 * Later operations on the layerfs-node "sys" will repeat this process when
150 * constructing other vnode stacks.
151 *
152 * INVOKING OPERATIONS ON LOWER LAYERS
153 *
154 * There are two techniques to invoke operations on a lower layer when the
155 * operation cannot be completely bypassed. Each method is appropriate in
156 * different situations. In both cases, it is the responsibility of the
157 * aliasing layer to make the operation arguments "correct" for the lower
158 * layer by mapping any vnode arguments to the lower layer.
159 *
160 * The first approach is to call the aliasing layer's bypass routine. This
161 * method is most suitable when you wish to invoke the operation currently
162 * being handled on the lower layer. It has the advantage that the bypass
163 * routine already must do argument mapping. An example of this is
164 * layer_getattr().
165 *
166 * A second approach is to directly invoke vnode operations on the lower
167 * layer with the VOP_OPERATIONNAME interface. The advantage of this method
168 * is that it is easy to invoke arbitrary operations on the lower layer.
169 * The disadvantage is that vnode's arguments must be manually mapped.
170 */
171
172 #include <sys/cdefs.h>
173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.64 2017/05/07 08:21:57 hannken Exp $");
174
175 #include <sys/param.h>
176 #include <sys/systm.h>
177 #include <sys/proc.h>
178 #include <sys/time.h>
179 #include <sys/vnode.h>
180 #include <sys/mount.h>
181 #include <sys/namei.h>
182 #include <sys/kmem.h>
183 #include <sys/buf.h>
184 #include <sys/kauth.h>
185 #include <sys/fcntl.h>
186
187 #include <miscfs/genfs/layer.h>
188 #include <miscfs/genfs/layer_extern.h>
189 #include <miscfs/genfs/genfs.h>
190 #include <miscfs/specfs/specdev.h>
191
192 /*
193 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
194 * routine by John Heidemann.
195 * The new element for this version is that the whole nullfs
196 * system gained the concept of locks on the lower node.
197 * The 10-Apr-92 version was optimized for speed, throwing away some
198 * safety checks. It should still always work, but it's not as
199 * robust to programmer errors.
200 *
201 * In general, we map all vnodes going down and unmap them on the way back.
202 *
203 * Also, some BSD vnode operations have the side effect of vrele'ing
204 * their arguments. With stacking, the reference counts are held
205 * by the upper node, not the lower one, so we must handle these
206 * side-effects here. This is not of concern in Sun-derived systems
207 * since there are no such side-effects.
208 *
209 * New for the 08-June-99 version: we also handle operations which unlock
210 * the passed-in node (typically they vput the node).
211 *
212 * This makes the following assumptions:
213 * - only one returned vpp
214 * - no INOUT vpp's (Sun's vop_open has one of these)
215 * - the vnode operation vector of the first vnode should be used
216 * to determine what implementation of the op should be invoked
217 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
218 * problems on rmdir'ing mount points and renaming?)
219 */
220 int
221 layer_bypass(void *v)
222 {
223 struct vop_generic_args /* {
224 struct vnodeop_desc *a_desc;
225 <other random data follows, presumably>
226 } */ *ap = v;
227 int (**our_vnodeop_p)(void *);
228 struct vnode **this_vp_p;
229 int error;
230 struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
231 struct vnode **vps_p[VDESC_MAX_VPS];
232 struct vnode ***vppp;
233 struct mount *mp;
234 struct vnodeop_desc *descp = ap->a_desc;
235 int reles, i, flags;
236
237 #ifdef DIAGNOSTIC
238 /*
239 * We require at least one vp.
240 */
241 if (descp->vdesc_vp_offsets == NULL ||
242 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
243 panic("%s: no vp's in map.\n", __func__);
244 #endif
245
246 vps_p[0] =
247 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
248 vp0 = *vps_p[0];
249 mp = vp0->v_mount;
250 flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
251 our_vnodeop_p = vp0->v_op;
252
253 if (flags & LAYERFS_MBYPASSDEBUG)
254 printf("%s: %s\n", __func__, descp->vdesc_name);
255
256 /*
257 * Map the vnodes going in.
