Home | History | Annotate | Line # | Download | only in genfs
layer_vnops.c revision 1.65
      1 /*	$NetBSD: layer_vnops.c,v 1.65 2017/05/24 09:54:40 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1999 National Aeronautics & Space Administration
      5  * All rights reserved.
      6  *
      7  * This software was written by William Studenmund of the
      8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the National Aeronautics & Space Administration
     19  *    nor the names of its contributors may be used to endorse or promote
     20  *    products derived from this software without specific prior written
     21  *    permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
     27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
     28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1992, 1993
     38  *	The Regents of the University of California.  All rights reserved.
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * John Heidemann of the UCLA Ficus project.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
     68  *
     69  * Ancestors:
     70  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
     71  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
     72  *	...and...
     73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
     74  */
     75 
     76 /*
     77  * Generic layer vnode operations.
     78  *
     79  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
     80  * the core implementation of stacked file-systems.
     81  *
     82  * The layerfs duplicates a portion of the file system name space under
     83  * a new name.  In this respect, it is similar to the loopback file system.
     84  * It differs from the loopback fs in two respects: it is implemented using
     85  * a stackable layers technique, and it is "layerfs-nodes" stack above all
     86  * lower-layer vnodes, not just over directory vnodes.
     87  *
     88  * OPERATION OF LAYERFS
     89  *
     90  * The layerfs is the minimum file system layer, bypassing all possible
     91  * operations to the lower layer for processing there.  The majority of its
     92  * activity centers on the bypass routine, through which nearly all vnode
     93  * operations pass.
     94  *
     95  * The bypass routine accepts arbitrary vnode operations for handling by
     96  * the lower layer.  It begins by examining vnode operation arguments and
     97  * replacing any layered nodes by their lower-layer equivalents.  It then
     98  * invokes an operation on the lower layer.  Finally, it replaces the
     99  * layered nodes in the arguments and, if a vnode is returned by the
    100  * operation, stacks a layered node on top of the returned vnode.
    101  *
    102  * The bypass routine in this file, layer_bypass(), is suitable for use
    103  * by many different layered filesystems. It can be used by multiple
    104  * filesystems simultaneously. Alternatively, a layered fs may provide
    105  * its own bypass routine, in which case layer_bypass() should be used as
    106  * a model. For instance, the main functionality provided by umapfs, the user
    107  * identity mapping file system, is handled by a custom bypass routine.
    108  *
    109  * Typically a layered fs registers its selected bypass routine as the
    110  * default vnode operation in its vnodeopv_entry_desc table. Additionally
    111  * the filesystem must store the bypass entry point in the layerm_bypass
    112  * field of struct layer_mount. All other layer routines in this file will
    113  * use the layerm_bypass() routine.
    114  *
    115  * Although the bypass routine handles most operations outright, a number
    116  * of operations are special cased and handled by the layerfs.  For instance,
    117  * layer_getattr() must change the fsid being returned.  While layer_lock()
    118  * and layer_unlock() must handle any locking for the current vnode as well
    119  * as pass the lock request down.  layer_inactive() and layer_reclaim() are
    120  * not bypassed so that they can handle freeing layerfs-specific data.  Also,
    121  * certain vnode operations (create, mknod, remove, link, rename, mkdir,
    122  * rmdir, and symlink) change the locking state within the operation.  Ideally
    123  * these operations should not change the lock state, but should be changed
    124  * to let the caller of the function unlock them.  Otherwise, all intermediate
    125  * vnode layers (such as union, umapfs, etc) must catch these functions to do
    126  * the necessary locking at their layer.
    127  *
    128  * INSTANTIATING VNODE STACKS
    129  *
    130  * Mounting associates "layerfs-nodes" stack and lower layer, in effect
    131  * stacking two VFSes.  The initial mount creates a single vnode stack for
    132  * the root of the new layerfs.  All other vnode stacks are created as a
    133  * result of vnode operations on this or other layerfs vnode stacks.
    134  *
    135  * New vnode stacks come into existence as a result of an operation which
    136  * returns a vnode.  The bypass routine stacks a layerfs-node above the new
    137  * vnode before returning it to the caller.
