kernfs_vnops.c revision 1.107 1 /* $NetBSD: kernfs_vnops.c,v 1.107 2005/02/26 22:59:00 perry Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software donated to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95
35 */
36
37 /*
38 * Kernel parameter filesystem (/kern)
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.107 2005/02/26 22:59:00 perry Exp $");
43
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74
75 #include <uvm/uvm_extern.h>
76
77 #define KSTRING 256 /* Largest I/O available via this filesystem */
78 #define UIO_MX 32
79
80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH)
81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define UREAD_MODE (S_IRUSR)
83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define UDIR_MODE (S_IRUSR|S_IXUSR)
85
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89 /* name data tag type ro/rw */
90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE },
91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE },
92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE },
93 /* XXX cast away const */
94 { DT_REG, N("copyright"), (void *)copyright,
95 KFSstring, VREG, READ_MODE },
96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE },
97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE },
98 #ifdef IPSEC
99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE },
100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE },
101 #endif
102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE },
103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE },
104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE },
105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE },
106 #if 0
107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE },
108 #endif
109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE },
110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE },
111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE },
112 /* XXX cast away const */
113 { DT_REG, N("version"), (void *)version,
114 KFSstring, VREG, READ_MODE },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118 /* name data tag type ro/rw */
119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE },
120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125 /* name data tag type ro/rw */
126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE },
127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131 /* name data tag type ro/rw */
132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE },
133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE },
134 };
135 const struct kern_target ipsecsa_kt =
136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
155 size_t, int);
156
157 static int kernfs_default_xwrite(void *v);
158 static int kernfs_default_fileop_getattr(void *);
159
160 /* must include all fileop's */
161 const struct kernfs_fileop kernfs_default_fileops[] = {
162 { .kf_fileop = KERNFS_XWRITE },
163 { .kf_fileop = KERNFS_FILEOP_OPEN },
164 { .kf_fileop = KERNFS_FILEOP_GETATTR,
165 .kf_genop = {kernfs_default_fileop_getattr} },
166 { .kf_fileop = KERNFS_FILEOP_IOCTL },
167 { .kf_fileop = KERNFS_FILEOP_MMAP },
168 { .kf_fileop = KERNFS_FILEOP_CLOSE },
169 { .kf_fileop = KERNFS_FILEOP_WRITE, .kf_genop = {kernfs_default_xwrite} },
170 };
171
172 int kernfs_lookup __P((void *));
173 #define kernfs_create genfs_eopnotsupp
174 #define kernfs_mknod genfs_eopnotsupp
175 int kernfs_open __P((void *));
176 int kernfs_close __P((void *));
177 int kernfs_access __P((void *));
178 int kernfs_getattr __P((void *));
179 int kernfs_setattr __P((void *));
180 int kernfs_read __P((void *));
181 int kernfs_write __P((void *));
182 #define kernfs_fcntl genfs_fcntl
183 int kernfs_ioctl __P((void *));
184 #define kernfs_poll genfs_poll
185 #define kernfs_revoke genfs_revoke
186 int kernfs_mmap __P((void *));
187 #define kernfs_fsync genfs_nullop
188 #define kernfs_seek genfs_nullop
189 #define kernfs_remove genfs_eopnotsupp
190 int kernfs_link __P((void *));
191 #define kernfs_rename genfs_eopnotsupp
192 #define kernfs_mkdir genfs_eopnotsupp
193 #define kernfs_rmdir genfs_eopnotsupp
194 int kernfs_symlink __P((void *));
195 int kernfs_readdir __P((void *));
196 #define kernfs_readlink genfs_eopnotsupp
197 #define kernfs_abortop genfs_abortop
198 int kernfs_inactive __P((void *));
199 int kernfs_reclaim __P((void *));
200 #define kernfs_lock genfs_lock
201 #define kernfs_unlock genfs_unlock
202 #define kernfs_bmap genfs_badop
203 #define kernfs_strategy genfs_badop
204 int kernfs_print __P((void *));
205 #define kernfs_islocked genfs_islocked
206 int kernfs_pathconf __P((void *));
207 #define kernfs_advlock genfs_einval
208 #define kernfs_blkatoff genfs_eopnotsupp
209 #define kernfs_valloc genfs_eopnotsupp
210 #define kernfs_vfree genfs_nullop
211 #define kernfs_truncate genfs_eopnotsupp
212 #define kernfs_update genfs_nullop
213 #define kernfs_bwrite genfs_eopnotsupp
214 #define kernfs_putpages genfs_putpages
215
216 static int kernfs_xread __P((struct kernfs_node *, int, char **, size_t, size_t *));
217 static int kernfs_xwrite __P((const struct kernfs_node *, char *, size_t));
218
219 int (**kernfs_vnodeop_p) __P((void *));
220 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
221 { &vop_default_desc, vn_default_error },
222 { &vop_lookup_desc, kernfs_lookup }, /* lookup */
223 { &vop_create_desc, kernfs_create }, /* create */
224 { &vop_mknod_desc, kernfs_mknod }, /* mknod */
225 { &vop_open_desc, kernfs_open }, /* open */
226 { &vop_close_desc, kernfs_close }, /* close */
227 { &vop_access_desc, kernfs_access }, /* access */
