Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.64
      1 /*	$NetBSD: layer_vnops.c,v 1.64 2017/05/07 08:21:57 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1992, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * John Heidemann of the UCLA Ficus project.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68  *
     69  * Ancestors:
     70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72  *	...and...
     73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74  */
     75 
     76 /*
     77  * Generic layer vnode operations.
     78  *
     79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  * the core implementation of stacked file-systems.
     81  *
     82  * The layerfs duplicates a portion of the file system name space under
     83  * a new name.  In this respect, it is similar to the loopback file system.
     84  * It differs from the loopback fs in two respects: it is implemented using
     85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  * lower-layer vnodes, not just over directory vnodes.
     87  *
     88  * OPERATION OF LAYERFS
     89  *
     90  * The layerfs is the minimum file system layer, bypassing all possible
     91  * operations to the lower layer for processing there.  The majority of its
     92  * activity centers on the bypass routine, through which nearly all vnode
     93  * operations pass.
     94  *
     95  * The bypass routine accepts arbitrary vnode operations for handling by
     96  * the lower layer.  It begins by examining vnode operation arguments and
     97  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  * invokes an operation on the lower layer.  Finally, it replaces the
     99  * layered nodes in the arguments and, if a vnode is returned by the
    100  * operation, stacks a layered node on top of the returned vnode.
    101  *
    102  * The bypass routine in this file, layer_bypass(), is suitable for use
    103  * by many different layered filesystems. It can be used by multiple
    104  * filesystems simultaneously. Alternatively, a layered fs may provide
    105  * its own bypass routine, in which case layer_bypass() should be used as
    106  * a model. For instance, the main functionality provided by umapfs, the user
    107  * identity mapping file system, is handled by a custom bypass routine.
    108  *
    109  * Typically a layered fs registers its selected bypass routine as the
    110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111  * the filesystem must store the bypass entry point in the layerm_bypass
    112  * field of struct layer_mount. All other layer routines in this file will
    113  * use the layerm_bypass() routine.
    114  *
    115  * Although the bypass routine handles most operations outright, a number
    116  * of operations are special cased and handled by the layerfs.  For instance,
    117  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  * and layer_unlock() must handle any locking for the current vnode as well
    119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  * these operations should not change the lock state, but should be changed
    124  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126  * the necessary locking at their layer.
    127  *
    128  * INSTANTIATING VNODE STACKS
    129  *
    130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  * the root of the new layerfs.  All other vnode stacks are created as a
    133  * result of vnode operations on this or other layerfs vnode stacks.
    134  *
    135  * New vnode stacks come into existence as a result of an operation which
    136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137  * vnode before returning it to the caller.
    138  *
    139  * For example, imagine mounting a null layer with:
    140  *
    141  *	"mount_null /usr/include /dev/layer/null"
    142  *
    143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  * which was created when the null layer was mounted).  Now consider opening
    145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  * This operation would bypass through to the lower layer which would return
    147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  * Later operations on the layerfs-node "sys" will repeat this process when
    150  * constructing other vnode stacks.
    151  *
    152  * INVOKING OPERATIONS ON LOWER LAYERS
    153  *
    154  * There are two techniques to invoke operations on a lower layer when the
    155  * operation cannot be completely bypassed.  Each method is appropriate in
    156  * different situations.  In both cases, it is the responsibility of the
    157  * aliasing layer to make the operation arguments "correct" for the lower
    158  * layer by mapping any vnode arguments to the lower layer.
    159  *
    160  * The first approach is to call the aliasing layer's bypass routine.  This
    161  * method is most suitable when you wish to invoke the operation currently
    162  * being handled on the lower layer.  It has the advantage that the bypass
    163  * routine already must do argument mapping.  An example of this is
    164  * layer_getattr().