    138  *
    139  * For example, imagine mounting a null layer with:
    140  *
    141  *	"mount_null /usr/include /dev/layer/null"
    142  *
    143  * Changing directory to /dev/layer/null will assign the root layerfs-node,
    144  * which was created when the null layer was mounted).  Now consider opening
    145  * "sys".  A layer_lookup() would be performed on the root layerfs-node.
    146  * This operation would bypass through to the lower layer which would return
    147  * a vnode representing the UFS "sys".  Then, layer_bypass() builds a
    148  * layerfs-node aliasing the UFS "sys" and returns this to the caller.
    149  * Later operations on the layerfs-node "sys" will repeat this process when
    150  * constructing other vnode stacks.
    151  *
    152  * INVOKING OPERATIONS ON LOWER LAYERS
    153  *
    154  * There are two techniques to invoke operations on a lower layer when the
    155  * operation cannot be completely bypassed.  Each method is appropriate in
    156  * different situations.  In both cases, it is the responsibility of the
    157  * aliasing layer to make the operation arguments "correct" for the lower
    158  * layer by mapping any vnode arguments to the lower layer.
    159  *
    160  * The first approach is to call the aliasing layer's bypass routine.  This
    161  * method is most suitable when you wish to invoke the operation currently
    162  * being handled on the lower layer.  It has the advantage that the bypass
    163  * routine already must do argument mapping.  An example of this is
    164  * layer_getattr().
    165  *
    166  * A second approach is to directly invoke vnode operations on the lower
    167  * layer with the VOP_OPERATIONNAME interface.  The advantage of this method
    168  * is that it is easy to invoke arbitrary operations on the lower layer.
    169  * The disadvantage is that vnode's arguments must be manually mapped.
    170  */
    171 
    172 #include <sys/cdefs.h>
    173 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.65 2017/05/24 09:54:40 hannken Exp $");
    174 
    175 #include <sys/param.h>
    176 #include <sys/systm.h>
    177 #include <sys/proc.h>
    178 #include <sys/time.h>
    179 #include <sys/vnode.h>
    180 #include <sys/mount.h>
    181 #include <sys/namei.h>
    182 #include <sys/kmem.h>
    183 #include <sys/buf.h>
    184 #include <sys/kauth.h>
    185 #include <sys/fcntl.h>
    186 #include <sys/fstrans.h>
    187 
    188 #include <miscfs/genfs/layer.h>
    189 #include <miscfs/genfs/layer_extern.h>
    190 #include <miscfs/genfs/genfs.h>
    191 #include <miscfs/specfs/specdev.h>
    192 
    193 /*
    194  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
    195  *		routine by John Heidemann.
    196  *	The new element for this version is that the whole nullfs
    197  * system gained the concept of locks on the lower node.
    198  *    The 10-Apr-92 version was optimized for speed, throwing away some
    199  * safety checks.  It should still always work, but it's not as
    200  * robust to programmer errors.
    201  *
    202  * In general, we map all vnodes going down and unmap them on the way back.
    203  *
    204  * Also, some BSD vnode operations have the side effect of vrele'ing
    205  * their arguments.  With stacking, the reference counts are held
    206  * by the upper node, not the lower one, so we must handle these
    207  * side-effects here.  This is not of concern in Sun-derived systems
    208  * since there are no such side-effects.
    209  *
    210  * New for the 08-June-99 version: we also handle operations which unlock
    211  * the passed-in node (typically they vput the node).
    212  *
    213  * This makes the following assumptions:
    214  * - only one returned vpp
    215  * - no INOUT vpp's (Sun's vop_open has one of these)
    216  * - the vnode operation vector of the first vnode should be used
    217  *   to determine what implementation of the op should be invoked
    218  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
    219  *   problems on rmdir'ing mount points and renaming?)