228 { &vop_getattr_desc, kernfs_getattr }, /* getattr */
229 { &vop_setattr_desc, kernfs_setattr }, /* setattr */
230 { &vop_read_desc, kernfs_read }, /* read */
231 { &vop_write_desc, kernfs_write }, /* write */
232 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */
233 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */
234 { &vop_poll_desc, kernfs_poll }, /* poll */
235 { &vop_revoke_desc, kernfs_revoke }, /* revoke */
236 { &vop_mmap_desc, kernfs_mmap }, /* mmap */
237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */
238 { &vop_seek_desc, kernfs_seek }, /* seek */
239 { &vop_remove_desc, kernfs_remove }, /* remove */
240 { &vop_link_desc, kernfs_link }, /* link */
241 { &vop_rename_desc, kernfs_rename }, /* rename */
242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */
244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */
245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */
246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */
247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */
248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, kernfs_lock }, /* lock */
251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */
252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */
253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */
254 { &vop_print_desc, kernfs_print }, /* print */
255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */
256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */
257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */
258 { &vop_blkatoff_desc, kernfs_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, kernfs_valloc }, /* valloc */
260 { &vop_vfree_desc, kernfs_vfree }, /* vfree */
261 { &vop_truncate_desc, kernfs_truncate }, /* truncate */
262 { &vop_update_desc, kernfs_update }, /* update */
263 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, kernfs_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
268 { &kernfs_vnodeop_p, kernfs_vnodeop_entries };
269
270 static __inline int
271 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
272 {
273 if (a->kf_type < b->kf_type)
274 return -1;
275 if (a->kf_type > b->kf_type)
276 return 1;
277 if (a->kf_fileop < b->kf_fileop)
278 return -1;
279 if (a->kf_fileop > b->kf_fileop)
280 return 1;
281 return (0);
282 }
283
284 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
285 SPLAY_INITIALIZER(kfsfileoptree);
286 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
287 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
288
289 kfstype
290 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
291 {
292 static u_char nextfreetype = KFSlasttype;
293 struct kernfs_fileop *dkf, *fkf, skf;
294 int i;
295
296 /* XXX need to keep track of dkf's memory if we support
297 deallocating types */
298 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
299 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
300
301 for (i = 0; i < sizeof(kernfs_default_fileops) /
302 sizeof(kernfs_default_fileops[0]); i++) {
303 dkf[i].kf_type = nextfreetype;
304 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
305 }
306
307 for (i = 0; i < nkf; i++) {
308 skf.kf_type = nextfreetype;
309 skf.kf_fileop = kf[i].kf_fileop;
310 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
311 fkf->kf_genop = kf[i].kf_genop;
312 }
313
314 return nextfreetype++;
315 }
316
317 int
318 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
319 {
320 struct kernfs_fileop *kf, skf;
321
322 skf.kf_type = type;
323 skf.kf_fileop = fileop;
324 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
325 if (kf->kf_vop)
326 return kf->kf_vop(v);
327 return error;
328 }
329
330 int
331 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *buf,
332 size_t len, int error)
333 {
334 struct kernfs_fileop *kf, skf;
335
336 skf.kf_type = type;
337 skf.kf_fileop = KERNFS_XWRITE;
338 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
339 if (kf->kf_xwrite)
340 return kf->kf_xwrite(kfs, buf, len);
341 return error;
342 }
343
344 int
345 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
346 {
347 struct kernfs_subdir *ks, *parent;
348
349 if (pkt == NULL) {
350 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
351 nkern_targets++;
352 if (dkt->dkt_kt.kt_vtype == VDIR)
353 nkern_dirs++;
354 } else {
355 parent = (struct kernfs_subdir *)pkt->kt_data;
356 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
357 parent->ks_nentries++;
358 if (dkt->dkt_kt.kt_vtype == VDIR)
359 parent->ks_dirs++;
360 }
361 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
362 ks = malloc(sizeof(struct kernfs_subdir),
363 M_TEMP, M_WAITOK);
364 SIMPLEQ_INIT(&ks->ks_entries);
365 ks->ks_nentries = 2; /* . and .. */
366 ks->ks_dirs = 2;
367 ks->ks_parent = pkt ? pkt : &kern_targets[0];
368 dkt->dkt_kt.kt_data = ks;
369 }
370 return 0;
371 }
372
373 static int
374 kernfs_xread(kfs, off, bufp, len, wrlen)
375 struct kernfs_node *kfs;
376 int off;
377 char **bufp;
378 size_t len;
379 size_t *wrlen;
380 {
381 const struct kern_target *kt;
382 #ifdef IPSEC
383 struct mbuf *m;
384 #endif
385
386 kt = kfs->kfs_kt;
387
388 switch (kfs->kfs_type) {
389 case KFStime: {
390 struct timeval tv;
391
392 microtime(&tv);
393 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
394 break;
395 }
396
397 case KFSint: {
398 int *ip = kt->kt_data;
399
400 snprintf(*bufp, len, "%d\n", *ip);
401 break;
402 }
403
404 case KFSstring: {
405 char *cp = kt->kt_data;
406
407 *bufp = cp;
408 break;
409 }
410
411 case KFSmsgbuf: {
412 long n;
413
414 /*
415 * deal with cases where the message buffer has
416 * become corrupted.