    165  *
    166  * A second approach is to directly invoke vnode operations on the lower
    167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  * The disadvantage is that vnode's arguments must be manually mapped.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.64 2017/05/07 08:21:57 hannken Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/systm.h>
    177 #include <sys/proc.h>
    178 #include <sys/time.h>
    179 #include <sys/vnode.h>
    180 #include <sys/mount.h>
    181 #include <sys/namei.h>
    182 #include <sys/kmem.h>
    183 #include <sys/buf.h>
    184 #include <sys/kauth.h>
    185 #include <sys/fcntl.h>
    186 
    187 #include <miscfs/genfs/layer.h>
    188 #include <miscfs/genfs/layer_extern.h>
    189 #include <miscfs/genfs/genfs.h>
    190 #include <miscfs/specfs/specdev.h>
    191 
    192 /*
    193  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    194  *		routine by John Heidemann.
    195  *	The new element for this version is that the whole nullfs
    196  * system gained the concept of locks on the lower node.
    197  *    The 10-Apr-92 version was optimized for speed, throwing away some
    198  * safety checks.  It should still always work, but it's not as
    199  * robust to programmer errors.
    200  *
    201  * In general, we map all vnodes going down and unmap them on the way back.
    202  *
    203  * Also, some BSD vnode operations have the side effect of vrele'ing
    204  * their arguments.  With stacking, the reference counts are held
    205  * by the upper node, not the lower one, so we must handle these
    206  * side-effects here.  This is not of concern in Sun-derived systems
    207  * since there are no such side-effects.
    208  *
    209  * New for the 08-June-99 version: we also handle operations which unlock
    210  * the passed-in node (typically they vput the node).
    211  *
    212  * This makes the following assumptions:
    213  * - only one returned vpp
    214  * - no INOUT vpp's (Sun's vop_open has one of these)
    215  * - the vnode operation vector of the first vnode should be used
    216  *   to determine what implementation of the op should be invoked
    217  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    218  *   problems on rmdir'ing mount points and renaming?)
    219  */
    220 int
    221 layer_bypass(void *v)
    222 {
    223 	struct vop_generic_args /* {
    224 		struct vnodeop_desc *a_desc;
    225 		<other random data follows, presumably>
    226 	} */ *ap = v;
    227 	int (**our_vnodeop_p)(void *);
    228 	struct vnode **this_vp_p;
    229 	int error;
    230 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    231 	struct vnode **vps_p[VDESC_MAX_VPS];
    232 	struct vnode ***vppp;
    233 	struct mount *mp;
    234 	struct vnodeop_desc *descp = ap->a_desc;
    235 	int reles, i, flags;
    236 
    237 #ifdef DIAGNOSTIC
    238 	/*
    239 	 * We require at least one vp.
    240 	 */
    241 	if (descp->vdesc_vp_offsets == NULL ||
    242 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    243 		panic("%s: no vp's in map.\n", __func__);
    244 #endif
    245 
    246 	vps_p[0] =
    247 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    248 	vp0 = *vps_p[0];
    249 	mp = vp0->v_mount;
    250 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    251 	our_vnodeop_p = vp0->v_op;
    252 
    253 	if (flags & LAYERFS_MBYPASSDEBUG)
    254 		printf("%s: %s\n", __func__, descp->vdesc_name);
    255 
    256 	/*
    257 	 * Map the vnodes going in.
    258 	 * Later, we'll invoke the operation based on
    259 	 * the first mapped vnode's operation vector.
    260 	 */
    261 	reles = descp->vdesc_flags;
    262 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    263 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    264 			break;   /* bail out at end of list */
    265 		vps_p[i] = this_vp_p =
    266 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    267 		    ap);
    268 		/*
    269 		 * We're not guaranteed that any but the first vnode
    270 		 * are of our type.  Check for and don't map any
    271 		 * that aren't.  (We must always map first vp or vclean fails.)
    272 		 */
    273 		if (i && (*this_vp_p == NULL ||
    274 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    275 			old_vps[i] = NULL;
    276 		} else {
    277 			old_vps[i] = *this_vp_p;
    278 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    279 			/*
    280 			 * XXX - Several operations have the side effect
    281 			 * of vrele'ing their vp's.  We must account for
    282 			 * that.  (This should go away in the future.)
    283 			 */
    284 			if (reles & VDESC_VP0_WILLRELE)
    285 				vref(*this_vp_p);
    286 		}
    287 	}
    288 
    289 	/*
    290 	 * Call the operation on the lower layer
    291 	 * with the modified argument structure.