    220  */
    221 int
    222 layer_bypass(void *v)
    223 {
    224 	struct vop_generic_args /* {
    225 		struct vnodeop_desc *a_desc;
    226 		<other random data follows, presumably>
    227 	} */ *ap = v;
    228 	int (**our_vnodeop_p)(void *);
    229 	struct vnode **this_vp_p;
    230 	int error;
    231 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
    232 	struct vnode **vps_p[VDESC_MAX_VPS];
    233 	struct vnode ***vppp;
    234 	struct mount *mp;
    235 	struct vnodeop_desc *descp = ap->a_desc;
    236 	int reles, i, flags;
    237 
    238 #ifdef DIAGNOSTIC
    239 	/*
    240 	 * We require at least one vp.
    241 	 */
    242 	if (descp->vdesc_vp_offsets == NULL ||
    243 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
    244 		panic("%s: no vp's in map.\n", __func__);
    245 #endif
    246 
    247 	vps_p[0] =
    248 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
    249 	vp0 = *vps_p[0];
    250 	mp = vp0->v_mount;
    251 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
    252 	our_vnodeop_p = vp0->v_op;
    253 
    254 	if (flags & LAYERFS_MBYPASSDEBUG)
    255 		printf("%s: %s\n", __func__, descp->vdesc_name);
    256 
    257 	/*
    258 	 * Map the vnodes going in.
    259 	 * Later, we'll invoke the operation based on
    260 	 * the first mapped vnode's operation vector.
    261 	 */
    262 	reles = descp->vdesc_flags;
    263 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    264 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    265 			break;   /* bail out at end of list */
    266 		vps_p[i] = this_vp_p =
    267 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
    268 		    ap);
    269 		/*
    270 		 * We're not guaranteed that any but the first vnode
    271 		 * are of our type.  Check for and don't map any
    272 		 * that aren't.  (We must always map first vp or vclean fails.)
    273 		 */
    274 		if (i && (*this_vp_p == NULL ||
    275 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
    276 			old_vps[i] = NULL;
    277 		} else {
    278 			old_vps[i] = *this_vp_p;
    279 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
    280 			/*
    281 			 * XXX - Several operations have the side effect
    282 			 * of vrele'ing their vp's.  We must account for
    283 			 * that.  (This should go away in the future.)
    284 			 */
    285 			if (reles & VDESC_VP0_WILLRELE)
    286 				vref(*this_vp_p);
    287 		}
    288 	}
    289 
    290 	/*
    291 	 * Call the operation on the lower layer
    292 	 * with the modified argument structure.
    293 	 */
    294 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
    295 
    296 	/*
    297 	 * Maintain the illusion of call-by-value
    298 	 * by restoring vnodes in the argument structure
    299 	 * to their original value.
    300 	 */
    301 	reles = descp->vdesc_flags;
    302 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
    303 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
    304 			break;   /* bail out at end of list */
    305 		if (old_vps[i]) {
    306 			*(vps_p[i]) = old_vps[i];
    307 			if (reles & VDESC_VP0_WILLRELE)
    308 				vrele(*(vps_p[i]));
    309 		}
    310 	}
    311 
    312 	/*
    313 	 * Map the possible out-going vpp
    314 	 * (Assumes that the lower layer always returns
    315 	 * a VREF'ed vpp unless it gets an error.)
    316 	 */
    317 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && !error) {
    318 		vppp = VOPARG_OFFSETTO(struct vnode***,
    319 				 descp->vdesc_vpp_offset, ap);
    320 		/*
    321 		 * Only vop_lookup, vop_create, vop_makedir, vop_mknod
    322 		 * and vop_symlink return vpp's. vop_lookup doesn't call bypass
    323 		 * as a lookup on "." would generate a locking error.
    324 		 * So all the calls which get us here have a unlocked vpp. :-)
    325 		 */
    326 		error = layer_node_create(mp, **vppp, *vppp);
    327 		if (error) {
    328 			vrele(**vppp);
    329 			**vppp = NULL;
    330 		}
    331 	}
    332 	return error;
    333 }
    334 
    335 /*
    336  * We have to carry on the locking protocol on the layer vnodes
    337  * as we progress through the tree. We also have to enforce read-only
    338  * if this layer is mounted read-only.