417 */
418 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
419 msgbufenabled = 0;
420 return (ENXIO);
421 }
422
423 /*
424 * Note that reads of /kern/msgbuf won't necessarily yield
425 * consistent results, if the message buffer is modified
426 * while the read is in progress. The worst that can happen
427 * is that incorrect data will be read. There's no way
428 * that this can crash the system unless the values in the
429 * message buffer header are corrupted, but that'll cause
430 * the system to die anyway.
431 */
432 if (off >= msgbufp->msg_bufs) {
433 *wrlen = 0;
434 return (0);
435 }
436 n = msgbufp->msg_bufx + off;
437 if (n >= msgbufp->msg_bufs)
438 n -= msgbufp->msg_bufs;
439 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
440 *bufp = msgbufp->msg_bufc + n;
441 *wrlen = len;
442 return (0);
443 }
444
445 case KFShostname: {
446 char *cp = hostname;
447 int xlen = hostnamelen;
448
449 if (xlen >= (len - 2))
450 return (EINVAL);
451
452 memcpy(*bufp, cp, xlen);
453 (*bufp)[xlen] = '\n';
454 (*bufp)[xlen+1] = '\0';
455 len = strlen(*bufp);
456 break;
457 }
458
459 case KFSavenrun:
460 averunnable.fscale = FSCALE;
461 snprintf(*bufp, len, "%d %d %d %ld\n",
462 averunnable.ldavg[0], averunnable.ldavg[1],
463 averunnable.ldavg[2], averunnable.fscale);
464 break;
465
466 #ifdef IPSEC
467 case KFSipsecsa:
468 /*
469 * Note that SA configuration could be changed during the
470 * read operation, resulting in garbled output.
471 */
472 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
473 if (!m)
474 return (ENOBUFS);
475 if (off >= m->m_pkthdr.len) {
476 *wrlen = 0;
477 m_freem(m);
478 return (0);
479 }
480 if (len > m->m_pkthdr.len - off)
481 len = m->m_pkthdr.len - off;
482 m_copydata(m, off, len, *bufp);
483 *wrlen = len;
484 m_freem(m);
485 return (0);
486
487 case KFSipsecsp:
488 /*
489 * Note that SP configuration could be changed during the
490 * read operation, resulting in garbled output.
491 */
492 if (!kfs->kfs_v) {
493 struct secpolicy *sp;
494
495 sp = key_getspbyid(kfs->kfs_value);
496 if (sp)
497 kfs->kfs_v = sp;
498 else
499 return (ENOENT);
500 }
501 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
502 SADB_X_SPDGET, 0, 0);
503 if (!m)
504 return (ENOBUFS);
505 if (off >= m->m_pkthdr.len) {
506 *wrlen = 0;
507 m_freem(m);
508 return (0);
509 }
510 if (len > m->m_pkthdr.len - off)
511 len = m->m_pkthdr.len - off;
512 m_copydata(m, off, len, *bufp);
513 *wrlen = len;
514 m_freem(m);
515 return (0);
516 #endif
517
518 default:
519 *wrlen = 0;
520 return (0);
521 }
522
523 len = strlen(*bufp);
524 if (len <= off)
525 *wrlen = 0;
526 else {
527 *bufp += off;
528 *wrlen = len - off;
529 }
530 return (0);
531 }
532
533 static int
534 kernfs_xwrite(kfs, buf, len)
535 const struct kernfs_node *kfs;
536 char *buf;
537 size_t len;
538 {
539
540 switch (kfs->kfs_type) {
541 case KFShostname:
542 if (buf[len-1] == '\n')
543 --len;
544 memcpy(hostname, buf, len);
545 hostname[len] = '\0';
546 hostnamelen = (size_t) len;
547 return (0);
548
549 default:
550 return kernfs_try_xwrite(kfs->kfs_type, kfs, buf, len, EIO);
551 }
552 }
553
554
555 /*
556 * vp is the current namei directory
557 * ndp is the name to locate in that directory...
558 */
559 int
560 kernfs_lookup(v)
561 void *v;
562 {
563 struct vop_lookup_args /* {
564 struct vnode * a_dvp;
565 struct vnode ** a_vpp;
566 struct componentname * a_cnp;
567 } */ *ap = v;
568 struct componentname *cnp = ap->a_cnp;
569 struct vnode **vpp = ap->a_vpp;
570 struct vnode *dvp = ap->a_dvp;
571 const char *pname = cnp->cn_nameptr;
572 const struct kernfs_node *kfs;
573 const struct kern_target *kt;
574 const struct dyn_kern_target *dkt;
575 const struct kernfs_subdir *ks;
576 int error, i, wantpunlock;
577 #ifdef IPSEC
578 char *ep;
579 u_int32_t id;
580 #endif
581
582 *vpp = NULLVP;
583 cnp->cn_flags &= ~PDIRUNLOCK;
584
585 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
586 return (EROFS);
587
588 if (cnp->cn_namelen == 1 && *pname == '.') {
589 *vpp = dvp;
590 VREF(dvp);
591 return (0);
592 }
593
594 wantpunlock = (~cnp->cn_flags & (LOCKPARENT | ISLASTCN));
595 kfs = VTOKERN(dvp);
596 switch (kfs->kfs_type) {
597 case KFSkern:
598 /*
599 * Shouldn't get here with .. in the root node.