258 * Later, we'll invoke the operation based on
259 * the first mapped vnode's operation vector.
260 */
261 reles = descp->vdesc_flags;
262 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
263 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
264 break; /* bail out at end of list */
265 vps_p[i] = this_vp_p =
266 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
267 ap);
268 /*
269 * We're not guaranteed that any but the first vnode
270 * are of our type. Check for and don't map any
271 * that aren't. (We must always map first vp or vclean fails.)
272 */
273 if (i && (*this_vp_p == NULL ||
274 (*this_vp_p)->v_op != our_vnodeop_p)) {
275 old_vps[i] = NULL;
276 } else {
277 old_vps[i] = *this_vp_p;
278 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
279 /*
280 * XXX - Several operations have the side effect
281 * of vrele'ing their vp's. We must account for
282 * that. (This should go away in the future.)
283 */
284 if (reles & VDESC_VP0_WILLRELE)
285 vref(*this_vp_p);
286 }
287 }
288
289 /*
290 * Call the operation on the lower layer
291 * with the modified argument structure.
292 */
293 error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
294
295 /*
296 * Maintain the illusion of call-by-value
297 * by restoring vnodes in the argument structure
298 * to their original value.
299 */
300 reles = descp->vdesc_flags;
301 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
302 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
303 break; /* bail out at end of list */
304 if (old_vps[i]) {
305 *(vps_p[i]) = old_vps[i];
306 if (reles & VDESC_VP0_WILLRELE)
307 vrele(*(vps_p[i]));
308 }
309 }
310
311 /*
312 * Map the possible out-going vpp
313 * (Assumes that the lower layer always returns
314 * a VREF'ed vpp unless it gets an error.)
315 */
316 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
317 vppp = VOPARG_OFFSETTO(struct vnode***,
318 descp->vdesc_vpp_offset, ap);
319 /*
320 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
321 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
322 * as a lookup on "." would generate a locking error.
323 * So all the calls which get us here have a unlocked vpp. :-)
324 */
325 error = layer_node_create(mp, **vppp, *vppp);
326 if (error) {
327 vrele(**vppp);
328 **vppp = NULL;
329 }
330 }
331 return error;
332 }
333
334 /*
335 * We have to carry on the locking protocol on the layer vnodes
336 * as we progress through the tree. We also have to enforce read-only
337 * if this layer is mounted read-only.
338 */
339 int
340 layer_lookup(void *v)
341 {
342 struct vop_lookup_v2_args /* {
343 struct vnodeop_desc *a_desc;
344 struct vnode * a_dvp;
345 struct vnode ** a_vpp;
346 struct componentname * a_cnp;
347 } */ *ap = v;
348 struct componentname *cnp = ap->a_cnp;
349 struct vnode *dvp, *lvp, *ldvp;
350 int error, flags = cnp->cn_flags;
351
352 dvp = ap->a_dvp;
353
354 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
355 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
356 *ap->a_vpp = NULL;
357 return EROFS;
358 }
359
360 ldvp = LAYERVPTOLOWERVP(dvp);
361 ap->a_dvp = ldvp;
362 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
363 lvp = *ap->a_vpp;
364 *ap->a_vpp = NULL;
365
366 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
367 (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
368 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
369 error = EROFS;
370
371 /*
372 * We must do the same locking and unlocking at this layer as
373 * is done in the layers below us.
374 */
375 if (ldvp == lvp) {
376 /*
377 * Got the same object back, because we looked up ".",
378 * or ".." in the root node of a mount point.
379 * So we make another reference to dvp and return it.
380 */
381 vref(dvp);
382 *ap->a_vpp = dvp;
383 vrele(lvp);
384 } else if (lvp != NULL) {
385 /* Note: dvp and ldvp are both locked. */
386 error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
387 if (error) {
388 vrele(lvp);
389 }
390 }
391 return error;
392 }
393
394 /*
395 * Setattr call. Disallow write attempts if the layer is mounted read-only.