    339  */
    340 int
    341 layer_lookup(void *v)
    342 {
    343 	struct vop_lookup_v2_args /* {
    344 		struct vnodeop_desc *a_desc;
    345 		struct vnode * a_dvp;
    346 		struct vnode ** a_vpp;
    347 		struct componentname * a_cnp;
    348 	} */ *ap = v;
    349 	struct componentname *cnp = ap->a_cnp;
    350 	struct vnode *dvp, *lvp, *ldvp;
    351 	int error, flags = cnp->cn_flags;
    352 
    353 	dvp = ap->a_dvp;
    354 
    355 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    356 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) {
    357 		*ap->a_vpp = NULL;
    358 		return EROFS;
    359 	}
    360 
    361 	ldvp = LAYERVPTOLOWERVP(dvp);
    362 	ap->a_dvp = ldvp;
    363 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
    364 	lvp = *ap->a_vpp;
    365 	*ap->a_vpp = NULL;
    366 
    367 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
    368 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
    369 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
    370 		error = EROFS;
    371 
    372 	/*
    373 	 * We must do the same locking and unlocking at this layer as
    374 	 * is done in the layers below us.
    375 	 */
    376 	if (ldvp == lvp) {
    377 		/*
    378 		 * Got the same object back, because we looked up ".",
    379 		 * or ".." in the root node of a mount point.
    380 		 * So we make another reference to dvp and return it.
    381 		 */
    382 		vref(dvp);
    383 		*ap->a_vpp = dvp;
    384 		vrele(lvp);
    385 	} else if (lvp != NULL) {
    386 		/* Note: dvp and ldvp are both locked. */
    387 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
    388 		if (error) {
    389 			vrele(lvp);
    390 		}
    391 	}
    392 	return error;
    393 }
    394 
    395 /*
    396  * Setattr call. Disallow write attempts if the layer is mounted read-only.
    397  */
    398 int
    399 layer_setattr(void *v)
    400 {
    401 	struct vop_setattr_args /* {
    402 		struct vnodeop_desc *a_desc;
    403 		struct vnode *a_vp;
    404 		struct vattr *a_vap;
    405 		kauth_cred_t a_cred;
    406 		struct lwp *a_l;
    407 	} */ *ap = v;
    408 	struct vnode *vp = ap->a_vp;
    409 	struct vattr *vap = ap->a_vap;
    410 
    411   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
    412 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
    413 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
    414 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
    415 		return EROFS;
    416 	if (vap->va_size != VNOVAL) {
    417  		switch (vp->v_type) {
    418  		case VDIR:
    419  			return EISDIR;
    420  		case VCHR:
    421  		case VBLK:
    422  		case VSOCK:
    423  		case VFIFO:
    424 			return 0;
    425 		case VREG:
    426 		case VLNK:
    427  		default:
    428 			/*
    429 			 * Disallow write attempts if the filesystem is
    430 			 * mounted read-only.
    431 			 */
    432 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    433 				return EROFS;
    434 		}
    435 	}
    436 	return LAYERFS_DO_BYPASS(vp, ap);
    437 }
    438 
    439 /*
    440  *  We handle getattr only to change the fsid.
    441  */
    442 int
    443 layer_getattr(void *v)
    444 {
    445 	struct vop_getattr_args /* {
    446 		struct vnode *a_vp;
    447 		struct vattr *a_vap;
    448 		kauth_cred_t a_cred;
    449 		struct lwp *a_l;
    450 	} */ *ap = v;
    451 	struct vnode *vp = ap->a_vp;
    452 	int error;
    453 
    454 	error = LAYERFS_DO_BYPASS(vp, ap);
    455 	if (error) {
    456 		return error;
    457 	}
    458 	/* Requires that arguments be restored. */
    459 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
    460 	return 0;
    461 }
    462 
    463 int
    464 layer_access(void *v)
    465 {
    466 	struct vop_access_args /* {
    467 		struct vnode *a_vp;
    468 		int  a_mode;
    469 		kauth_cred_t a_cred;
    470 		struct lwp *a_l;
    471 	} */ *ap = v;
    472 	struct vnode *vp = ap->a_vp;
    473 	mode_t mode = ap->a_mode;
    474 
    475 	/*
    476 	 * Disallow write attempts on read-only layers;
    477 	 * unless the file is a socket, fifo, or a block or
    478 	 * character device resident on the file system.