600 */
601 if (cnp->cn_flags & ISDOTDOT)
602 return (EIO);
603
604 for (i = 0; i < static_nkern_targets; i++) {
605 kt = &kern_targets[i];
606 if (cnp->cn_namelen == kt->kt_namlen &&
607 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
608 goto found;
609 }
610 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
611 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
612 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
613 kt = &dkt->dkt_kt;
614 goto found;
615 }
616 }
617 break;
618
619 found:
620 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
621 if ((error == 0) && wantpunlock) {
622 VOP_UNLOCK(dvp, 0);
623 cnp->cn_flags |= PDIRUNLOCK;
624 }
625 return (error);
626
627 case KFSsubdir:
628 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
629 if (cnp->cn_flags & ISDOTDOT) {
630 kt = ks->ks_parent;
631 goto found;
632 }
633
634 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
635 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
636 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
637 kt = &dkt->dkt_kt;
638 goto found;
639 }
640 }
641 break;
642
643 #ifdef IPSEC
644 case KFSipsecsadir:
645 if (cnp->cn_flags & ISDOTDOT) {
646 kt = &kern_targets[0];
647 goto found;
648 }
649
650 for (i = 2; i < nipsecsa_targets; i++) {
651 kt = &ipsecsa_targets[i];
652 if (cnp->cn_namelen == kt->kt_namlen &&
653 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
654 goto found;
655 }
656
657 ep = NULL;
658 id = strtoul(pname, &ep, 10);
659 if (!ep || *ep || ep == pname)
660 break;
661
662 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
663 if ((error == 0) && wantpunlock) {
664 VOP_UNLOCK(dvp, 0);
665 cnp->cn_flags |= PDIRUNLOCK;
666 }
667 return (error);
668
669 case KFSipsecspdir:
670 if (cnp->cn_flags & ISDOTDOT) {
671 kt = &kern_targets[0];
672 goto found;
673 }
674
675 for (i = 2; i < nipsecsp_targets; i++) {
676 kt = &ipsecsp_targets[i];
677 if (cnp->cn_namelen == kt->kt_namlen &&
678 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
679 goto found;
680 }
681
682 ep = NULL;
683 id = strtoul(pname, &ep, 10);
684 if (!ep || *ep || ep == pname)
685 break;
686
687 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
688 if ((error == 0) && wantpunlock) {
689 VOP_UNLOCK(dvp, 0);
690 cnp->cn_flags |= PDIRUNLOCK;
691 }
692 return (error);
693 #endif
694
695 default:
696 return (ENOTDIR);
697 }
698
699 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
700 }
701
702 int
703 kernfs_open(v)
704 void *v;
705 {
706 struct vop_open_args /* {
707 struct vnode *a_vp;
708 int a_mode;
709 struct ucred *a_cred;
710 struct proc *a_p;
711 } */ *ap = v;
712 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
713 #ifdef IPSEC
714 struct mbuf *m;
715 struct secpolicy *sp;
716 #endif
717
718 switch (kfs->kfs_type) {
719 #ifdef IPSEC
720 case KFSipsecsa:
721 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
722 if (m) {
723 m_freem(m);
724 return (0);
725 } else
726 return (ENOENT);
727
728 case KFSipsecsp:
729 sp = key_getspbyid(kfs->kfs_value);
730 if (sp) {
731 kfs->kfs_v = sp;
732 return (0);
733 } else
734 return (ENOENT);
735 #endif
736
737 default:
738 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
739 v, 0);
740 }
741 }
742
743 int
744 kernfs_close(v)
745 void *v;
746 {
747 struct vop_close_args /* {
748 struct vnode *a_vp;
749 int a_fflag;
750 struct ucred *a_cred;
751 struct proc *a_p;
752 } */ *ap = v;
753 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
754
755 switch (kfs->kfs_type) {
756 #ifdef IPSEC
757 case KFSipsecsp:
758 key_freesp((struct secpolicy *)kfs->kfs_v);
759 break;
760 #endif
761
762 default:
763 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
764 v, 0);
765 }
766
767 return (0);
768 }
769
770 int
771 kernfs_access(v)
772 void *v;
773 {
774 struct vop_access_args /* {
775 struct vnode *a_vp;
776 int a_mode;
777 struct ucred *a_cred;
778 struct proc *a_p;
779 } */ *ap = v;
780 struct vattr va;
781 int error;
782
783 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_p)) != 0)
784 return (error);
785
786 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
787 ap->a_mode, ap->a_cred));
788 }
789
790 static int
791 kernfs_default_fileop_getattr(v)
792 void *v;
793 {
794 struct vop_getattr_args /* {
795 struct vnode *a_vp;
796 struct vattr *a_vap;
797 struct ucred *a_cred;
798 struct proc *a_p;
799 } */ *ap = v;
800 struct vattr *vap = ap->a_vap;
801
802 vap->va_nlink = 1;
803 vap->va_bytes = vap->va_size = 0;
804
805 return 0;
806 }
807
808 int
809 kernfs_getattr(v)
810 void *v;
811 {
812 struct vop_getattr_args /* {
813 struct vnode *a_vp;
814 struct vattr *a_vap;
815 struct ucred *a_cred;
816 struct proc *a_p;
817 } */ *ap = v;
818 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
819 struct kernfs_subdir *ks;
820 struct vattr *vap = ap->a_vap;
821 int error = 0;
822 char strbuf[KSTRING], *buf;
823 size_t nread, total;
824
825 VATTR_NULL(vap);
826 vap->va_type = ap->a_vp->v_type;
827 vap->va_uid = 0;
828 vap->va_gid = 0;
829 vap->va_mode = kfs->kfs_mode;
830 vap->va_fileid = kfs->kfs_fileno;
831 vap->va_flags = 0;
832 vap->va_size = 0;
833 vap->va_blocksize = DEV_BSIZE;
834 /*
835 * Make all times be current TOD, except for the "boottime" node.