396 */
397 int
398 layer_setattr(void *v)
399 {
400 struct vop_setattr_args /* {
401 struct vnodeop_desc *a_desc;
402 struct vnode *a_vp;
403 struct vattr *a_vap;
404 kauth_cred_t a_cred;
405 struct lwp *a_l;
406 } */ *ap = v;
407 struct vnode *vp = ap->a_vp;
408 struct vattr *vap = ap->a_vap;
409
410 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
411 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
412 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
413 (vp->v_mount->mnt_flag & MNT_RDONLY))
414 return EROFS;
415 if (vap->va_size != VNOVAL) {
416 switch (vp->v_type) {
417 case VDIR:
418 return EISDIR;
419 case VCHR:
420 case VBLK:
421 case VSOCK:
422 case VFIFO:
423 return 0;
424 case VREG:
425 case VLNK:
426 default:
427 /*
428 * Disallow write attempts if the filesystem is
429 * mounted read-only.
430 */
431 if (vp->v_mount->mnt_flag & MNT_RDONLY)
432 return EROFS;
433 }
434 }
435 return LAYERFS_DO_BYPASS(vp, ap);
436 }
437
438 /*
439 * We handle getattr only to change the fsid.
440 */
441 int
442 layer_getattr(void *v)
443 {
444 struct vop_getattr_args /* {
445 struct vnode *a_vp;
446 struct vattr *a_vap;
447 kauth_cred_t a_cred;
448 struct lwp *a_l;
449 } */ *ap = v;
450 struct vnode *vp = ap->a_vp;
451 int error;
452
453 error = LAYERFS_DO_BYPASS(vp, ap);
454 if (error) {
455 return error;
456 }
457 /* Requires that arguments be restored. */
458 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
459 return 0;
460 }
461
462 int
463 layer_access(void *v)
464 {
465 struct vop_access_args /* {
466 struct vnode *a_vp;
467 int a_mode;
468 kauth_cred_t a_cred;
469 struct lwp *a_l;
470 } */ *ap = v;
471 struct vnode *vp = ap->a_vp;
472 mode_t mode = ap->a_mode;
473
474 /*
475 * Disallow write attempts on read-only layers;
476 * unless the file is a socket, fifo, or a block or
477 * character device resident on the file system.
478 */
479 if (mode & VWRITE) {
480 switch (vp->v_type) {
481 case VDIR:
482 case VLNK:
483 case VREG:
484 if (vp->v_mount->mnt_flag & MNT_RDONLY)
485 return EROFS;
486 break;
487 default:
488 break;
489 }
490 }
491 return LAYERFS_DO_BYPASS(vp, ap);
492 }
493
494 /*
495 * We must handle open to be able to catch MNT_NODEV and friends
496 * and increment the lower v_writecount.
497 */
498 int
499 layer_open(void *v)
500 {
501 struct vop_open_args /* {
502 const struct vnodeop_desc *a_desc;
503 struct vnode *a_vp;
504 int a_mode;
505 kauth_cred_t a_cred;
506 } */ *ap = v;
507 struct vnode *vp = ap->a_vp;
508 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
509 int error;
510
511 if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
512 (vp->v_mount->mnt_flag & MNT_NODEV))
513 return ENXIO;
514
515 error = LAYERFS_DO_BYPASS(vp, ap);
516 if (error == 0 && (ap->a_mode & FWRITE)) {
517 mutex_enter(lvp->v_interlock);
518 lvp->v_writecount++;
519 mutex_exit(lvp->v_interlock);
520 }
521 return error;
522 }
523
524 /*
525 * We must handle close to decrement the lower v_writecount.
526 */
527 int
528 layer_close(void *v)
529 {
530 struct vop_close_args /* {
531 const struct vnodeop_desc *a_desc;
532 struct vnode *a_vp;
533 int a_fflag;
534 kauth_cred_t a_cred;
535 } */ *ap = v;
536 struct vnode *vp = ap->a_vp;
537 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
538
539 if ((ap->a_fflag & FWRITE)) {
540 mutex_enter(lvp->v_interlock);
541 KASSERT(lvp->v_writecount > 0);
542 lvp->v_writecount--;
543 mutex_exit(lvp->v_interlock);
544 }
545 return LAYERFS_DO_BYPASS(vp, ap);
546 }
547
548 /*
549 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
550 * syncing the underlying vnodes, since they'll be fsync'ed when
551 * reclaimed; otherwise, pass it through to the underlying layer.