    479 	 */
    480 	if (mode & VWRITE) {
    481 		switch (vp->v_type) {
    482 		case VDIR:
    483 		case VLNK:
    484 		case VREG:
    485 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
    486 				return EROFS;
    487 			break;
    488 		default:
    489 			break;
    490 		}
    491 	}
    492 	return LAYERFS_DO_BYPASS(vp, ap);
    493 }
    494 
    495 /*
    496  * We must handle open to be able to catch MNT_NODEV and friends
    497  * and increment the lower v_writecount.
    498  */
    499 int
    500 layer_open(void *v)
    501 {
    502 	struct vop_open_args /* {
    503 		const struct vnodeop_desc *a_desc;
    504 		struct vnode *a_vp;
    505 		int a_mode;
    506 		kauth_cred_t a_cred;
    507 	} */ *ap = v;
    508 	struct vnode *vp = ap->a_vp;
    509 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    510 	int error;
    511 
    512 	if (((lvp->v_type == VBLK) || (lvp->v_type == VCHR)) &&
    513 	    (vp->v_mount->mnt_flag & MNT_NODEV))
    514 		return ENXIO;
    515 
    516 	error = LAYERFS_DO_BYPASS(vp, ap);
    517 	if (error == 0 && (ap->a_mode & FWRITE)) {
    518 		mutex_enter(lvp->v_interlock);
    519 		lvp->v_writecount++;
    520 		mutex_exit(lvp->v_interlock);
    521 	}
    522 	return error;
    523 }
    524 
    525 /*
    526  * We must handle close to decrement the lower v_writecount.
    527  */
    528 int
    529 layer_close(void *v)
    530 {
    531 	struct vop_close_args /* {
    532 		const struct vnodeop_desc *a_desc;
    533 		struct vnode *a_vp;
    534 		int a_fflag;
    535 		kauth_cred_t a_cred;
    536 	} */ *ap = v;
    537 	struct vnode *vp = ap->a_vp;
    538 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    539 
    540 	if ((ap->a_fflag & FWRITE)) {
    541 		mutex_enter(lvp->v_interlock);
    542 		KASSERT(lvp->v_writecount > 0);
    543 		lvp->v_writecount--;
    544 		mutex_exit(lvp->v_interlock);
    545 	}
    546 	return LAYERFS_DO_BYPASS(vp, ap);
    547 }
    548 
    549 /*
    550  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
    551  * syncing the underlying vnodes, since they'll be fsync'ed when
    552  * reclaimed; otherwise, pass it through to the underlying layer.
    553  *
    554  * XXX Do we still need to worry about shallow fsync?
    555  */
    556 int
    557 layer_fsync(void *v)
    558 {
    559 	struct vop_fsync_args /* {
    560 		struct vnode *a_vp;
    561 		kauth_cred_t a_cred;
    562 		int  a_flags;
    563 		off_t offlo;
    564 		off_t offhi;
    565 		struct lwp *a_l;
    566 	} */ *ap = v;
    567 	int error;
    568 
    569 	if (ap->a_flags & FSYNC_RECLAIM) {
    570 		return 0;
    571 	}
    572 	if (ap->a_vp->v_type == VBLK || ap->a_vp->v_type == VCHR) {
    573 		error = spec_fsync(v);
    574 		if (error)
    575 			return error;
    576 	}
    577 	return LAYERFS_DO_BYPASS(ap->a_vp, ap);
    578 }
    579 
    580 int
    581 layer_inactive(void *v)
    582 {
    583 	struct vop_inactive_v2_args /* {
    584 		struct vnode *a_vp;
    585 		bool *a_recycle;
    586 	} */ *ap = v;
    587 	struct vnode *vp = ap->a_vp;
    588 
    589 	/*
    590 	 * If we did a remove, don't cache the node.
    591 	 */
    592 	*ap->a_recycle = ((VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED) != 0);
    593 
    594 	/*
    595 	 * Do nothing (and _don't_ bypass).
    596 	 * Wait to vrele lowervp until reclaim,
    597 	 * so that until then our layer_node is in the
    598 	 * cache and reusable.