    292 	 */
    293 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    294 
    295 	/*
    296 	 * Maintain the illusion of call-by-value
    297 	 * by restoring vnodes in the argument structure
    298 	 * to their original value.
    299 	 */
    300 	reles = descp->vdesc_flags;
    301 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    302 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    303 			break;   /* bail out at end of list */
    304 		if (old_vps[i]) {
    305 			*(vps_p[i]) = old_vps[i];
    306 			if (reles & VDESC_VP0_WILLRELE)
    307 				vrele(*(vps_p[i]));
    308 		}
    309 	}
    310 
    311 	/*
    312 	 * Map the possible out-going vpp
    313 	 * (Assumes that the lower layer always returns
    314 	 * a VREF'ed vpp unless it gets an error.)
    315 	 */
    316 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    317 		vppp = VOPARG_OFFSETTO(struct vnode***,
    318 				 descp->vdesc_vpp_offset, ap);
    319 		/*
    320 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
    321 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
    322 		 * as a lookup on "." would generate a locking error.
    323 		 * So all the calls which get us here have a unlocked vpp. :-)
    324 		 */
    325 		error = layer_node_create(mp, **vppp, *vppp);
    326 		if (error) {
    327 			vrele(**vppp);
    328 			**vppp = NULL;
    329 		}
    330 	}
    331 	return error;
    332 }
    333 
    334 /*
    335  * We have to carry on the locking protocol on the layer vnodes
    336  * as we progress through the tree. We also have to enforce read-only
    337  * if this layer is mounted read-only.
    338  */
    339 int
    340 layer_lookup(void *v)
    341 {
    342 	struct vop_lookup_v2_args /* {
    343 		struct vnodeop_desc *a_desc;
    344 		struct vnode * a_dvp;
    345 		struct vnode ** a_vpp;
    346 		struct componentname * a_cnp;
    347 	} */ *ap = v;
    348 	struct componentname *cnp = ap->a_cnp;
    349 	struct vnode *dvp, *lvp, *ldvp;
    350 	int error, flags = cnp->cn_flags;
    351 
    352 	dvp = ap->a_dvp;
    353 
    354 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    355 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    356 		*ap->a_vpp = NULL;
    357 		return EROFS;
    358 	}
    359 
    360 	ldvp = LAYERVPTOLOWERVP(dvp);
    361 	ap->a_dvp = ldvp;
    362 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    363 	lvp = *ap->a_vpp;
    364 	*ap->a_vpp = NULL;
    365 
    366 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    367 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    368 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    369 		error = EROFS;
    370 
    371 	/*
    372 	 * We must do the same locking and unlocking at this layer as
    373 	 * is done in the layers below us.
    374 	 */
    375 	if (ldvp == lvp) {
    376 		/*
    377 		 * Got the same object back, because we looked up ".",
    378 		 * or ".." in the root node of a mount point.
    379 		 * So we make another reference to dvp and return it.
    380 		 */
    381 		vref(dvp);
    382 		*ap->a_vpp = dvp;
    383 		vrele(lvp);
    384 	} else if (lvp != NULL) {
    385 		/* Note: dvp and ldvp are both locked. */
    386 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    387 		if (error) {
    388 			vrele(lvp);
    389 		}
    390 	}
    391 	return error;
    392 }
    393 
    394 /*
    395  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    396  */
    397 int
    398 layer_setattr(void *v)
    399 {
    400 	struct vop_setattr_args /* {
    401 		struct vnodeop_desc *a_desc;
    402 		struct vnode *a_vp;
    403 		struct vattr *a_vap;
    404 		kauth_cred_t a_cred;
    405 		struct lwp *a_l;
    406 	} */ *ap = v;
    407 	struct vnode *vp = ap->a_vp;
    408 	struct vattr *vap = ap->a_vap;
    409 
    410   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    411 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    412 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    413 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    414 		return EROFS;
    415 	if (vap->va_size != VNOVAL) {
    416  		switch (vp->v_type) {
    417  		case VDIR:
    418  			return EISDIR;
    419  		case VCHR:
    420  		case VBLK:
    421  		case VSOCK:
    422  		case VFIFO:
    423 			return 0;
    424 		case VREG:
    425 		case VLNK:
    426  		default:
    427 			/*
    428 			 * Disallow write attempts if the filesystem is
    429 			 * mounted read-only.