552 *
553 * XXX Do we still need to worry about shallow fsync?
554 */
555 int
556 layer_fsync(void *v)
557 {
558 struct vop_fsync_args /* {
559 struct vnode *a_vp;
560 kauth_cred_t a_cred;
561 int a_flags;
562 off_t offlo;
563 off_t offhi;
564 struct lwp *a_l;
565 } */ *ap = v;
566 int error;
567
568 if (ap->a_flags & FSYNC_RECLAIM) {
569 return 0;
570 }
571 if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
572 error = spec_fsync(v);
573 if (error)
574 return error;
575 }
576 return LAYERFS_DO_BYPASS(ap->a_vp, ap);
577 }
578
579 int
580 layer_inactive(void *v)
581 {
582 struct vop_inactive_v2_args /* {
583 struct vnode *a_vp;
584 bool *a_recycle;
585 } */ *ap = v;
586 struct vnode *vp = ap->a_vp;
587
588 /*
589 * If we did a remove, don't cache the node.
590 */
591 *ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
592
593 /*
594 * Do nothing (and _don't_ bypass).
595 * Wait to vrele lowervp until reclaim,
596 * so that until then our layer_node is in the
597 * cache and reusable.
598 *
599 * NEEDSWORK: Someday, consider inactive'ing
600 * the lowervp and then trying to reactivate it
601 * with capabilities (v_id)
602 * like they do in the name lookup cache code.
603 * That's too much work for now.
604 */
605
606 return 0;
607 }
608
609 int
610 layer_remove(void *v)
611 {
612 struct vop_remove_v2_args /* {
613 struct vnode *a_dvp;
614 struct vnode *a_vp;
615 struct componentname *a_cnp;
616 } */ *ap = v;
617 struct vnode *vp = ap->a_vp;
618 int error;
619
620 vref(vp);
621 error = LAYERFS_DO_BYPASS(vp, ap);
622 if (error == 0) {
623 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
624 }
625 vrele(vp);
626
627 return error;
628 }
629
630 int
631 layer_rename(void *v)
632 {
633 struct vop_rename_args /* {
634 struct vnode *a_fdvp;
635 struct vnode *a_fvp;
636 struct componentname *a_fcnp;
637 struct vnode *a_tdvp;
638 struct vnode *a_tvp;
639 struct componentname *a_tcnp;
640 } */ *ap = v;
641 struct vnode *fdvp = ap->a_fdvp, *tvp;
642 int error;
643
644 tvp = ap->a_tvp;
645 if (tvp) {
646 if (tvp->v_mount != fdvp->v_mount)
647 tvp = NULL;
648 else
649 vref(tvp);
650 }
651 error = LAYERFS_DO_BYPASS(fdvp, ap);
652 if (tvp) {
653 if (error == 0)
654 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
655 vrele(tvp);
656 }
657 return error;
658 }
659
660 int
661 layer_rmdir(void *v)
662 {
663 struct vop_rmdir_v2_args /* {
664 struct vnode *a_dvp;
665 struct vnode *a_vp;
666 struct componentname *a_cnp;
667 } */ *ap = v;
668 int error;
669 struct vnode *vp = ap->a_vp;
670
671 vref(vp);
672 error = LAYERFS_DO_BYPASS(vp, ap);
673 if (error == 0) {
674 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
675 }
676 vrele(vp);
677
678 return error;
679 }
680
681 int
682 layer_revoke(void *v)
683 {
684 struct vop_revoke_args /* {
685 struct vnode *a_vp;
686 int a_flags;
687 } */ *ap = v;
688 struct vnode *vp = ap->a_vp;
689 struct vnode *lvp = LAYERVPTOLOWERVP(vp);
690 int error;
691
692 /*
693 * We will most likely end up in vclean which uses the v_usecount
694 * to determine if a vnode is active. Take an extra reference on
695 * the lower vnode so it will always close and inactivate.