    599 	 *
    600 	 * NEEDSWORK: Someday, consider inactive'ing
    601 	 * the lowervp and then trying to reactivate it
    602 	 * with capabilities (v_id)
    603 	 * like they do in the name lookup cache code.
    604 	 * That's too much work for now.
    605 	 */
    606 
    607 	return 0;
    608 }
    609 
    610 int
    611 layer_remove(void *v)
    612 {
    613 	struct vop_remove_v2_args /* {
    614 		struct vnode		*a_dvp;
    615 		struct vnode		*a_vp;
    616 		struct componentname	*a_cnp;
    617 	} */ *ap = v;
    618 	struct vnode *vp = ap->a_vp;
    619 	int error;
    620 
    621 	vref(vp);
    622 	error = LAYERFS_DO_BYPASS(vp, ap);
    623 	if (error == 0) {
    624 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    625 	}
    626 	vrele(vp);
    627 
    628 	return error;
    629 }
    630 
    631 int
    632 layer_rename(void *v)
    633 {
    634 	struct vop_rename_args  /* {
    635 		struct vnode		*a_fdvp;
    636 		struct vnode		*a_fvp;
    637 		struct componentname	*a_fcnp;
    638 		struct vnode		*a_tdvp;
    639 		struct vnode		*a_tvp;
    640 		struct componentname	*a_tcnp;
    641 	} */ *ap = v;
    642 	struct vnode *fdvp = ap->a_fdvp, *tvp;
    643 	int error;
    644 
    645 	tvp = ap->a_tvp;
    646 	if (tvp) {
    647 		if (tvp->v_mount != fdvp->v_mount)
    648 			tvp = NULL;
    649 		else
    650 			vref(tvp);
    651 	}
    652 	error = LAYERFS_DO_BYPASS(fdvp, ap);
    653 	if (tvp) {
    654 		if (error == 0)
    655 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
    656 		vrele(tvp);
    657 	}
    658 	return error;
    659 }
    660 
    661 int
    662 layer_rmdir(void *v)
    663 {
    664 	struct vop_rmdir_v2_args /* {
    665 		struct vnode		*a_dvp;
    666 		struct vnode		*a_vp;
    667 		struct componentname	*a_cnp;
    668 	} */ *ap = v;
    669 	int		error;
    670 	struct vnode	*vp = ap->a_vp;
    671 
    672 	vref(vp);
    673 	error = LAYERFS_DO_BYPASS(vp, ap);
    674 	if (error == 0) {
    675 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
    676 	}
    677 	vrele(vp);
    678 
    679 	return error;
    680 }
    681 
    682 int
    683 layer_revoke(void *v)
    684 {
    685         struct vop_revoke_args /* {
    686 		struct vnode *a_vp;
    687 		int a_flags;
    688 	} */ *ap = v;
    689 	struct vnode *vp = ap->a_vp;
    690 	struct vnode *lvp = LAYERVPTOLOWERVP(vp);
    691 	int error;
    692 
    693 	/*
    694 	 * We will most likely end up in vclean which uses the v_usecount
    695 	 * to determine if a vnode is active.  Take an extra reference on
    696 	 * the lower vnode so it will always close and inactivate.
    697 	 */
    698 	vref(lvp);
    699 	error = LAYERFS_DO_BYPASS(vp, ap);
    700 	vrele(lvp);
    701 
    702 	return error;
    703 }
    704 
    705 int
    706 layer_reclaim(void *v)
    707 {
    708 	struct vop_reclaim_args /* {
    709 		struct vnode *a_vp;
    710 		struct lwp *a_l;
    711 	} */ *ap = v;
    712 	struct vnode *vp = ap->a_vp;
    713 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
    714 	struct layer_node *xp = VTOLAYER(vp);
    715 	struct vnode *lowervp = xp->layer_lowervp;
    716 
    717 	/*
    718 	 * Note: in vop_reclaim, the node's struct lock has been
    719 	 * decomissioned, so we have to be careful about calling
    720 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
    721 	 */
    722 	if (vp == lmp->layerm_rootvp) {
    723 		/*
    724 		 * Oops! We no longer have a root node. Most likely reason is
    725 		 * that someone forcably unmunted the underlying fs.