    430 			 */
    431 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    432 				return EROFS;
    433 		}
    434 	}
    435 	return LAYERFS_DO_BYPASS(vp, ap);
    436 }
    437 
    438 /*
    439  *  We handle getattr only to change the fsid.
    440  */
    441 int
    442 layer_getattr(void *v)
    443 {
    444 	struct vop_getattr_args /* {
    445 		struct vnode *a_vp;
    446 		struct vattr *a_vap;
    447 		kauth_cred_t a_cred;
    448 		struct lwp *a_l;
    449 	} */ *ap = v;
    450 	struct vnode *vp = ap->a_vp;
    451 	int error;
    452 
    453 	error = LAYERFS_DO_BYPASS(vp, ap);
    454 	if (error) {
    455 		return error;
    456 	}
    457 	/* Requires that arguments be restored. */
    458 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    459 	return 0;
    460 }
    461 
    462 int
    463 layer_access(void *v)
    464 {
    465 	struct vop_access_args /* {
    466 		struct vnode *a_vp;
    467 		int  a_mode;
    468 		kauth_cred_t a_cred;
    469 		struct lwp *a_l;
    470 	} */ *ap = v;
    471 	struct vnode *vp = ap->a_vp;
    472 	mode_t mode = ap->a_mode;
    473 
    474 	/*
    475 	 * Disallow write attempts on read-only layers;
    476 	 * unless the file is a socket, fifo, or a block or
    477 	 * character device resident on the file system.
    478 	 */
    479 	if (mode & VWRITE) {
    480 		switch (vp->v_type) {
    481 		case VDIR:
    482 		case VLNK:
    483 		case VREG:
    484 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    485 				return EROFS;
    486 			break;
    487 		default:
    488 			break;
    489 		}
    490 	}
    491 	return LAYERFS_DO_BYPASS(vp, ap);
    492 }
    493 
    494 /*
    495  * We must handle open to be able to catch MNT_NODEV and friends
    496  * and increment the lower v_writecount.
    497  */
    498 int
    499 layer_open(void *v)
    500 {
    501 	struct vop_open_args /* {
    502 		const struct vnodeop_desc *a_desc;
    503 		struct vnode *a_vp;
    504 		int a_mode;
    505 		kauth_cred_t a_cred;
    506 	} */ *ap = v;
    507 	struct vnode *vp = ap->a_vp;
    508 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    509 	int error;
    510 
    511 	if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
    512 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    513 		return ENXIO;
    514 
    515 	error = LAYERFS_DO_BYPASS(vp, ap);
    516 	if (error == 0 && (ap->a_mode & FWRITE)) {
    517 		mutex_enter(lvp->v_interlock);
    518 		lvp->v_writecount++;
    519 		mutex_exit(lvp->v_interlock);
    520 	}
    521 	return error;
    522 }
    523 
    524 /*
    525  * We must handle close to decrement the lower v_writecount.
    526  */
    527 int
    528 layer_close(void *v)
    529 {
    530 	struct vop_close_args /* {
    531 		const struct vnodeop_desc *a_desc;
    532 		struct vnode *a_vp;
    533 		int a_fflag;
    534 		kauth_cred_t a_cred;
    535 	} */ *ap = v;
    536 	struct vnode *vp = ap->a_vp;
    537 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    538 
    539 	if ((ap->a_fflag & FWRITE)) {
    540 		mutex_enter(lvp->v_interlock);
    541 		KASSERT(lvp->v_writecount > 0);
    542 		lvp->v_writecount--;
    543 		mutex_exit(lvp->v_interlock);
    544 	}
    545 	return LAYERFS_DO_BYPASS(vp, ap);
    546 }
    547 
    548 /*
    549  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    550  * syncing the underlying vnodes, since they'll be fsync'ed when
    551  * reclaimed; otherwise, pass it through to the underlying layer.
    552  *
    553  * XXX Do we still need to worry about shallow fsync?