836 * Avoid microtime(9), it's slow.
837 * We don't guard the read from time(9) with splclock(9) since we
838 * don't actually need to be THAT sure the access is atomic.
839 */
840 if (kfs->kfs_kt && kfs->kfs_kt->kt_namlen == 8 &&
841 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
842 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
843 } else {
844 TIMEVAL_TO_TIMESPEC(&time, &vap->va_ctime);
845 }
846 vap->va_atime = vap->va_mtime = vap->va_ctime;
847 vap->va_gen = 0;
848 vap->va_flags = 0;
849 vap->va_rdev = 0;
850 vap->va_bytes = 0;
851
852 switch (kfs->kfs_type) {
853 case KFSkern:
854 vap->va_nlink = nkern_dirs;
855 vap->va_bytes = vap->va_size = DEV_BSIZE;
856 break;
857
858 case KFSroot:
859 vap->va_nlink = 1;
860 vap->va_bytes = vap->va_size = DEV_BSIZE;
861 break;
862
863 case KFSsubdir:
864 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
865 vap->va_nlink = ks->ks_dirs;
866 vap->va_bytes = vap->va_size = DEV_BSIZE;
867 break;
868
869 case KFSnull:
870 case KFStime:
871 case KFSint:
872 case KFSstring:
873 case KFShostname:
874 case KFSavenrun:
875 case KFSdevice:
876 case KFSmsgbuf:
877 #ifdef IPSEC
878 case KFSipsecsa:
879 case KFSipsecsp:
880 #endif
881 vap->va_nlink = 1;
882 total = 0;
883 do {
884 buf = strbuf;
885 error = kernfs_xread(kfs, total, &buf,
886 sizeof(strbuf), &nread);
887 total += nread;
888 } while (error == 0 && nread != 0);
889 vap->va_bytes = vap->va_size = total;
890 break;
891
892 #ifdef IPSEC
893 case KFSipsecsadir:
894 case KFSipsecspdir:
895 vap->va_nlink = 2;
896 vap->va_bytes = vap->va_size = DEV_BSIZE;
897 break;
898 #endif
899
900 default:
901 error = kernfs_try_fileop(kfs->kfs_type,
902 KERNFS_FILEOP_GETATTR, v, EINVAL);
903 break;
904 }
905
906 return (error);
907 }
908
909 /*ARGSUSED*/
910 int
911 kernfs_setattr(v)
912 void *v;
913 {
914
915 /*
916 * Silently ignore attribute changes.
917 * This allows for open with truncate to have no
918 * effect until some data is written. I want to
919 * do it this way because all writes are atomic.
920 */
921 return (0);
922 }
923
924 int
925 kernfs_read(v)
926 void *v;
927 {
928 struct vop_read_args /* {
929 struct vnode *a_vp;
930 struct uio *a_uio;
931 int a_ioflag;
932 struct ucred *a_cred;
933 } */ *ap = v;
934 struct uio *uio = ap->a_uio;
935 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
936 char strbuf[KSTRING], *buf;
937 off_t off;
938 size_t len;
939 int error;
940
941 if (ap->a_vp->v_type == VDIR)
942 return (EOPNOTSUPP);
943
944 off = uio->uio_offset;
945 buf = strbuf;
946 if ((error = kernfs_xread(kfs, off, &buf, sizeof(strbuf), &len)) == 0)
947 error = uiomove(buf, len, uio);
948 return (error);
949 }
950
951 static int
952 kernfs_default_xwrite(v)
953 void *v;
954 {
955 struct vop_write_args /* {
956 struct vnode *a_vp;
957 struct uio *a_uio;
958 int a_ioflag;
959 struct ucred *a_cred;
960 } */ *ap = v;
961 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
962 struct uio *uio = ap->a_uio;
963 int error, xlen;
964 char strbuf[KSTRING];
965
966 if (uio->uio_offset != 0)
967 return (EINVAL);
968
969 xlen = min(uio->uio_resid, KSTRING-1);
970 if ((error = uiomove(strbuf, xlen, uio)) != 0)
971 return (error);
972
973 if (uio->uio_resid != 0)
974 return (EIO);
975
976 strbuf[xlen] = '\0';
977 xlen = strlen(strbuf);
978 return (kernfs_xwrite(kfs, strbuf, xlen));
979 }
980
981 int
982 kernfs_write(v)
983 void *v;
984 {
985 struct vop_write_args /* {
986 struct vnode *a_vp;
987 struct uio *a_uio;
988 int a_ioflag;
989 struct ucred *a_cred;
990 } */ *ap = v;
991 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
992
993 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 0);
994 }
995
996 int
997 kernfs_ioctl(v)
998 void *v;
999 {
1000 struct vop_ioctl_args /* {
1001 const struct vnodeop_desc *a_desc;
1002 struct vnode *a_vp;
1003 u_long a_command;
1004 void *a_data;
1005 int a_fflag;
1006 struct ucred *a_cred;
1007 struct proc *a_p;
1008 } */ *ap = v;
1009 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1010
1011 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1012 EPASSTHROUGH);
1013 }
1014
1015 int
1016 kernfs_mmap(v)