696 */
697 vref(lvp);
698 error = LAYERFS_DO_BYPASS(vp, ap);
699 vrele(lvp);
700
701 return error;
702 }
703
704 int
705 layer_reclaim(void *v)
706 {
707 struct vop_reclaim_args /* {
708 struct vnode *a_vp;
709 struct lwp *a_l;
710 } */ *ap = v;
711 struct vnode *vp = ap->a_vp;
712 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
713 struct layer_node *xp = VTOLAYER(vp);
714 struct vnode *lowervp = xp->layer_lowervp;
715
716 /*
717 * Note: in vop_reclaim, the node's struct lock has been
718 * decomissioned, so we have to be careful about calling
719 * VOP's on ourself. We must be careful as VXLOCK is set.
720 */
721 if (vp == lmp->layerm_rootvp) {
722 /*
723 * Oops! We no longer have a root node. Most likely reason is
724 * that someone forcably unmunted the underlying fs.
725 *
726 * Now getting the root vnode will fail. We're dead. :-(
727 */
728 lmp->layerm_rootvp = NULL;
729 }
730
731 mutex_enter(vp->v_interlock);
732 KASSERT(vp->v_interlock == lowervp->v_interlock);
733 lowervp->v_writecount -= vp->v_writecount;
734 mutex_exit(vp->v_interlock);
735
736 /* After this assignment, this node will not be re-used. */
737 xp->layer_lowervp = NULL;
738 kmem_free(vp->v_data, lmp->layerm_size);
739 vp->v_data = NULL;
740 vrele(lowervp);
741
742 return 0;
743 }
744
745 /*
746 * We just feed the returned vnode up to the caller - there's no need
747 * to build a layer node on top of the node on which we're going to do
748 * i/o. :-)
749 */
750 int
751 layer_bmap(void *v)
752 {
753 struct vop_bmap_args /* {
754 struct vnode *a_vp;
755 daddr_t a_bn;
756 struct vnode **a_vpp;
757 daddr_t *a_bnp;
758 int *a_runp;
759 } */ *ap = v;
760 struct vnode *vp;
761
762 vp = LAYERVPTOLOWERVP(ap->a_vp);
763 ap->a_vp = vp;
764
765 return VCALL(vp, ap->a_desc->vdesc_offset, ap);
766 }
767
768 int
769 layer_print(void *v)
770 {
771 struct vop_print_args /* {
772 struct vnode *a_vp;
773 } */ *ap = v;
774 struct vnode *vp = ap->a_vp;
775 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
776 return 0;
777 }
778
779 int
780 layer_getpages(void *v)
781 {
782 struct vop_getpages_args /* {
783 struct vnode *a_vp;
784 voff_t a_offset;
785 struct vm_page **a_m;
786 int *a_count;
787 int a_centeridx;
788 vm_prot_t a_access_type;
789 int a_advice;
790 int a_flags;
791 } */ *ap = v;
792 struct vnode *vp = ap->a_vp;
793
794 KASSERT(mutex_owned(vp->v_interlock));
795
796 if (ap->a_flags & PGO_LOCKED) {
797 return EBUSY;
798 }
799 ap->a_vp = LAYERVPTOLOWERVP(vp);
800 KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
801
802 /* Just pass the request on to the underlying layer. */
803 return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
804 }
805
806 int
807 layer_putpages(void *v)
808 {
809 struct vop_putpages_args /* {
810 struct vnode *a_vp;
811 voff_t a_offlo;
812 voff_t a_offhi;
813 int a_flags;
814 } */ *ap = v;
815 struct vnode *vp = ap->a_vp;
816
817 KASSERT(mutex_owned(vp->v_interlock));
818
819 ap->a_vp = LAYERVPTOLOWERVP(vp);
820 KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
821
822 if (ap->a_flags & PGO_RECLAIM) {
823 mutex_exit(vp->v_interlock);
824 return 0;
825 }
826
827 /* Just pass the request on to the underlying layer. */
828 return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
829 }
830