    726 		 *
    727 		 * Now getting the root vnode will fail. We're dead. :-(
    728 		 */
    729 		lmp->layerm_rootvp = NULL;
    730 	}
    731 
    732 	mutex_enter(vp->v_interlock);
    733 	KASSERT(vp->v_interlock == lowervp->v_interlock);
    734 	lowervp->v_writecount -= vp->v_writecount;
    735 	mutex_exit(vp->v_interlock);
    736 
    737 	/* After this assignment, this node will not be re-used. */
    738 	xp->layer_lowervp = NULL;
    739 	kmem_free(vp->v_data, lmp->layerm_size);
    740 	vp->v_data = NULL;
    741 	vrele(lowervp);
    742 
    743 	return 0;
    744 }
    745 
    746 /*
    747  * We just feed the returned vnode up to the caller - there's no need
    748  * to build a layer node on top of the node on which we're going to do
    749  * i/o. :-)
    750  */
    751 int
    752 layer_bmap(void *v)
    753 {
    754 	struct vop_bmap_args /* {
    755 		struct vnode *a_vp;
    756 		daddr_t  a_bn;
    757 		struct vnode **a_vpp;
    758 		daddr_t *a_bnp;
    759 		int *a_runp;
    760 	} */ *ap = v;
    761 	struct vnode *vp;
    762 
    763 	vp = LAYERVPTOLOWERVP(ap->a_vp);
    764 	ap->a_vp = vp;
    765 
    766 	return VCALL(vp, ap->a_desc->vdesc_offset, ap);
    767 }
    768 
    769 int
    770 layer_print(void *v)
    771 {
    772 	struct vop_print_args /* {
    773 		struct vnode *a_vp;
    774 	} */ *ap = v;
    775 	struct vnode *vp = ap->a_vp;
    776 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
    777 	return 0;
    778 }
    779 
    780 int
    781 layer_getpages(void *v)
    782 {
    783 	struct vop_getpages_args /* {
    784 		struct vnode *a_vp;
    785 		voff_t a_offset;
    786 		struct vm_page **a_m;
    787 		int *a_count;
    788 		int a_centeridx;
    789 		vm_prot_t a_access_type;
    790 		int a_advice;
    791 		int a_flags;
    792 	} */ *ap = v;
    793 	struct vnode *vp = ap->a_vp;
    794 	struct mount *mp = vp->v_mount;
    795 	int error;
    796 
    797 	KASSERT(mutex_owned(vp->v_interlock));
    798 
    799 	if (ap->a_flags & PGO_LOCKED) {
    800 		return EBUSY;
    801 	}
    802 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    803 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    804 
    805 	/* Just pass the request on to the underlying layer. */
    806 	mutex_exit(vp->v_interlock);
    807 	fstrans_start(mp, FSTRANS_SHARED);
    808 	mutex_enter(vp->v_interlock);
    809 	if (mp == vp->v_mount) {
    810 		/* Will release the interlock. */
    811 		error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
    812 	} else {
    813 		mutex_exit(vp->v_interlock);
    814 		error = ENOENT;
    815 	}
    816 	fstrans_done(mp);
    817 
    818 	return error;
    819 }
    820 
    821 int
    822 layer_putpages(void *v)
    823 {
    824 	struct vop_putpages_args /* {
    825 		struct vnode *a_vp;
    826 		voff_t a_offlo;
    827 		voff_t a_offhi;
    828 		int a_flags;
    829 	} */ *ap = v;
    830 	struct vnode *vp = ap->a_vp;
    831 
    832 	KASSERT(mutex_owned(vp->v_interlock));
    833 
    834 	ap->a_vp = LAYERVPTOLOWERVP(vp);
    835 	KASSERT(vp->v_interlock == ap->a_vp->v_interlock);
    836 
    837 	if (ap->a_flags & PGO_RECLAIM) {
    838 		mutex_exit(vp->v_interlock);
    839 		return 0;
    840 	}
    841 
    842 	/* Just pass the request on to the underlying layer. */
    843 	return VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
    844 }
    845