    554  */
    555 int
    556 layer_fsync(void *v)
    557 {
    558 	struct vop_fsync_args /* {
    559 		struct vnode *a_vp;
    560 		kauth_cred_t a_cred;
    561 		int  a_flags;
    562 		off_t offlo;
    563 		off_t offhi;
    564 		struct lwp *a_l;
    565 	} */ *ap = v;
    566 	int error;
    567 
    568 	if (ap->a_flags & FSYNC_RECLAIM) {
    569 		return 0;
    570 	}
    571 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    572 		error = spec_fsync(v);
    573 		if (error)
    574 			return error;
    575 	}
    576 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    577 }
    578 
    579 int
    580 layer_inactive(void *v)
    581 {
    582 	struct vop_inactive_v2_args /* {
    583 		struct vnode *a_vp;
    584 		bool *a_recycle;
    585 	} */ *ap = v;
    586 	struct vnode *vp = ap->a_vp;
    587 
    588 	/*
    589 	 * If we did a remove, don't cache the node.
    590 	 */
    591 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    592 
    593 	/*
    594 	 * Do nothing (and _don't_ bypass).
    595 	 * Wait to vrele lowervp until reclaim,
    596 	 * so that until then our layer_node is in the
    597 	 * cache and reusable.
    598 	 *
    599 	 * NEEDSWORK: Someday, consider inactive'ing
    600 	 * the lowervp and then trying to reactivate it
    601 	 * with capabilities (v_id)
    602 	 * like they do in the name lookup cache code.
    603 	 * That's too much work for now.
    604 	 */
    605 
    606 	return 0;
    607 }
    608 
    609 int
    610 layer_remove(void *v)
    611 {
    612 	struct vop_remove_v2_args /* {
    613 		struct vnode		*a_dvp;
    614 		struct vnode		*a_vp;
    615 		struct componentname	*a_cnp;
    616 	} */ *ap = v;
    617 	struct vnode *vp = ap->a_vp;
    618 	int error;
    619 
    620 	vref(vp);
    621 	error = LAYERFS_DO_BYPASS(vp, ap);
    622 	if (error == 0) {
    623 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    624 	}
    625 	vrele(vp);
    626 
    627 	return error;
    628 }
    629 
    630 int
    631 layer_rename(void *v)
    632 {
    633 	struct vop_rename_args  /* {
    634 		struct vnode		*a_fdvp;
    635 		struct vnode		*a_fvp;
    636 		struct componentname	*a_fcnp;
    637 		struct vnode		*a_tdvp;
    638 		struct vnode		*a_tvp;
    639 		struct componentname	*a_tcnp;
    640 	} */ *ap = v;
    641 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    642 	int error;
    643 
    644 	tvp = ap->a_tvp;
    645 	if (tvp) {
    646 		if (tvp->v_mount != fdvp->v_mount)
    647 			tvp = NULL;
    648 		else
    649 			vref(tvp);
    650 	}
    651 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    652 	if (tvp) {
    653 		if (error == 0)
    654 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    655 		vrele(tvp);
    656 	}
    657 	return error;
    658 }
    659 
    660 int
    661 layer_rmdir(void *v)
    662 {
    663 	struct vop_rmdir_v2_args /* {
    664 		struct vnode		*a_dvp;
    665 		struct vnode		*a_vp;
    666 		struct componentname	*a_cnp;
    667 	} */ *ap = v;
    668 	int		error;
    669 	struct vnode	*vp = ap->a_vp;
    670 
    671 	vref(vp);
    672 	error = LAYERFS_DO_BYPASS(vp, ap);
    673 	if (error == 0) {
    674 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    675 	}
    676 	vrele(vp);
    677 
    678 	return error;
    679 }
    680 
    681 int
    682 layer_revoke(void *v)
    683 {
    684         struct vop_revoke_args /* {
    685 		struct vnode *a_vp;
    686 		int a_flags;
    687 	} */ *ap = v;
    688 	struct vnode *vp = ap->a_vp;
    689 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    690 	int error;
    691 
    692 	/*
    693 	 * We will most likely end up in vclean which uses the v_usecount
    694 	 * to determine if a vnode is active.  Take an extra reference on
    695 	 * the lower vnode so it will always close and inactivate.