1017 void *v;
1018 {
1019 struct vop_mmap_args /* {
1020 const struct vnodeop_desc *a_desc;
1021 struct vnode *a_vp;
1022 int a_fflags;
1023 struct ucred *a_cred;
1024 struct proc *a_p;
1025 } */ *ap = v;
1026 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1027
1028 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_MMAP, v, 0);
1029 }
1030
1031 static int
1032 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1033 u_int32_t value, struct vop_readdir_args *ap)
1034 {
1035 struct kernfs_node *kfs;
1036 struct vnode *vp;
1037 int error;
1038
1039 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1040 value)) != 0)
1041 return error;
1042 if (kt->kt_tag == KFSdevice) {
1043 struct vattr va;
1044 if ((error = VOP_GETATTR(vp, &va, ap->a_cred,
1045 ap->a_uio->uio_segflg == UIO_USERSPACE ?
1046 ap->a_uio->uio_procp : &proc0)) != 0)
1047 return (error);
1048 d->d_fileno = va.va_fileid;
1049 } else {
1050 kfs = VTOKERN(vp);
1051 d->d_fileno = kfs->kfs_fileno;
1052 }
1053 vput(vp);
1054 return 0;
1055 }
1056
1057 static int
1058 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1059 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1060 const struct kern_target *kt, struct vop_readdir_args *ap)
1061 {
1062 const struct kern_target *ikt;
1063 int error;
1064
1065 switch (entry) {
1066 case 0:
1067 d->d_fileno = thisdir_kfs->kfs_fileno;
1068 return 0;
1069 case 1:
1070 ikt = parent_kt;
1071 break;
1072 default:
1073 ikt = kt;
1074 break;
1075 }
1076 if (ikt != thisdir_kfs->kfs_kt) {
1077 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1078 return error;
1079 } else
1080 d->d_fileno = thisdir_kfs->kfs_fileno;
1081 return 0;
1082 }
1083
1084 int
1085 kernfs_readdir(v)
1086 void *v;
1087 {
1088 struct vop_readdir_args /* {
1089 struct vnode *a_vp;
1090 struct uio *a_uio;
1091 struct ucred *a_cred;
1092 int *a_eofflag;
1093 off_t **a_cookies;
1094 int a_*ncookies;
1095 } */ *ap = v;
1096 struct uio *uio = ap->a_uio;
1097 struct dirent d;
1098 struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1099 const struct kern_target *kt;
1100 const struct dyn_kern_target *dkt = NULL;
1101 const struct kernfs_subdir *ks;
1102 off_t i, j;
1103 int error;
1104 off_t *cookies = NULL;
1105 int ncookies = 0, n;
1106 #ifdef IPSEC
1107 struct secasvar *sav, *sav2;
1108 struct secpolicy *sp;
1109 #endif
1110
1111 if (uio->uio_resid < UIO_MX)
1112 return (EINVAL);
1113 if (uio->uio_offset < 0)
1114 return (EINVAL);
1115
1116 error = 0;
1117 i = uio->uio_offset;
1118 memset(&d, 0, sizeof(d));
1119 d.d_reclen = UIO_MX;
1120 ncookies = uio->uio_resid / UIO_MX;
1121
1122 switch (kfs->kfs_type) {
1123 case KFSkern:
1124 if (i >= nkern_targets)
1125 return (0);
1126
1127 if (ap->a_ncookies) {
1128 ncookies = min(ncookies, (nkern_targets - i));
1129 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1130 M_WAITOK);
1131 *ap->a_cookies = cookies;
1132 }
1133
1134 n = 0;
1135 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1136 if (i < static_nkern_targets)
1137 kt = &kern_targets[i];
1138 else {
1139 if (dkt == NULL) {
1140 dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1141 for (j = static_nkern_targets; j < i &&
1142 dkt != NULL; j++)
1143 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1144 if (j != i)
1145 break;
1146 } else {
1147 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1148 if (dkt == NULL)
1149 break;
1150 }
1151 kt = &dkt->dkt_kt;
1152 }
1153 if (kt->kt_tag == KFSdevice) {
1154 dev_t *dp = kt->kt_data;
1155 struct vnode *fvp;
1156
1157 if (*dp == NODEV ||
1158 !vfinddev(*dp, kt->kt_vtype, &fvp))
1159 continue;
1160 }
1161 d.d_namlen = kt->kt_namlen;
1162 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1163 &kern_targets[0], kt, ap)) != 0)
1164 break;
1165 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1166 d.d_type = kt->kt_type;
1167 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1168 break;
1169 if (cookies)
1170 *cookies++ = i + 1;
1171 n++;
1172 }
1173 ncookies = n;
1174 break;
1175
1176 case KFSroot:
1177 if (i >= 2)
1178 return 0;
1179
1180 if (ap->a_ncookies) {
1181 ncookies = min(ncookies, (2 - i));
1182 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1183 M_WAITOK);
1184 *ap->a_cookies = cookies;
1185 }
1186
1187 n = 0;
1188 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1189 kt = &kern_targets[i];
1190 d.d_namlen = kt->kt_namlen;
1191 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1192 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1193 d.d_type = kt->kt_type;
1194 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1195 break;
1196 if (cookies)
1197 *cookies++ = i + 1;
1198 n++;
1199 }
1200 ncookies = n;
1201 break;
1202
1203 case KFSsubdir:
1204 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1205 if (i >= ks->ks_nentries)
1206 return (0);
1207
1208 if (ap->a_ncookies) {
1209 ncookies = min(ncookies, (ks->ks_nentries - i));
1210 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1211 M_WAITOK);
1212 *ap->a_cookies = cookies;
1213 }
1214
1215 dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1216 for (j = 0; j < i && dkt != NULL; j++)
1217 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1218 n = 0;
1219 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1220 if (i < 2)
1221 kt = &subdir_targets[i];
1222 else {
1223 /* check if ks_nentries lied to us */
1224 if (dkt == NULL)
1225 break;
1226 kt = &dkt->dkt_kt;
1227 dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1228 }
1229 if (kt->kt_tag == KFSdevice) {
1230 dev_t *dp = kt->kt_data;
1231 struct vnode *fvp;
1232
1233 if (*dp == NODEV ||
1234 !vfinddev(*dp, kt->kt_vtype, &fvp))
1235 continue;
1236 }
1237 d.d_namlen = kt->kt_namlen;
1238 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1239 ks->ks_parent, kt, ap)) != 0)
1240 break;
1241 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1242 d.d_type = kt->kt_type;
1243 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1244 break;
1245 if (cookies)
1246 *cookies++ = i + 1;
1247 n++;
1248 }
1249 ncookies = n;
1250 break;
1251
1252 #ifdef IPSEC
1253 case KFSipsecsadir:
1254 /* count SA in the system */
1255 n = 0;
1256 TAILQ_FOREACH(sav, &satailq, tailq) {
1257 for (sav2 = TAILQ_FIRST(&satailq);
1258 sav2 != sav;
1259 sav2 = TAILQ_NEXT(sav2, tailq)) {
1260 if (sav->spi == sav2->spi) {
1261 /* multiple SA with same SPI */
1262 break;
1263 }
1264 }
1265 if (sav == sav2 || sav->spi != sav2->spi)
1266 n++;
1267 }
1268
1269 if (i >= nipsecsa_targets + n)
1270 return (0);
1271
1272 if (ap->a_ncookies) {
1273 ncookies = min(ncookies, (n - i));
1274 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1275 M_WAITOK);
1276 *ap->a_cookies = cookies;
1277 }
1278
1279 n = 0;
1280 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1281 kt = &ipsecsa_targets[i];
1282 d.d_namlen = kt->kt_namlen;
1283 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1284 &kern_targets[0], kt, ap)) != 0)
1285 break;
1286 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1287 d.d_type = kt->kt_type;
1288 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1289 break;
1290 if (cookies)
1291 *cookies++ = i + 1;
1292 n++;
1293 }
1294 if (error) {
1295 ncookies = n;
1296 break;
1297 }
1298
1299 TAILQ_FOREACH(sav, &satailq, tailq) {
1300 for (sav2 = TAILQ_FIRST(&satailq);
1301 sav2 != sav;
1302 sav2 = TAILQ_NEXT(sav2, tailq)) {
1303 if (sav->spi == sav2->spi) {
1304 /* multiple SA with same SPI */
1305 break;
1306 }
1307 }
1308 if (sav != sav2 && sav->spi == sav2->spi)
1309 continue;
1310 if (uio->uio_resid < UIO_MX)
1311 break;
1312 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1313 sav->spi, ap)) != 0)
1314 break;
1315 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1316 "%u", ntohl(sav->spi));
1317 d.d_type = DT_REG;
1318 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1319 break;
1320 if (cookies)
1321 *cookies++ = i + 1;
1322 n++;
1323 i++;
1324 }
1325 ncookies = n;
1326 break;
1327
1328 case KFSipsecspdir:
1329 /* count SP in the system */
1330 n = 0;
1331 TAILQ_FOREACH(sp, &sptailq, tailq)
1332 n++;
1333
1334 if (i >= nipsecsp_targets + n)
1335 return (0);
1336
1337 if (ap->a_ncookies) {
1338 ncookies = min(ncookies, (n - i));
1339 cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1340 M_WAITOK);