    696 	 */
    697 	vref(lvp);
    698 	error = LAYERFS_DO_BYPASS(vp, ap);
    699 	vrele(lvp);
    700 
    701 	return error;
    702 }
    703 
    704 int
    705 layer_reclaim(void *v)
    706 {
    707 	struct vop_reclaim_args /* {
    708 		struct vnode *a_vp;
    709 		struct lwp *a_l;
    710 	} */ *ap = v;
    711 	struct vnode *vp = ap->a_vp;
    712 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    713 	struct layer_node *xp = VTOLAYER(vp);
    714 	struct vnode *lowervp = xp->layer_lowervp;
    715 
    716 	/*
    717 	 * Note: in vop_reclaim, the node's struct lock has been
    718 	 * decomissioned, so we have to be careful about calling
    719 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    720 	 */
    721 	if (vp == lmp->layerm_rootvp) {
    722 		/*
    723 		 * Oops! We no longer have a root node. Most likely reason is
    724 		 * that someone forcably unmunted the underlying fs.
    725 		 *
    726 		 * Now getting the root vnode will fail. We're dead. :-(
    727 		 */
    728 		lmp->layerm_rootvp = NULL;
    729 	}
    730 
    731 	mutex_enter(vp->v_interlock);
    732 	KASSERT(vp->v_interlock == lowervp->v_interlock);
    733 	lowervp->v_writecount -= vp->v_writecount;
    734 	mutex_exit(vp->v_interlock);
    735 
    736 	/* After this assignment, this node will not be re-used. */
    737 	xp->layer_lowervp = NULL;
    738 	kmem_free(vp->v_data, lmp->layerm_size);
    739 	vp->v_data = NULL;
    740 	vrele(lowervp);
    741 
    742 	return 0;
    743 }
    744 
    745 /*
    746  * We just feed the returned vnode up to the caller - there's no need
    747  * to build a layer node on top of the node on which we're going to do
    748  * i/o. :-)
    749  */
    750 int
    751 layer_bmap(void *v)
    752 {
    753 	struct vop_bmap_args /* {
    754 		struct vnode *a_vp;
    755 		daddr_t  a_bn;
    756 		struct vnode **a_vpp;
    757 		daddr_t *a_bnp;
    758 		int *a_runp;
    759 	} */ *ap = v;
    760 	struct vnode *vp;
    761 
    762 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    763 	ap->a_vp = vp;
    764 
    765 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    766 }
    767 
    768 int
    769 layer_print(void *v)
    770 {
    771 	struct vop_print_args /* {
    772 		struct vnode *a_vp;
    773 	} */ *ap = v;
    774 	struct vnode *vp = ap->a_vp;
    775 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    776 	return 0;
    777 }
    778 
    779 int
    780 layer_getpages(void *v)
    781 {
    782 	struct vop_getpages_args /* {
    783 		struct vnode *a_vp;
    784 		voff_t a_offset;
    785 		struct vm_page **a_m;
    786 		int *a_count;
    787 		int a_centeridx;
    788 		vm_prot_t a_access_type;
    789 		int a_advice;
    790 		int a_flags;
    791 	} */ *ap = v;
    792 	struct vnode *vp = ap->a_vp;
    793 
    794 	KASSERT(mutex_owned(vp->v_interlock));
    795 
    796 	if (ap->a_flags & PGO_LOCKED) {
    797 		return EBUSY;
    798 	}
    799 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    800 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    801 
    802 	/* Just pass the request on to the underlying layer. */
    803 	return VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    804 }
    805 
    806 int
    807 layer_putpages(void *v)
    808 {
    809 	struct vop_putpages_args /* {
    810 		struct vnode *a_vp;
    811 		voff_t a_offlo;
    812 		voff_t a_offhi;
    813 		int a_flags;
    814 	} */ *ap = v;
    815 	struct vnode *vp = ap->a_vp;
    816 
    817 	KASSERT(mutex_owned(vp->v_interlock));
    818 
    819 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    820 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    821 
    822 	if (ap->a_flags & PGO_RECLAIM) {
    823 		mutex_exit(vp->v_interlock);
    824 		return 0;
    825 	}
    826 
    827 	/* Just pass the request on to the underlying layer. */
    828 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    829 }
    830