1341 *ap->a_cookies = cookies;
1342 }
1343
1344 n = 0;
1345 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1346 kt = &ipsecsp_targets[i];
1347 d.d_namlen = kt->kt_namlen;
1348 if ((error = kernfs_setdirentfileno(&d, i, kfs,
1349 &kern_targets[0], kt, ap)) != 0)
1350 break;
1351 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1352 d.d_type = kt->kt_type;
1353 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1354 break;
1355 if (cookies)
1356 *cookies++ = i + 1;
1357 n++;
1358 }
1359 if (error) {
1360 ncookies = n;
1361 break;
1362 }
1363
1364 TAILQ_FOREACH(sp, &sptailq, tailq) {
1365 if (uio->uio_resid < UIO_MX)
1366 break;
1367 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1368 sp->id, ap)) != 0)
1369 break;
1370 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1371 "%u", sp->id);
1372 d.d_type = DT_REG;
1373 if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1374 break;
1375 if (cookies)
1376 *cookies++ = i + 1;
1377 n++;
1378 i++;
1379 }
1380 ncookies = n;
1381 break;
1382 #endif
1383
1384 default:
1385 error = ENOTDIR;
1386 break;
1387 }
1388
1389 if (ap->a_ncookies) {
1390 if (error) {
1391 if (cookies)
1392 free(*ap->a_cookies, M_TEMP);
1393 *ap->a_ncookies = 0;
1394 *ap->a_cookies = NULL;
1395 } else
1396 *ap->a_ncookies = ncookies;
1397 }
1398
1399 uio->uio_offset = i;
1400 return (error);
1401 }
1402
1403 int
1404 kernfs_inactive(v)
1405 void *v;
1406 {
1407 struct vop_inactive_args /* {
1408 struct vnode *a_vp;
1409 struct proc *a_p;
1410 } */ *ap = v;
1411 struct vnode *vp = ap->a_vp;
1412 const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1413 #ifdef IPSEC
1414 struct mbuf *m;
1415 struct secpolicy *sp;
1416 #endif
1417
1418 VOP_UNLOCK(vp, 0);
1419 switch (kfs->kfs_type) {
1420 #ifdef IPSEC
1421 case KFSipsecsa:
1422 m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1423 if (m)
1424 m_freem(m);
1425 else
1426 vgone(vp);
1427 break;
1428 case KFSipsecsp:
1429 sp = key_getspbyid(kfs->kfs_value);
1430 if (sp)
1431 key_freesp(sp);
1432 else {
1433 /* should never happen as we hold a refcnt */
1434 vgone(vp);
1435 }
1436 break;
1437 #endif
1438 default:
1439 break;
1440 }
1441 return (0);
1442 }
1443
1444 int
1445 kernfs_reclaim(v)
1446 void *v;
1447 {
1448 struct vop_reclaim_args /* {
1449 struct vnode *a_vp;
1450 } */ *ap = v;
1451
1452 return (kernfs_freevp(ap->a_vp));
1453 }
1454
1455 /*
1456 * Return POSIX pathconf information applicable to special devices.
1457 */
1458 int
1459 kernfs_pathconf(v)
1460 void *v;
1461 {
1462 struct vop_pathconf_args /* {
1463 struct vnode *a_vp;
1464 int a_name;
1465 register_t *a_retval;
1466 } */ *ap = v;
1467
1468 switch (ap->a_name) {
1469 case _PC_LINK_MAX:
1470 *ap->a_retval = LINK_MAX;
1471 return (0);
1472 case _PC_MAX_CANON:
1473 *ap->a_retval = MAX_CANON;
1474 return (0);
1475 case _PC_MAX_INPUT:
1476 *ap->a_retval = MAX_INPUT;
1477 return (0);
1478 case _PC_PIPE_BUF:
1479 *ap->a_retval = PIPE_BUF;
1480 return (0);
1481 case _PC_CHOWN_RESTRICTED:
1482 *ap->a_retval = 1;
1483 return (0);
1484 case _PC_VDISABLE:
1485 *ap->a_retval = _POSIX_VDISABLE;
1486 return (0);
1487 case _PC_SYNC_IO:
1488 *ap->a_retval = 1;
1489 return (0);
1490 default:
1491 return (EINVAL);
1492 }
1493 /* NOTREACHED */
1494 }
1495
1496 /*
1497 * Print out the contents of a /dev/fd vnode.
1498 */
1499 /* ARGSUSED */
1500 int
1501 kernfs_print(v)
1502 void *v;
1503 {
1504
1505 printf("tag VT_KERNFS, kernfs vnode\n");
1506 return (0);
1507 }
1508
1509 int
1510 kernfs_link(v)
1511 void *v;
1512 {
1513 struct vop_link_args /* {
1514 struct vnode *a_dvp;
1515 struct vnode *a_vp;
1516 struct componentname *a_cnp;
1517 } */ *ap = v;
1518
1519 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1520 vput(ap->a_dvp);
1521 return (EROFS);
1522 }
1523
1524 int
1525 kernfs_symlink(v)
1526 void *v;
1527 {
1528 struct vop_symlink_args /* {
1529 struct vnode *a_dvp;
1530 struct vnode **a_vpp;
1531 struct componentname *a_cnp;
1532 struct vattr *a_vap;
1533 char *a_target;
1534 } */ *ap = v;
1535
1536 VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1537 vput(ap->a_dvp);
1538 return (EROFS);
1539 }
1540